DirectXShaderCompiler/lib/HLSL/DxilPreparePasses.cpp

1828 строки
63 KiB
C++

///////////////////////////////////////////////////////////////////////////////
// //
// DxilPreparePasses.cpp //
// Copyright (C) Microsoft Corporation. All rights reserved. //
// This file is distributed under the University of Illinois Open Source //
// License. See LICENSE.TXT for details. //
// //
// Passes to prepare DxilModule. //
// //
///////////////////////////////////////////////////////////////////////////////
#include "dxc/DXIL/DxilConstants.h"
#include "dxc/DXIL/DxilEntryProps.h"
#include "dxc/DXIL/DxilFunctionProps.h"
#include "dxc/DXIL/DxilInstructions.h"
#include "dxc/DXIL/DxilModule.h"
#include "dxc/DXIL/DxilOperations.h"
#include "dxc/DXIL/DxilTypeSystem.h"
#include "dxc/DXIL/DxilUtil.h"
#include "dxc/HLSL/DxilGenerationPass.h"
#include "dxc/HLSL/DxilPoisonValues.h"
#include "dxc/HLSL/HLOperations.h"
#include "dxc/HlslIntrinsicOp.h"
#include "dxc/Support/Global.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/DxilValueCache.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Pass.h"
#include "llvm/Transforms/Utils/Local.h"
#include <memory>
#include <unordered_set>
using namespace llvm;
using namespace hlsl;
namespace {
class InvalidateUndefResources : public ModulePass {
public:
static char ID;
explicit InvalidateUndefResources() : ModulePass(ID) {
initializeScalarizerPass(*PassRegistry::getPassRegistry());
}
StringRef getPassName() const override {
return "Invalidate undef resources";
}
bool runOnModule(Module &M) override;
};
} // namespace
char InvalidateUndefResources::ID = 0;
ModulePass *llvm::createInvalidateUndefResourcesPass() {
return new InvalidateUndefResources();
}
INITIALIZE_PASS(InvalidateUndefResources, "invalidate-undef-resource",
"Invalidate undef resources", false, false)
bool InvalidateUndefResources::runOnModule(Module &M) {
// Undef resources typically indicate uninitialized locals being used
// in some code path, which we should catch and report. However, some
// code patterns in large shaders cause dead undef resources to momentarily,
// which is not an error. We must wait until cleanup passes
// have run to know whether we must produce an error.
// However, we can't leave the undef values in because they could eliminated,
// such as by reading from resources seen in a code path that was not taken.
// We avoid the problem by replacing undef values by another invalid
// value that we can identify later.
for (auto &F : M.functions()) {
if (GetHLOpcodeGroupByName(&F) == HLOpcodeGroup::HLCreateHandle) {
Type *ResTy = F.getFunctionType()->getParamType(
HLOperandIndex::kCreateHandleResourceOpIdx);
UndefValue *UndefRes = UndefValue::get(ResTy);
if (!UndefRes->use_empty()) {
Constant *InvalidRes = ConstantAggregateZero::get(ResTy);
UndefRes->replaceAllUsesWith(InvalidRes);
}
}
}
return false;
}
///////////////////////////////////////////////////////////////////////////////
namespace {
class SimplifyInst : public FunctionPass {
public:
static char ID;
SimplifyInst() : FunctionPass(ID) {
initializeScalarizerPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override;
private:
};
} // namespace
char SimplifyInst::ID = 0;
FunctionPass *llvm::createSimplifyInstPass() { return new SimplifyInst(); }
INITIALIZE_PASS(SimplifyInst, "simplify-inst", "Simplify Instructions", false,
false)
bool SimplifyInst::runOnFunction(Function &F) {
for (Function::iterator BBI = F.begin(), BBE = F.end(); BBI != BBE; ++BBI) {
BasicBlock *BB = BBI;
llvm::SimplifyInstructionsInBlock(BB, nullptr);
}
return true;
}
///////////////////////////////////////////////////////////////////////////////
namespace {
class DxilDeadFunctionElimination : public ModulePass {
public:
static char ID; // Pass identification, replacement for typeid
explicit DxilDeadFunctionElimination() : ModulePass(ID) {}
StringRef getPassName() const override {
return "Remove all unused function except entry from DxilModule";
}
bool runOnModule(Module &M) override {
if (M.HasDxilModule()) {
DxilModule &DM = M.GetDxilModule();
bool IsLib = DM.GetShaderModel()->IsLib();
// Remove unused functions except entry and patch constant func.
// For library profile, only remove unused external functions.
Function *EntryFunc = DM.GetEntryFunction();
Function *PatchConstantFunc = DM.GetPatchConstantFunction();
return dxilutil::RemoveUnusedFunctions(M, EntryFunc, PatchConstantFunc,
IsLib);
}
return false;
}
};
} // namespace
char DxilDeadFunctionElimination::ID = 0;
ModulePass *llvm::createDxilDeadFunctionEliminationPass() {
return new DxilDeadFunctionElimination();
}
INITIALIZE_PASS(DxilDeadFunctionElimination, "dxil-dfe",
"Remove all unused function except entry from DxilModule",
false, false)
///////////////////////////////////////////////////////////////////////////////
bool CleanupSharedMemoryAddrSpaceCast(Module &M);
namespace {
static void TransferEntryFunctionAttributes(Function *F, Function *NewFunc) {
// Keep necessary function attributes
AttributeSet attributeSet = F->getAttributes();
StringRef attrKind, attrValue;
if (attributeSet.hasAttribute(AttributeSet::FunctionIndex,
DXIL::kFP32DenormKindString)) {
Attribute attribute = attributeSet.getAttribute(
AttributeSet::FunctionIndex, DXIL::kFP32DenormKindString);
DXASSERT(attribute.isStringAttribute(),
"otherwise we have wrong fp-denorm-mode attribute.");
attrKind = attribute.getKindAsString();
attrValue = attribute.getValueAsString();
}
bool helperLane = attributeSet.hasAttribute(
AttributeSet::FunctionIndex, DXIL::kWaveOpsIncludeHelperLanesString);
if (F == NewFunc) {
NewFunc->removeAttributes(AttributeSet::FunctionIndex, attributeSet);
}
if (!attrKind.empty() && !attrValue.empty())
NewFunc->addFnAttr(attrKind, attrValue);
if (helperLane)
NewFunc->addFnAttr(DXIL::kWaveOpsIncludeHelperLanesString);
}
// If this returns non-null, the old function F has been stripped and can be
// deleted.
static Function *StripFunctionParameter(
Function *F, DxilModule &DM,
DenseMap<const Function *, DISubprogram *> &FunctionDIs) {
if (F->arg_empty() && F->getReturnType()->isVoidTy()) {
// This will strip non-entry function attributes
TransferEntryFunctionAttributes(F, F);
return nullptr;
}
Module &M = *DM.GetModule();
Type *VoidTy = Type::getVoidTy(M.getContext());
FunctionType *FT = FunctionType::get(VoidTy, false);
for (auto &arg : F->args()) {
if (!arg.user_empty())
return nullptr;
DbgDeclareInst *DDI = llvm::FindAllocaDbgDeclare(&arg);
if (DDI) {
DDI->eraseFromParent();
}
}
Function *NewFunc = Function::Create(FT, F->getLinkage());
M.getFunctionList().insert(F, NewFunc);
// Splice the body of the old function right into the new function.
NewFunc->getBasicBlockList().splice(NewFunc->begin(), F->getBasicBlockList());
TransferEntryFunctionAttributes(F, NewFunc);
// Patch the pointer to LLVM function in debug info descriptor.
auto DI = FunctionDIs.find(F);
if (DI != FunctionDIs.end()) {
DISubprogram *SP = DI->second;
SP->replaceFunction(NewFunc);
// Ensure the map is updated so it can be reused on subsequent argument
// promotions of the same function.
