DirectXShaderCompiler/lib/HLSL/HLModule.cpp

1327 строки
44 KiB
C++

///////////////////////////////////////////////////////////////////////////////
// //
// HLModule.cpp //
// Copyright (C) Microsoft Corporation. All rights reserved. //
// This file is distributed under the University of Illinois Open Source //
// License. See LICENSE.TXT for details. //
// //
// HighLevel DX IR module. //
// //
///////////////////////////////////////////////////////////////////////////////
#include "dxc/DXIL/DxilOperations.h"
#include "dxc/DXIL/DxilShaderModel.h"
#include "dxc/DXIL/DxilCBuffer.h"
#include "dxc/HLSL/HLModule.h"
#include "dxc/DXIL/DxilTypeSystem.h"
#include "dxc/Support/WinAdapter.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
using namespace llvm;
using std::string;
using std::vector;
using std::unique_ptr;
namespace hlsl {
// Avoid dependency on HLModule from llvm::Module using this:
void HLModule_RemoveGlobal(llvm::Module* M, llvm::GlobalObject* G) {
if (M && G && M->HasHLModule()) {
if (llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(G))
M->GetHLModule().RemoveGlobal(GV);
else if (llvm::Function *F = dyn_cast<llvm::Function>(G))
M->GetHLModule().RemoveFunction(F);
}
}
void HLModule_ResetModule(llvm::Module* M) {
if (M && M->HasHLModule())
delete &M->GetHLModule();
M->SetHLModule(nullptr);
}
//------------------------------------------------------------------------------
//
// HLModule methods.
//
HLModule::HLModule(Module *pModule)
: m_Ctx(pModule->getContext())
, m_pModule(pModule)
, m_pEntryFunc(nullptr)
, m_EntryName("")
, m_pMDHelper(llvm::make_unique<DxilMDHelper>(
pModule, llvm::make_unique<HLExtraPropertyHelper>(pModule)))
, m_pDebugInfoFinder(nullptr)
, m_pSM(nullptr)
, m_DxilMajor(DXIL::kDxilMajor)
, m_DxilMinor(DXIL::kDxilMinor)
, m_ValMajor(0)
, m_ValMinor(0)
, m_Float32DenormMode(DXIL::Float32DenormMode::Any)
, m_pOP(llvm::make_unique<OP>(pModule->getContext(), pModule))
, m_AutoBindingSpace(UINT_MAX)
, m_DefaultLinkage(DXIL::DefaultLinkage::Default)
, m_pTypeSystem(llvm::make_unique<DxilTypeSystem>(pModule)) {
DXASSERT_NOMSG(m_pModule != nullptr);
m_pModule->pfnRemoveGlobal = &HLModule_RemoveGlobal;
m_pModule->pfnResetHLModule = &HLModule_ResetModule;
// Pin LLVM dump methods. TODO: make debug-only.
void (__thiscall Module::*pfnModuleDump)() const = &Module::dump;
void (__thiscall Type::*pfnTypeDump)() const = &Type::dump;
m_pUnused = (char *)&pfnModuleDump - (char *)&pfnTypeDump;
}
HLModule::~HLModule() {
if (m_pModule->pfnRemoveGlobal == &HLModule_RemoveGlobal)
m_pModule->pfnRemoveGlobal = nullptr;
}
LLVMContext &HLModule::GetCtx() const { return m_Ctx; }
Module *HLModule::GetModule() const { return m_pModule; }
OP *HLModule::GetOP() const { return m_pOP.get(); }
void HLModule::SetValidatorVersion(unsigned ValMajor, unsigned ValMinor) {
m_ValMajor = ValMajor;
m_ValMinor = ValMinor;
}
void HLModule::GetValidatorVersion(unsigned &ValMajor, unsigned &ValMinor) const {
ValMajor = m_ValMajor;
ValMinor = m_ValMinor;
}
void HLModule::SetShaderModel(const ShaderModel *pSM) {
DXASSERT(m_pSM == nullptr, "shader model must not change for the module");
DXASSERT(pSM != nullptr && pSM->IsValidForDxil(), "shader model must be valid");
m_pSM = pSM;
m_pSM->GetDxilVersion(m_DxilMajor, m_DxilMinor);
m_pMDHelper->SetShaderModel(m_pSM);
m_SerializedRootSignature.clear();
}
const ShaderModel *HLModule::GetShaderModel() const {
return m_pSM;
}
uint32_t HLOptions::GetHLOptionsRaw() const {
union Cast {
Cast(const HLOptions &options) {
hlOptions = options;
}
HLOptions hlOptions;
uint32_t rawData;
};
static_assert(sizeof(uint32_t) == sizeof(HLOptions),
"size must match to make sure no undefined bits when cast");
Cast rawCast(*this);
return rawCast.rawData;
}
void HLOptions::SetHLOptionsRaw(uint32_t data) {
union Cast {
Cast(uint32_t data) {
rawData = data;
}
HLOptions hlOptions;
uint64_t rawData;
};
Cast rawCast(data);
*this = rawCast.hlOptions;
}
void HLModule::SetHLOptions(HLOptions &opts) {
m_Options = opts;
}
const HLOptions &HLModule::GetHLOptions() const {
return m_Options;
}
void HLModule::SetAutoBindingSpace(uint32_t Space) {
m_AutoBindingSpace = Space;