FunctionDIs.erase(DI);
FunctionDIs[NewFunc] = SP;
}
NewFunc->takeName(F);
if (DM.HasDxilFunctionProps(F)) {
DM.ReplaceDxilEntryProps(F, NewFunc);
}
DM.GetTypeSystem().EraseFunctionAnnotation(F);
DM.GetTypeSystem().AddFunctionAnnotation(NewFunc);
return NewFunc;
}
void CheckInBoundForTGSM(GlobalVariable &GV, const DataLayout &DL) {
for (User *U : GV.users()) {
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
bool allImmIndex = true;
for (auto Idx = GEP->idx_begin(), E = GEP->idx_end(); Idx != E; Idx++) {
if (!isa<ConstantInt>(Idx)) {
allImmIndex = false;
break;
}
}
if (!allImmIndex)
GEP->setIsInBounds(false);
else {
Value *Ptr = GEP->getPointerOperand();
unsigned size =
DL.getTypeAllocSize(Ptr->getType()->getPointerElementType());
unsigned valSize =
DL.getTypeAllocSize(GEP->getType()->getPointerElementType());
SmallVector<Value *, 8> Indices(GEP->idx_begin(), GEP->idx_end());
unsigned offset =
DL.getIndexedOffset(GEP->getPointerOperandType(), Indices);
if ((offset + valSize) > size)
GEP->setIsInBounds(false);
}
}
}
}
static bool GetUnsignedVal(Value *V, uint32_t *pValue) {
ConstantInt *CI = dyn_cast<ConstantInt>(V);
if (!CI)
return false;
uint64_t u = CI->getZExtValue();
if (u > UINT32_MAX)
return false;
*pValue = (uint32_t)u;
return true;
}
static void MarkUsedSignatureElements(Function *F, DxilModule &DM) {
DXASSERT_NOMSG(F != nullptr);
// For every loadInput/storeOutput, update the corresponding ReadWriteMask.
// F is a pointer to a Function instance
for (llvm::inst_iterator I = llvm::inst_begin(F), E = llvm::inst_end(F);
I != E; ++I) {
DxilInst_LoadInput LI(&*I);
DxilInst_StoreOutput SO(&*I);
DxilInst_LoadPatchConstant LPC(&*I);
DxilInst_StorePatchConstant SPC(&*I);
DxilInst_StoreVertexOutput SVO(&*I);
DxilInst_StorePrimitiveOutput SPO(&*I);
DxilSignature *pSig;
uint32_t col, row, sigId;
bool bDynIdx = false;
if (LI) {
if (!GetUnsignedVal(LI.get_inputSigId(), &sigId))
continue;
if (!GetUnsignedVal(LI.get_colIndex(), &col))
continue;
if (!GetUnsignedVal(LI.get_rowIndex(), &row))
bDynIdx = true;
pSig = &DM.GetInputSignature();
} else if (SO) {
if (!GetUnsignedVal(SO.get_outputSigId(), &sigId))
continue;
if (!GetUnsignedVal(SO.get_colIndex(), &col))
continue;
if (!GetUnsignedVal(SO.get_rowIndex(), &row))
bDynIdx = true;
pSig = &DM.GetOutputSignature();
} else if (SPC) {
if (!GetUnsignedVal(SPC.get_outputSigID(), &sigId))
continue;
if (!GetUnsignedVal(SPC.get_col(), &col))
continue;
if (!GetUnsignedVal(SPC.get_row(), &row))
bDynIdx = true;
pSig = &DM.GetPatchConstOrPrimSignature();
} else if (LPC) {
if (!GetUnsignedVal(LPC.get_inputSigId(), &sigId))
continue;
if (!GetUnsignedVal(LPC.get_col(), &col))
continue;
if (!GetUnsignedVal(LPC.get_row(), &row))
bDynIdx = true;
pSig = &DM.GetPatchConstOrPrimSignature();
} else if (SVO) {
if (!GetUnsignedVal(SVO.get_outputSigId(), &sigId))
continue;
if (!GetUnsignedVal(SVO.get_colIndex(), &col))
continue;
if (!GetUnsignedVal(SVO.get_rowIndex(), &row))
bDynIdx = true;
pSig = &DM.GetOutputSignature();
} else if (SPO) {
if (!GetUnsignedVal(SPO.get_outputSigId(), &sigId))
continue;
if (!GetUnsignedVal(SPO.get_colIndex(), &col))
continue;
if (!GetUnsignedVal(SPO.get_rowIndex(), &row))
bDynIdx = true;
pSig = &DM.GetPatchConstOrPrimSignature();
} else {
continue;
}
// Consider being more fine-grained about masks.
// We report sometimes-read on input as always-read.
auto &El = pSig->GetElement(sigId);
unsigned UsageMask = El.GetUsageMask();
unsigned colBit = 1 << col;
if (!(colBit & UsageMask)) {
El.SetUsageMask(UsageMask | colBit);
}
if (bDynIdx && (El.GetDynIdxCompMask() & colBit) == 0) {
El.SetDynIdxCompMask(El.GetDynIdxCompMask() | colBit);
}
}
}
class DxilFinalizeModule : public ModulePass {
public:
static char ID; // Pass identification, replacement for typeid
explicit DxilFinalizeModule() : ModulePass(ID) {}
StringRef getPassName() const override { return "HLSL DXIL Finalize Module"; }
void patchInstructionMetadata(Module &M, DenseSet<unsigned> &IllegalMDSet) {
for (auto &F : M.getFunctionList()) {
for (auto &BB : F) {
for (auto &I : BB) {
if (I.hasMetadataOtherThanDebugLoc()) {
SmallVector<std::pair<unsigned, MDNode *>, 2> MDs;
I.getAllMetadataOtherThanDebugLoc(MDs);
for (auto &MD : MDs) {
unsigned kind = MD.first;
// Remove illegal metadata.
if (IllegalMDSet.count(kind))
I.setMetadata(kind, nullptr);
}
}
}
}
}
}
void RemoveAnnotateHandle(hlsl::OP *hlslOP) {
for (auto it : hlslOP->GetOpFuncList(DXIL::OpCode::AnnotateHandle)) {
Function *F = it.second;
if (!F)
continue;
for (auto uit = F->user_begin(); uit != F->user_end();) {
CallInst *CI = cast<CallInst>(*(uit++));
DxilInst_AnnotateHandle annoteHdl(CI);
Value *hdl = annoteHdl.get_res();
CI->replaceAllUsesWith(hdl);
CI->eraseFromParent();
}
}
}
///////////////////////////////////////////////////
// IsHelperLane() lowering for SM < 6.6
// Identify pattern icmp_eq(0, dx.coverage())
bool IsCmpZOfCoverage(Value *V, hlsl::OP *hlslOP) {
if (ICmpInst *IC = dyn_cast<ICmpInst>(V)) {
if (IC->getPredicate() == ICmpInst::ICMP_EQ) {
Value *V0 = IC->getOperand(0);
Value *V1 = IC->getOperand(1);
if (!isa<ConstantInt>(V0))
std::swap(V0, V1);
if (ConstantInt *C = dyn_cast<ConstantInt>(V0)) {
if (CallInst *CI = dyn_cast<CallInst>(V1)) {
// compare dx.op.coverage with zero
if (C->isZero() &&
hlslOP->IsDxilOpFuncCallInst(CI, DXIL::OpCode::Coverage)) {
return true;
}
}
}
}
}
return false;
}
// Identify init as use in entry block that either:
// - non-PS: store i32 0
// - PS: store zext(icmp_eq(0, dx.coverage()))
bool IsInitOfIsHelperGV(User *U, hlsl::OP *hlslOP) {
if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
BasicBlock *BB = SI->getParent();
if (BB == &BB->getParent()->getEntryBlock()) {
Value *V = SI->getValueOperand();
if (ConstantInt *C = dyn_cast<ConstantInt>(V)) {
if (C->isZero()) {
return true;
}
} else if (ZExtInst *ZEI = dyn_cast<ZExtInst>(V)) {
if (IsCmpZOfCoverage(ZEI->getOperand(0), hlslOP)) {
return true;
}
}
}
}
return false;
}
void RemoveFnIfIsHelperInit(User *U, hlsl::OP *hlslOP,
SmallSetVector<Function *, 4> &psEntries) {
if (Instruction *I = dyn_cast<Instruction>(U)) {
// Early out: only check if in function still in set
Function *F = I->getParent()->getParent();
if (!psEntries.count(F))
return;
if (IsInitOfIsHelperGV(I, hlslOP)) {
psEntries.remove(F);
}
}
}
// Init IsHelper GV to zext(!dx.op.coverage()) in PS entry points
void InitIsHelperGV(Module &M) {
GlobalVariable *GV =
M.getGlobalVariable(DXIL::kDxIsHelperGlobalName, /*AllowLocal*/ true);
if (!GV)
return;
DxilModule &DM = M.GetDxilModule();
hlsl::OP *hlslOP = DM.GetOP();
const ShaderModel *pSM = DM.GetShaderModel();
// If PS, and GV is ExternalLinkage, change to InternalLinkage
// This can happen after link to final PS.
if (pSM->IsPS() && GV->getLinkage() == GlobalValue::ExternalLinkage) {
GV->setLinkage(GlobalValue::InternalLinkage);
}
// add PS entry points to set
SmallSetVector<Function *, 4> psEntries;
if (pSM->IsPS()) {
psEntries.insert(DM.GetEntryFunction());
} else if (pSM->IsLib()) {
for (auto &F : M.functions()) {
if (DM.HasDxilEntryProps(&F)) {
if (DM.GetDxilEntryProps(&F).props.IsPS()) {
psEntries.insert(&F);
}
}
}
}
// iterate users of GV to skip entries that already init GV
for (auto &U : GV->uses()) {
RemoveFnIfIsHelperInit(U.getUser(), DM.GetOP(), psEntries);
}
// store zext(!dx.op.coverage())
Type *I32Ty = Type::getInt32Ty(hlslOP->GetCtx());
Constant *C0 = hlslOP->GetI32Const(0);
Constant *OpArg = hlslOP->GetI32Const((int)DXIL::OpCode::Coverage);
Function *CoverageF = nullptr;
for (auto *F : psEntries) {
if (!CoverageF)
CoverageF = hlslOP->GetOpFunc(DXIL::OpCode::Coverage, I32Ty);
IRBuilder<> Builder(F->getEntryBlock().getFirstInsertionPt());
Value *V = Builder.CreateCall(CoverageF, {OpArg});
V = Builder.CreateICmpEQ(C0, V);
V = Builder.CreateZExt(V, I32Ty);
Builder.CreateStore(V, GV);
}
}
GlobalVariable *GetIsHelperGV(Module &M) {
return M.getGlobalVariable(DXIL::kDxIsHelperGlobalName,
/*AllowLocal*/ true);
}
GlobalVariable *GetOrCreateIsHelperGV(Module &M, hlsl::OP *hlslOP) {
GlobalVariable *GV = GetIsHelperGV(M);
if (GV)
return GV;
DxilModule &DM = M.GetDxilModule();
const ShaderModel *pSM = DM.GetShaderModel();
GV = new GlobalVariable(M, IntegerType::get(M.getContext(), 32),
/*constant*/ false,
pSM->IsLib() ? GlobalValue::ExternalLinkage
: GlobalValue::InternalLinkage,
/*Initializer*/ hlslOP->GetI32Const(0),
DXIL::kDxIsHelperGlobalName);
return GV;
}
// Replace IsHelperLane() with false (for non-lib, non-PS SM)
void ReplaceIsHelperWithConstFalse(hlsl::OP *hlslOP) {
Constant *False = hlslOP->GetI1Const(0);
bool bDone = false;
while (!bDone) {
bDone = true;
for (auto it : hlslOP->GetOpFuncList(DXIL::OpCode::IsHelperLane)) {
Function *F = it.second;
if (!F)
continue;
for (auto uit = F->user_begin(); uit != F->user_end();) {
CallInst *CI = dyn_cast<CallInst>(*(uit++));
CI->replaceAllUsesWith(False);
CI->eraseFromParent();
}
hlslOP->RemoveFunction(F);
F->eraseFromParent();
bDone = false;
break;
}
}
}
void ConvertIsHelperToLoadGV(hlsl::OP *hlslOP) {
GlobalVariable *GV = nullptr;
Type *I1Ty = Type::getInt1Ty(hlslOP->GetCtx());
bool bDone = false;
while (!bDone) {
bDone = true;
for (auto it : hlslOP->GetOpFuncList(DXIL::OpCode::IsHelperLane)) {
Function *F = it.second;
if (!F)
continue;
for (auto uit = F->user_begin(); uit != F->user_end();) {
CallInst *CI = cast<CallInst>(*(uit++));
if (!GV)
GV = GetOrCreateIsHelperGV(*F->getParent(), hlslOP);
IRBuilder<> Builder(CI);
Value *V = Builder.CreateLoad(GV);
V = Builder.CreateTrunc(V, I1Ty);
CI->replaceAllUsesWith(V);
CI->eraseFromParent();
}
hlslOP->RemoveFunction(F);
F->eraseFromParent();
bDone = false;
break;
}
}
}
void ConvertDiscardToStoreGV(hlsl::OP *hlslOP) {
GlobalVariable *GV = nullptr;
Type *I32Ty = Type::getInt32Ty(hlslOP->GetCtx());
for (auto it : hlslOP->GetOpFuncList(DXIL::OpCode::Discard)) {
Function *F = it.second;
if (!F)
continue;
for (auto uit = F->user_begin(); uit != F->user_end();) {
CallInst *CI = cast<CallInst>(*(uit++));
if (!GV)
GV = GetIsHelperGV(*F->getParent());
// If we don't already have a global for this,
// we didn't have any IsHelper() calls, so no need to add one now.
if (!GV)
return;
IRBuilder<> Builder(CI);
Value *Cond =
Builder.CreateZExt(DxilInst_Discard(CI).get_condition(), I32Ty);
Builder.CreateStore(Cond, GV);
}
}
}
///////////////////////////////////////////////////
void patchDxil_1_6(Module &M, hlsl::OP *hlslOP, unsigned ValMajor,
unsigned ValMinor) {
RemoveAnnotateHandle(hlslOP);
// Convert IsHelperLane() on down-level targets
const ShaderModel *pSM = M.GetDxilModule().GetShaderModel();
if (pSM->IsLib() || pSM->IsPS()) {
ConvertIsHelperToLoadGV(hlslOP);
ConvertDiscardToStoreGV(hlslOP);
InitIsHelperGV(M);
// Set linkage of dx.ishelper to internal for validator version < 1.6
// This means IsHelperLane() fallback code will not return correct result
// in an exported function linked to a PS in another library in this case.
// But it won't pass validation otherwise.
if (pSM->IsLib() && DXIL::CompareVersions(ValMajor, ValMinor, 1, 6) < 1) {
if (GlobalVariable *GV = GetIsHelperGV(M)) {
GV->setLinkage(GlobalValue::InternalLinkage);
}
}
} else {
ReplaceIsHelperWithConstFalse(hlslOP);
}
}
void convertQuadVote(Module &M, hlsl::OP *hlslOP) {
for (auto FnIt : hlslOP->GetOpFuncList(DXIL::OpCode::QuadVote)) {
Function *F = FnIt.second;
if (!F)
continue;
for (auto UserIt = F->user_begin(); UserIt != F->user_end();) {
CallInst *CI = cast<CallInst>(*(UserIt++));
IRBuilder<> B(CI);
DXASSERT_NOMSG(CI->getOperand(1)->getType() ==
Type::getInt1Ty(M.getContext()));
Type *i32Ty = Type::getInt32Ty(M.getContext());
Value *Cond = B.CreateSExt(CI->getOperand(1), i32Ty);
Function *QuadOpFn = hlslOP->GetOpFunc(DXIL::OpCode::QuadOp, i32Ty);
const std::string &OpName = hlslOP->GetOpCodeName(DXIL::OpCode::QuadOp);
Value *refArgs[] = {hlslOP->GetU32Const((unsigned)DXIL::OpCode::QuadOp),
Cond, nullptr};
refArgs[2] =
hlslOP->GetI8Const((unsigned)DXIL::QuadOpKind::ReadAcrossX);
Value *X = B.CreateCall(QuadOpFn, refArgs, OpName);
refArgs[2] =
hlslOP->GetI8Const((unsigned)DXIL::QuadOpKind::ReadAcrossY);
Value *Y = B.CreateCall(QuadOpFn, refArgs, OpName);
refArgs[2] =
hlslOP->GetI8Const((unsigned)DXIL::QuadOpKind::ReadAcrossDiagonal);
Value *Z = B.CreateCall(QuadOpFn, refArgs, OpName);
Value *Result = nullptr;
uint64_t OpKind = cast<ConstantInt>(CI->getOperand(2))->getZExtValue();
if (OpKind == (uint64_t)DXIL::QuadVoteOpKind::All) {
Value *XY = B.CreateAnd(X, Y);
Value *XYZ = B.CreateAnd(XY, Z);
Result = B.CreateAnd(XYZ, Cond);
} else {
DXASSERT_NOMSG(OpKind == (uint64_t)DXIL::QuadVoteOpKind::Any);
Value *XY = B.CreateOr(X, Y);
Value *XYZ = B.CreateOr(XY, Z);
Result = B.CreateOr(XYZ, Cond);
}
Value *Res = B.CreateTrunc(Result, Type::getInt1Ty(M.getContext()));
CI->replaceAllUsesWith(Res);
CI->eraseFromParent();
}
}
}
// Replace llvm.lifetime.start/.end intrinsics with undef or zeroinitializer
// stores (for earlier validator versions) unless the pointer is a global
// that has an initializer.
// This works around losing scoping information in earlier shader models
// that do not support the intrinsics natively.
void patchLifetimeIntrinsics(Module &M, unsigned ValMajor, unsigned ValMinor,
bool forceZeroStoreLifetimes) {
// Get the declarations. This may introduce them if there were none before.
Value *StartDecl = Intrinsic::getDeclaration(&M, Intrinsic::lifetime_start);
Value *EndDecl = Intrinsic::getDeclaration(&M, Intrinsic::lifetime_end);
// Collect all calls to both intrinsics.
std::vector<CallInst *> intrinsicCalls;
for (Use &U : StartDecl->uses()) {
// All users must be call instructions.
CallInst *CI = dyn_cast<CallInst>(U.getUser());
DXASSERT(CI,
"Expected user of lifetime.start intrinsic to be a CallInst");
intrinsicCalls.push_back(CI);
}
for (Use &U : EndDecl->uses()) {
// All users must be call instructions.
CallInst *CI = dyn_cast<CallInst>(U.getUser());
DXASSERT(CI, "Expected user of lifetime.end intrinsic to be a CallInst");
intrinsicCalls.push_back(CI);
}
// Replace each intrinsic with an undef store.
for (CallInst *CI : intrinsicCalls) {
// Find the corresponding pointer (bitcast from alloca, global value, an
// argument, ...).
Value *voidPtr = CI->getArgOperand(1);
DXASSERT(voidPtr->getType()->isPointerTy() &&
voidPtr->getType()->getPointerElementType()->isIntegerTy(8),
"Expected operand of lifetime intrinsic to be of type i8*");
Value *ptr = nullptr;
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(voidPtr)) {
// This can happen if a local variable/array is promoted to a constant
// global. In this case we must not introduce a store, since that would
// overwrite the constant values in the initializer. Thus, we simply
// remove the intrinsic.
DXASSERT(CE->getOpcode() == Instruction::BitCast,
"expected operand of lifetime intrinsic to be a bitcast");
} else {
// Otherwise, it must be a normal bitcast.
DXASSERT(isa<BitCastInst>(voidPtr),
"Expected operand of lifetime intrinsic to be a bitcast");
BitCastInst *BC = cast<BitCastInst>(voidPtr);
ptr = BC->getOperand(0);
// If the original pointer is a global with initializer, do not replace
// the intrinsic with a store.
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(ptr))
if (GV->hasInitializer() || GV->isExternallyInitialized())
ptr = nullptr;
}
if (ptr) {
// Determine the type to use when storing undef.
DXASSERT(ptr->getType()->isPointerTy(),
"Expected type of operand of lifetime intrinsic bitcast "
"operand to be a pointer");
Type *T = ptr->getType()->getPointerElementType();
// Store undef at the location of the start/end intrinsic.
// If we are targeting validator version < 6.6 we cannot store undef
// since it causes a validation error. As a workaround we store 0, which
// achieves mostly the same as storing undef but can cause overhead in
// some situations.
// We also allow to force zeroinitializer through a flag.
if (forceZeroStoreLifetimes || ValMajor < 1 ||
(ValMajor == 1 && ValMinor < 6))
IRBuilder<>(CI).CreateStore(Constant::getNullValue(T), ptr);
else
IRBuilder<>(CI).CreateStore(UndefValue::get(T), ptr);
}
// Erase the intrinsic call and, if it has no uses anymore, the bitcast as
// well.
DXASSERT_NOMSG(CI->use_empty());
CI->eraseFromParent();
// Erase the bitcast inst if it is not a ConstantExpr.
if (BitCastInst *BC = dyn_cast<BitCastInst>(voidPtr))
if (BC->use_empty())
BC->eraseFromParent();
}
// Erase the intrinsic declarations.
DXASSERT_NOMSG(StartDecl->use_empty());
DXASSERT_NOMSG(EndDecl->use_empty());
cast<Function>(StartDecl)->eraseFromParent();
cast<Function>(EndDecl)->eraseFromParent();
}
bool runOnModule(Module &M) override {
// Remove all the poisoned values and emit errors if necessary.
(void)hlsl::FinalizePoisonValues(M);
if (M.HasDxilModule()) {
DxilModule &DM = M.GetDxilModule();
unsigned ValMajor = 0;
unsigned ValMinor = 0;
DM.GetValidatorVersion(ValMajor, ValMinor);
unsigned DxilMajor = 0;
unsigned DxilMinor = 0;
DM.GetDxilVersion(DxilMajor, DxilMinor);
DenseSet<unsigned> IllegalMDSet;
unsigned DxilTempMDKind =
M.getContext().getMDKindID(DxilMDHelper::kDxilTempAllocaMDName);
IllegalMDSet.insert(DxilTempMDKind);
// Skip validation patch for lib.
bool IsLib = DM.GetShaderModel()->IsLib();
if (!IsLib) {
if (DXIL::CompareVersions(ValMajor, ValMinor, 1, 1) <= 0) {
IllegalMDSet.insert(LLVMContext::MD_tbaa);
IllegalMDSet.insert(LLVMContext::MD_prof);
for (unsigned I = LLVMContext::MD_fpmath + 1;
I <= LLVMContext::MD_dereferenceable_or_null; ++I) {
IllegalMDSet.insert(I);
}
}
}
patchInstructionMetadata(M, IllegalMDSet);
// Replace lifetime intrinsics if requested or necessary.
const bool forceZeroStoreLifetimes = DM.GetForceZeroStoreLifetimes();
if (forceZeroStoreLifetimes ||
DXIL::CompareVersions(DxilMajor, DxilMinor, 1, 6) < 0) {
patchLifetimeIntrinsics(M, ValMajor, ValMinor, forceZeroStoreLifetimes);
}
hlsl::OP *hlslOP = DM.GetOP();
// Basic down-conversions for Dxil < 1.6
if (DXIL::CompareVersions(DxilMajor, DxilMinor, 1, 6) < 0) {
patchDxil_1_6(M, hlslOP, ValMajor, ValMinor);
}
// Convert quad vote
if (DXIL::CompareVersions(DxilMajor, DxilMinor, 1, 7) < 0) {
convertQuadVote(M, DM.GetOP());
}
// Remove store undef output.
RemoveStoreUndefOutput(M, hlslOP);
if (!IsLib) {
// Set used masks for signature elements
MarkUsedSignatureElements(DM.GetEntryFunction(), DM);
if (DM.GetShaderModel()->IsHS())
MarkUsedSignatureElements(DM.GetPatchConstantFunction(), DM);
}
// Adding warning for pixel shader with unassigned target
if (DM.GetShaderModel()->IsPS()) {
DxilSignature &sig = DM.GetOutputSignature();
for (auto &Elt : sig.GetElements()) {
if (Elt->GetKind() == Semantic::Kind::Target &&
Elt->GetUsageMask() != Elt->GetColsAsMask()) {
dxilutil::EmitWarningOnContext(
M.getContext(), "Declared output " +
llvm::Twine(Elt->GetName()) +
llvm::Twine(Elt->GetSemanticStartIndex()) +
" not fully written in shader.");
}
}
}
// Turn dx.break() conditional into global
LowerDxBreak(M);
RemoveUnusedStaticGlobal(M);
// Remove unnecessary address space casts.
CleanupSharedMemoryAddrSpaceCast(M);
// Clear inbound for GEP which has none-const index.
LegalizeSharedMemoryGEPInbound(M);
// Strip parameters of entry function.
StripEntryParameters(M, DM, IsLib);
// Remove unused types from type annotations
DM.RemoveUnusedTypeAnnotations();
// Update flags to reflect any changes.
DM.CollectShaderFlagsForModule();
// Update Validator Version
DM.UpgradeToMinValidatorVersion();
// Clear intermediate options that shouldn't be in the final DXIL
DM.ClearIntermediateOptions();
// Remove unused AllocateRayQuery calls
RemoveUnusedRayQuery(M);
if (IsLib && DXIL::CompareVersions(ValMajor, ValMinor, 1, 4) <= 0) {
// 1.4 validator requires function annotations for all functions
AddFunctionAnnotationForInitializers(M, DM);
}
// Fix DIExpression fragments that cover whole variables
LegalizeDbgFragments(M);
return true;
}
return false;
}
private:
void RemoveUnusedStaticGlobal(Module &M) {
// Remove unused internal global.
std::vector<GlobalVariable *> staticGVs;
for (GlobalVariable &GV : M.globals()) {
if (dxilutil::IsStaticGlobal(&GV) ||
dxilutil::IsSharedMemoryGlobal(&GV)) {
staticGVs.emplace_back(&GV);
}
}
for (GlobalVariable *GV : staticGVs) {
bool onlyStoreUse = true;
for (User *user : GV->users()) {
if (isa<StoreInst>(user))
continue;
if (isa<ConstantExpr>(user) && user->user_empty())
continue;
onlyStoreUse = false;
break;
}
if (onlyStoreUse) {
for (auto UserIt = GV->user_begin(); UserIt != GV->user_end();) {
Value *User = *(UserIt++);
if (Instruction *I = dyn_cast<Instruction>(User)) {
I->eraseFromParent();
} else {
ConstantExpr *CE = cast<ConstantExpr>(User);
CE->dropAllReferences();
}
}
GV->eraseFromParent();
}
}
}
static bool BitPieceCoversEntireVar(DIExpression *expr, DILocalVariable *var,
DITypeIdentifierMap &TypeIdentifierMap) {
if (expr->isBitPiece()) {
DIType *ty = var->getType().resolve(TypeIdentifierMap);
return expr->getBitPieceOffset() == 0 &&
expr->getBitPieceSize() == ty->getSizeInBits();
}
return false;
}
static void
LegalizeDbgFragmentsForDbgIntrinsic(Function *f,
DITypeIdentifierMap &TypeIdentifierMap) {
Intrinsic::ID intrinsic = f->getIntrinsicID();
DIBuilder dib(*f->getParent());
if (intrinsic == Intrinsic::dbg_value) {
for (auto it = f->user_begin(), end = f->user_end(); it != end;) {
User *u = *(it++);
DbgValueInst *di = cast<DbgValueInst>(u);
Value *value = di->getValue();
if (!value) {
di->eraseFromParent();
continue;
}
DIExpression *expr = di->getExpression();
DILocalVariable *var = di->getVariable();
if (BitPieceCoversEntireVar(expr, var, TypeIdentifierMap)) {
dib.insertDbgValueIntrinsic(value, 0, var,
DIExpression::get(di->getContext(), {}),
di->getDebugLoc(), di);
di->eraseFromParent();
}
}
} else if (intrinsic == Intrinsic::dbg_declare) {
for (auto it = f->user_begin(), end = f->user_end(); it != end;) {
User *u = *(it++);
DbgDeclareInst *di = cast<DbgDeclareInst>(u);
Value *addr = di->getAddress();
if (!addr) {
di->eraseFromParent();
continue;
}
DIExpression *expr = di->getExpression();
DILocalVariable *var = di->getVariable();
if (BitPieceCoversEntireVar(expr, var, TypeIdentifierMap)) {
dib.insertDeclare(addr, var, DIExpression::get(di->getContext(), {}),
di->getDebugLoc(), di);
di->eraseFromParent();
}
}
}
}
static void LegalizeDbgFragments(Module &M) {
DITypeIdentifierMap TypeIdentifierMap;
if (Function *f = M.getFunction(Intrinsic::getName(Intrinsic::dbg_value))) {
LegalizeDbgFragmentsForDbgIntrinsic(f, TypeIdentifierMap);
}
if (Function *f =
M.getFunction(Intrinsic::getName(Intrinsic::dbg_declare))) {
LegalizeDbgFragmentsForDbgIntrinsic(f, TypeIdentifierMap);
}
}
void RemoveStoreUndefOutput(Module &M, hlsl::OP *hlslOP) {
for (iplist<Function>::iterator F : M.getFunctionList()) {
if (!hlslOP->IsDxilOpFunc(F))
continue;
DXIL::OpCodeClass opClass;
bool bHasOpClass = hlslOP->GetOpCodeClass(F, opClass);
DXASSERT_LOCALVAR(bHasOpClass, bHasOpClass, "else not a dxil op func");
if (opClass != DXIL::OpCodeClass::StoreOutput)
continue;
for (auto it = F->user_begin(); it != F->user_end();) {
CallInst *CI = dyn_cast<CallInst>(*(it++));
if (!CI)
continue;
Value *V = CI->getArgOperand(DXIL::OperandIndex::kStoreOutputValOpIdx);
// Remove the store of undef.
if (isa<UndefValue>(V))
CI->eraseFromParent();
}
}
}
void LegalizeSharedMemoryGEPInbound(Module &M) {
const DataLayout &DL = M.getDataLayout();
// Clear inbound for GEP which has none-const index.
for (GlobalVariable &GV : M.globals()) {
if (dxilutil::IsSharedMemoryGlobal(&GV)) {
CheckInBoundForTGSM(GV, DL);
}
}
}
void StripEntryParameters(Module &M, DxilModule &DM, bool IsLib) {
DenseMap<const Function *, DISubprogram *> FunctionDIs =
makeSubprogramMap(M);
// Strip parameters of entry function.
if (!IsLib) {
if (Function *OldPatchConstantFunc = DM.GetPatchConstantFunction()) {
Function *NewPatchConstantFunc =
StripFunctionParameter(OldPatchConstantFunc, DM, FunctionDIs);
if (NewPatchConstantFunc) {
DM.SetPatchConstantFunction(NewPatchConstantFunc);
// Erase once the DxilModule doesn't track the old function anymore
DXASSERT(DM.IsPatchConstantShader(NewPatchConstantFunc) &&
!DM.IsPatchConstantShader(OldPatchConstantFunc),
"Error while migrating to parameter-stripped patch constant "
"function.");
OldPatchConstantFunc->eraseFromParent();
}
}
if (Function *OldEntryFunc = DM.GetEntryFunction()) {
StringRef Name = DM.GetEntryFunctionName();
OldEntryFunc->setName(Name);
Function *NewEntryFunc =
StripFunctionParameter(OldEntryFunc, DM, FunctionDIs);
if (NewEntryFunc) {
DM.SetEntryFunction(NewEntryFunc);
OldEntryFunc->eraseFromParent();
}
}
} else {
std::vector<Function *> entries;
// Handle when multiple hull shaders point to the same patch constant
// function
MapVector<Function *, llvm::SmallVector<Function *, 2>>
PatchConstantFuncUsers;
for (iplist<Function>::iterator F : M.getFunctionList()) {
if (DM.IsEntryThatUsesSignatures(F)) {
auto *FT = F->getFunctionType();
// Only do this when has parameters.
if (FT->getNumParams() > 0 || !FT->getReturnType()->isVoidTy()) {
entries.emplace_back(F);
}
DxilFunctionProps &props = DM.GetDxilFunctionProps(F);
if (props.IsHS() && props.ShaderProps.HS.patchConstantFunc) {
FunctionType *PatchConstantFuncTy =
props.ShaderProps.HS.patchConstantFunc->getFunctionType();
if (PatchConstantFuncTy->getNumParams() > 0 ||
!PatchConstantFuncTy->getReturnType()->isVoidTy()) {
// Accumulate all hull shaders using a given patch constant
// function, so we can update it once and fix all hull shaders,
// without having an intermediary state where some hull shaders
// point to a destroyed patch constant function.
PatchConstantFuncUsers[props.ShaderProps.HS.patchConstantFunc]
.emplace_back(F);
}
}
}
}
// Strip patch constant functions first
for (auto &PatchConstantFuncEntry : PatchConstantFuncUsers) {
Function *OldPatchConstantFunc = PatchConstantFuncEntry.first;
Function *NewPatchConstantFunc =
StripFunctionParameter(OldPatchConstantFunc, DM, FunctionDIs);
if (NewPatchConstantFunc) {
// Update all user hull shaders
for (Function *HullShaderFunc : PatchConstantFuncEntry.second)
DM.SetPatchConstantFunctionForHS(HullShaderFunc,
NewPatchConstantFunc);
// Erase once the DxilModule doesn't track the old function anymore
DXASSERT(DM.IsPatchConstantShader(NewPatchConstantFunc) &&
!DM.IsPatchConstantShader(OldPatchConstantFunc),
"Error while migrating to parameter-stripped patch constant "
"function.");
OldPatchConstantFunc->eraseFromParent();
}
}
for (Function *OldEntry : entries) {
Function *NewEntry = StripFunctionParameter(OldEntry, DM, FunctionDIs);
if (NewEntry)
OldEntry->eraseFromParent();
}
}
}
void AddFunctionAnnotationForInitializers(Module &M, DxilModule &DM) {
if (GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors")) {
if (isa<ConstantAggregateZero>(GV->getInitializer())) {
DXASSERT_NOMSG(GV->user_empty());
GV->eraseFromParent();
return;
}
ConstantArray *init = cast<ConstantArray>(GV->getInitializer());
for (auto V : init->operand_values()) {
if (isa<ConstantAggregateZero>(V))
continue;
ConstantStruct *CS = cast<ConstantStruct>(V);
if (isa<ConstantPointerNull>(CS->getOperand(1)))
continue;
Function *F = cast<Function>(CS->getOperand(1));
if (DM.GetTypeSystem().GetFunctionAnnotation(F) == nullptr)
DM.GetTypeSystem().AddFunctionAnnotation(F);
}
}
}
void RemoveUnusedRayQuery(Module &M) {
hlsl::OP *hlslOP = M.GetDxilModule().GetOP();
llvm::Function *AllocFn = hlslOP->GetOpFunc(
DXIL::OpCode::AllocateRayQuery, Type::getVoidTy(M.getContext()));
SmallVector<CallInst *, 4> DeadInsts;
for (auto U : AllocFn->users()) {
if (CallInst *CI = dyn_cast<CallInst>(U)) {
if (CI->user_empty()) {
DeadInsts.emplace_back(CI);
}
}
}
for (auto CI : DeadInsts) {
CI->eraseFromParent();
}
if (AllocFn->user_empty()) {
AllocFn->eraseFromParent();
}
}
// Convert all uses of dx.break() into per-function load/cmp of dx.break.cond
// global constant
void LowerDxBreak(Module &M) {
if (Function *BreakFunc = M.getFunction(DXIL::kDxBreakFuncName)) {
if (!BreakFunc->use_empty()) {
llvm::Type *i32Ty = llvm::Type::getInt32Ty(M.getContext());
Type *i32ArrayTy = ArrayType::get(i32Ty, 1);
unsigned int Values[1] = {0};
Constant *InitialValue = ConstantDataArray::get(M.getContext(), Values);
Constant *GV = new GlobalVariable(M, i32ArrayTy, true,
GlobalValue::InternalLinkage,
InitialValue, DXIL::kDxBreakCondName);
Constant *Indices[] = {ConstantInt::get(i32Ty, 0),
ConstantInt::get(i32Ty, 0)};
Constant *Gep = ConstantExpr::getGetElementPtr(nullptr, GV, Indices);
SmallDenseMap<llvm::Function *, llvm::ICmpInst *, 16> DxBreakCmpMap;
// Replace all uses of dx.break with references to the constant global
for (auto I = BreakFunc->user_begin(), E = BreakFunc->user_end();
I != E;) {
User *U = *I++;
CallInst *CI = cast<CallInst>(U);
Function *F = CI->getParent()->getParent();
ICmpInst *Cmp = DxBreakCmpMap.lookup(F);
if (!Cmp) {
Instruction *IP = dxilutil::FindAllocaInsertionPt(F);
LoadInst *LI = new LoadInst(Gep, nullptr, false, IP);
Cmp = new ICmpInst(IP, ICmpInst::ICMP_EQ, LI,
llvm::ConstantInt::get(i32Ty, 0));
DxBreakCmpMap[F] = Cmp;
}
CI->replaceAllUsesWith(Cmp);
CI->eraseFromParent();
}
}
BreakFunc->eraseFromParent();
}
for (Function &F : M) {
for (BasicBlock &BB : F) {
if (BranchInst *BI = dyn_cast<BranchInst>(BB.getTerminator())) {
BI->setMetadata(DXIL::kDxBreakMDName, nullptr);
}
}
}
}
};
} // namespace
char DxilFinalizeModule::ID = 0;
ModulePass *llvm::createDxilFinalizeModulePass() {
return new DxilFinalizeModule();
}
INITIALIZE_PASS(DxilFinalizeModule, "hlsl-dxilfinalize",
"HLSL DXIL Finalize Module", false, false)
///////////////////////////////////////////////////////////////////////////////
namespace {
typedef MapVector<PHINode *, SmallVector<Value *, 8>> PHIReplacementMap;
bool RemoveAddrSpaceCasts(Value *Val, Value *NewVal,
PHIReplacementMap &phiReplacements,
DenseMap<Value *, Value *> &valueMap) {
bool bChanged = false;
for (auto itU = Val->use_begin(), itEnd = Val->use_end(); itU != itEnd;) {
Use &use = *(itU++);
User *user = use.getUser();
Value *userReplacement = user;
bool bConstructReplacement = false;
bool bCleanupInst = false;
auto valueMapIter = valueMap.find(user);
if (valueMapIter != valueMap.end())
userReplacement = valueMapIter->second;
else if (Val != NewVal)
bConstructReplacement = true;
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(user)) {
if (CE->getOpcode() == Instruction::BitCast) {
if (bConstructReplacement) {
// Replicate bitcast in target address space
Type *NewTy =
PointerType::get(CE->getType()->getPointerElementType(),
NewVal->getType()->getPointerAddressSpace());
userReplacement =
ConstantExpr::getBitCast(cast<Constant>(NewVal), NewTy);
}
} else if (CE->getOpcode() == Instruction::GetElementPtr) {
if (bConstructReplacement) {
// Replicate GEP in target address space
GEPOperator *GEP = cast<GEPOperator>(CE);
SmallVector<Value *, 8> idxList(GEP->idx_begin(), GEP->idx_end());
userReplacement = ConstantExpr::getGetElementPtr(
nullptr, cast<Constant>(NewVal), idxList, GEP->isInBounds());
}
} else if (CE->getOpcode() == Instruction::AddrSpaceCast) {
userReplacement = NewVal;
bConstructReplacement = false;
} else {
DXASSERT(false, "RemoveAddrSpaceCasts: unhandled pointer ConstantExpr");
}
} else if (Instruction *I = dyn_cast<Instruction>(user)) {
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(user)) {
if (bConstructReplacement) {
IRBuilder<> Builder(GEP);
SmallVector<Value *, 8> idxList(GEP->idx_begin(), GEP->idx_end());
if (GEP->isInBounds())
userReplacement =
Builder.CreateInBoundsGEP(NewVal, idxList, GEP->getName());
else
userReplacement =
Builder.CreateGEP(NewVal, idxList, GEP->getName());
}
} else if (BitCastInst *BC = dyn_cast<BitCastInst>(user)) {
if (bConstructReplacement) {
IRBuilder<> Builder(BC);
Type *NewTy =
PointerType::get(BC->getType()->getPointerElementType(),
NewVal->getType()->getPointerAddressSpace());
userReplacement = Builder.CreateBitCast(NewVal, NewTy);
}
} else if (PHINode *PHI = dyn_cast<PHINode>(user)) {
// set replacement phi values for PHI pass
unsigned numValues = PHI->getNumIncomingValues();
auto &phiValues = phiReplacements[PHI];
if (phiValues.empty())
phiValues.resize(numValues, nullptr);
for (unsigned idx = 0; idx < numValues; ++idx) {
if (phiValues[idx] == nullptr && PHI->getIncomingValue(idx) == Val) {
phiValues[idx] = NewVal;
bChanged = true;
}
}
continue;
} else if (isa<AddrSpaceCastInst>(user)) {
userReplacement = NewVal;
bConstructReplacement = false;
bCleanupInst = true;
} else if (isa<CallInst>(user)) {
continue;
} else {
if (Val != NewVal) {
use.set(NewVal);
bChanged = true;
}
continue;
}
}
if (bConstructReplacement && user != userReplacement)
valueMap[user] = userReplacement;
bChanged |=
RemoveAddrSpaceCasts(user, userReplacement, phiReplacements, valueMap);
if (bCleanupInst && user->use_empty()) {
// Clean up old instruction if it's now unused.
// Safe during this use iteration when only one use of V in instruction.
if (Instruction *I = dyn_cast<Instruction>(user))
I->eraseFromParent();
bChanged = true;
}
}
return bChanged;
}
} // namespace
bool CleanupSharedMemoryAddrSpaceCast(Module &M) {
bool bChanged = false;
// Eliminate address space casts if possible
// Collect phi nodes so we can replace iteratively after pass over GVs
PHIReplacementMap phiReplacements;
DenseMap<Value *, Value *> valueMap;
for (GlobalVariable &GV : M.globals()) {
if (dxilutil::IsSharedMemoryGlobal(&GV)) {
bChanged |= RemoveAddrSpaceCasts(&GV, &GV, phiReplacements, valueMap);
}
}
bool bConverged = false;
while (!phiReplacements.empty() && !bConverged) {
bConverged = true;
for (auto &phiReplacement : phiReplacements) {
PHINode *PHI = phiReplacement.first;
unsigned origAddrSpace = PHI->getType()->getPointerAddressSpace();
unsigned incomingAddrSpace = UINT_MAX;
bool bReplacePHI = true;
bool bRemovePHI = false;
for (auto V : phiReplacement.second) {
if (nullptr == V) {
// cannot replace phi (yet)
bReplacePHI = false;
break;
}
unsigned addrSpace = V->getType()->getPointerAddressSpace();
if (incomingAddrSpace == UINT_MAX) {
incomingAddrSpace = addrSpace;
} else if (addrSpace != incomingAddrSpace) {
bRemovePHI = true;
break;
}
}
if (origAddrSpace == incomingAddrSpace)
bRemovePHI = true;
if (bRemovePHI) {
// Cannot replace phi. Remove it and restart.
phiReplacements.erase(PHI);
bConverged = false;
break;
}
if (!bReplacePHI)
continue;
auto &NewVal = valueMap[PHI];
PHINode *NewPHI = nullptr;
if (NewVal) {
NewPHI = cast<PHINode>(NewVal);
} else {
IRBuilder<> Builder(PHI);
NewPHI = Builder.CreatePHI(
PointerType::get(PHI->getType()->getPointerElementType(),
incomingAddrSpace),
PHI->getNumIncomingValues(), PHI->getName());
NewVal = NewPHI;
for (unsigned idx = 0; idx < PHI->getNumIncomingValues(); idx++) {
NewPHI->addIncoming(phiReplacement.second[idx],
PHI->getIncomingBlock(idx));
}
}
if (RemoveAddrSpaceCasts(PHI, NewPHI, phiReplacements, valueMap)) {
bConverged = false;
bChanged = true;
break;
}
if (PHI->use_empty()) {
phiReplacements.erase(PHI);
bConverged = false;
bChanged = true;
break;
}
}
}
// Cleanup unused replacement instructions
SmallVector<WeakTrackingVH, 8> cleanupInsts;
for (auto it : valueMap) {
if (isa<Instruction>(it.first))
cleanupInsts.push_back(it.first);
if (isa<Instruction>(it.second))
cleanupInsts.push_back(it.second);
}
for (auto V : cleanupInsts) {
if (!V)
continue;
if (PHINode *PHI = dyn_cast<PHINode>(V))
RecursivelyDeleteDeadPHINode(PHI);
else if (Instruction *I = dyn_cast<Instruction>(V))
RecursivelyDeleteTriviallyDeadInstructions(I);
}
return bChanged;
}
class DxilCleanupAddrSpaceCast : public ModulePass {
public:
static char ID; // Pass identification, replacement for typeid
explicit DxilCleanupAddrSpaceCast() : ModulePass(ID) {}
StringRef getPassName() const override {
return "HLSL DXIL Cleanup Address Space Cast";
}
bool runOnModule(Module &M) override {
return CleanupSharedMemoryAddrSpaceCast(M);
}
};
char DxilCleanupAddrSpaceCast::ID = 0;
ModulePass *llvm::createDxilCleanupAddrSpaceCastPass() {
return new DxilCleanupAddrSpaceCast();
}
INITIALIZE_PASS(DxilCleanupAddrSpaceCast, "hlsl-dxil-cleanup-addrspacecast",
"HLSL DXIL Cleanup Address Space Cast", false, false)
///////////////////////////////////////////////////////////////////////////////
namespace {
class DxilEmitMetadata : public ModulePass {
public:
static char ID; // Pass identification, replacement for typeid
explicit DxilEmitMetadata() : ModulePass(ID) {}
StringRef getPassName() const override { return "HLSL DXIL Metadata Emit"; }
bool runOnModule(Module &M) override {
if (M.HasDxilModule()) {
DxilModule::ClearDxilMetadata(M);
patchIsFrontfaceTy(M);
M.GetDxilModule().EmitDxilMetadata();
return true;
}
return false;
}
private:
void patchIsFrontfaceTy(Module &M);
};
void patchIsFrontface(DxilSignatureElement &Elt, bool bForceUint) {
// If force to uint, change i1 to u32.
// If not force to uint, change u32 to i1.
if (bForceUint && Elt.GetCompType() == CompType::Kind::I1)
Elt.SetCompType(CompType::Kind::U32);
else if (!bForceUint && Elt.GetCompType() == CompType::Kind::U32)
Elt.SetCompType(CompType::Kind::I1);
}
void patchIsFrontface(DxilSignature &sig, bool bForceUint) {
for (auto &Elt : sig.GetElements()) {
if (Elt->GetSemantic()->GetKind() == Semantic::Kind::IsFrontFace) {
patchIsFrontface(*Elt, bForceUint);
}
}
}
void DxilEmitMetadata::patchIsFrontfaceTy(Module &M) {
DxilModule &DM = M.GetDxilModule();
const ShaderModel *pSM = DM.GetShaderModel();
if (!pSM->IsGS() && !pSM->IsPS())
return;
unsigned ValMajor, ValMinor;
DM.GetValidatorVersion(ValMajor, ValMinor);
bool bForceUint = ValMajor == 0 || (ValMajor >= 1 && ValMinor >= 2);
if (pSM->IsPS()) {
patchIsFrontface(DM.GetInputSignature(), bForceUint);
} else if (pSM->IsGS()) {
patchIsFrontface(DM.GetOutputSignature(), bForceUint);
}
}
} // namespace
char DxilEmitMetadata::ID = 0;
ModulePass *llvm::createDxilEmitMetadataPass() {
return new DxilEmitMetadata();
}
INITIALIZE_PASS(DxilEmitMetadata, "hlsl-dxilemit", "HLSL DXIL Metadata Emit",
false, false)
///////////////////////////////////////////////////////////////////////////////
namespace {
const StringRef UniNoWaveSensitiveGradientErrMsg =
"Gradient operations are not affected by wave-sensitive data or control "
"flow.";
class DxilValidateWaveSensitivity : public ModulePass {
public:
static char ID; // Pass identification, replacement for typeid
explicit DxilValidateWaveSensitivity() : ModulePass(ID) {}
StringRef getPassName() const override {
return "HLSL DXIL wave sensitiveity validation";
}
bool runOnModule(Module &M) override {
// Only check ps and lib profile.
DxilModule &DM = M.GetDxilModule();
const ShaderModel *pSM = DM.GetShaderModel();
if (!pSM->IsPS() && !pSM->IsLib())
return false;
SmallVector<CallInst *, 16> gradientOps;
SmallVector<CallInst *, 16> barriers;
SmallVector<CallInst *, 16> waveOps;
for (auto &F : M) {
if (!F.isDeclaration())
continue;
for (User *U : F.users()) {
CallInst *CI = dyn_cast<CallInst>(U);
if (!CI)
continue;
Function *FCalled = CI->getCalledFunction();
if (!FCalled || !FCalled->isDeclaration())
continue;
if (!hlsl::OP::IsDxilOpFunc(FCalled))
continue;
DXIL::OpCode dxilOpcode = hlsl::OP::GetDxilOpFuncCallInst(CI);
if (OP::IsDxilOpWave(dxilOpcode)) {
waveOps.emplace_back(CI);
}
if (OP::IsDxilOpGradient(dxilOpcode)) {
gradientOps.push_back(CI);
}
if (dxilOpcode == DXIL::OpCode::Barrier) {
barriers.push_back(CI);
}
}
}
// Skip if not have wave op.
if (waveOps.empty())
return false;
// Skip if no gradient op.
if (gradientOps.empty())
return false;
for (auto &F : M) {
if (F.isDeclaration())
continue;
SetVector<Instruction *> localGradientArgs;
for (CallInst *CI : gradientOps) {
if (CI->getParent()->getParent() == &F) {
for (Value *V : CI->arg_operands()) {
// TODO: only check operand which used for gradient calculation.
Instruction *vI = dyn_cast<Instruction>(V);
if (!vI)
continue;
localGradientArgs.insert(vI);
}
}
}
if (localGradientArgs.empty())
continue;
PostDominatorTree PDT;
PDT.runOnFunction(F);
std::unique_ptr<WaveSensitivityAnalysis> WaveVal(
WaveSensitivityAnalysis::create(PDT));
WaveVal->Analyze(&F);
for (Instruction *gradArg : localGradientArgs) {
// Check operand of gradient ops, not gradientOps itself.
if (WaveVal->IsWaveSensitive(gradArg)) {
dxilutil::EmitWarningOnInstruction(gradArg,
UniNoWaveSensitiveGradientErrMsg);
}
}
}
return false;
}
};
} // namespace
char DxilValidateWaveSensitivity::ID = 0;
ModulePass *llvm::createDxilValidateWaveSensitivityPass() {
return new DxilValidateWaveSensitivity();
}
INITIALIZE_PASS(DxilValidateWaveSensitivity, "hlsl-validate-wave-sensitivity",
"HLSL DXIL wave sensitiveity validation", false, false)
namespace {
// Cull blocks from BreakBBs that containing instructions that are sensitive to
// the wave-sensitive Inst Sensitivity entails being an eventual user of the
// Inst and also belonging to a block with a break conditional on dx.break that
// breaks out of a loop that contains WaveCI LInfo is needed to determine loop
// contents. Visited is needed to prevent infinite looping.
static void
CullSensitiveBlocks(LoopInfo *LInfo, Loop *WaveLoop, BasicBlock *LastBB,
Instruction *Inst,
std::unordered_set<Instruction *> &Visited,
SmallDenseMap<BasicBlock *, Instruction *, 16> &BreakBBs) {
BasicBlock *BB = Inst->getParent();
Loop *BreakLoop = LInfo->getLoopFor(BB);
// If this instruction isn't in a loop, there is no need to track its
// sensitivity further
if (!BreakLoop || BreakBBs.empty())
return;
// To prevent infinite looping, only visit each instruction once
if (!Visited.insert(Inst).second)
return;
// If this BB wasn't already just processed, handle it now
if (LastBB != BB) {
// Determine if the instruction's block has an artificially-conditional
// break and breaks out of a loop that contains the waveCI
BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
if (BI && BI->isConditional() && BreakLoop->contains(WaveLoop))
BreakBBs.erase(BB);
}
// Recurse on the users
for (User *U : Inst->users()) {
Instruction *I = cast<Instruction>(U);
CullSensitiveBlocks(LInfo, WaveLoop, BB, I, Visited, BreakBBs);
}
}
// Collect blocks that end in a dx.break dependent branch by tracing the
// descendants of BreakFunc that are found in ThisFunc and store the block and
// call instruction in BreakBBs
static void
CollectBreakBlocks(Function *BreakFunc, Function *ThisFunc,
SmallDenseMap<BasicBlock *, Instruction *, 16> &BreakBBs) {
for (User *U : BreakFunc->users()) {
SmallVector<User *, 16> WorkList;
Instruction *CI = cast<Instruction>(U);
// If this user doesn't pertain to the current function, skip it.
if (CI->getParent()->getParent() != ThisFunc)
continue;
WorkList.append(CI->user_begin(), CI->user_end());
while (!WorkList.empty()) {
Instruction *I = dyn_cast<Instruction>(WorkList.pop_back_val());
// When we find a Branch that depends on dx.break, save it and stop
// This should almost always be the first user of the Call Inst
// If not, iterate on the users
if (BranchInst *BI = dyn_cast<BranchInst>(I))
BreakBBs[BI->getParent()] = CI;
else
WorkList.append(I->user_begin(), I->user_end());
}
}
}
// A pass to remove conditions from breaks that do not contain instructions that
// depend on wave operations that are in the loop that the break leaves.
class CleanupDxBreak : public FunctionPass {
public:
static char ID; // Pass identification, replacement for typeid
explicit CleanupDxBreak() : FunctionPass(ID) {}
StringRef getPassName() const override {
return "HLSL Remove unnecessary dx.break conditions";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<LoopInfoWrapperPass>();
}
LoopInfo *LInfo;
bool runOnFunction(Function &F) override {
if (F.isDeclaration())
return false;
Module *M = F.getEntryBlock().getModule();
Function *BreakFunc = M->getFunction(DXIL::kDxBreakFuncName);
if (!BreakFunc)
return false;
LInfo = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
// Collect the blocks that depend on dx.break and the instructions that call
// dx.break()
SmallDenseMap<BasicBlock *, Instruction *, 16> BreakBBs;
CollectBreakBlocks(BreakFunc, &F, BreakBBs);
if (BreakBBs.empty())
return false;
// Collect all wave calls in this function and group by loop
SmallDenseMap<Loop *, SmallVector<CallInst *, 8>, 16> WaveCalls;
for (Function &IF : M->functions()) {
HLOpcodeGroup opgroup = hlsl::GetHLOpcodeGroup(&IF);
// Only consider wave-sensitive intrinsics or extintrinsics
if (IF.isDeclaration() && IsHLWaveSensitive(&IF) && !BreakBBs.empty() &&
(opgroup == HLOpcodeGroup::HLIntrinsic ||
opgroup == HLOpcodeGroup::HLExtIntrinsic)) {
// For each user of the function, trace all its users to remove the
// blocks
for (User *U : IF.users()) {
CallInst *CI = cast<CallInst>(U);
if (CI->getParent()->getParent() == &F) {
Loop *WaveLoop = LInfo->getLoopFor(CI->getParent());
WaveCalls[WaveLoop].emplace_back(CI);
}
}
}
}
// For each wave operation, remove all the dx.break blocks that are
// sensitive to it
for (DenseMap<Loop *, SmallVector<CallInst *, 8>>::iterator
I = WaveCalls.begin(),
E = WaveCalls.end();
I != E; ++I) {
Loop *loop = I->first;
std::unordered_set<Instruction *> Visited;
for (CallInst *CI : I->second) {
CullSensitiveBlocks(LInfo, loop, nullptr, CI, Visited, BreakBBs);
}
}
bool Changed = false;
// Revert artificially conditional breaks in non-wave-sensitive blocks that
// remain in BreakBBs
Constant *C = ConstantInt::get(Type::getInt1Ty(M->getContext()), 1);
for (auto &BB : BreakBBs) {
// Replace the call instruction with a constant boolen
BB.second->replaceAllUsesWith(C);
BB.second->eraseFromParent();
Changed = true;
}
return Changed;
}
};
} // namespace
char CleanupDxBreak::ID = 0;
INITIALIZE_PASS_BEGIN(CleanupDxBreak, "hlsl-cleanup-dxbreak",
"HLSL Remove unnecessary dx.break conditions", false,
false)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_END(CleanupDxBreak, "hlsl-cleanup-dxbreak",
"HLSL Remove unnecessary dx.break conditions", false, false)
FunctionPass *llvm::createCleanupDxBreakPass() { return new CleanupDxBreak(); }
///////////////////////////////////////////////////////////////////////////////
namespace {
class DxilModuleInit : public ModulePass {
public:
static char ID; // Pass identification, replacement for typeid
explicit DxilModuleInit() : ModulePass(ID) {}
StringRef getPassName() const override {
return "Create DXIL Module for opt tests";
}
bool runOnModule(Module &M) override {
M.GetOrCreateDxilModule();
return true;
}
};
} // namespace
char DxilModuleInit::ID = 0;
ModulePass *llvm::createDxilModuleInitPass() { return new DxilModuleInit(); }
INITIALIZE_PASS(DxilModuleInit, "hlsl-dxil-module-init",
"Create DXIL Module for opt tests", false, false)
///////////////////////////////////////////////////////////////////////////////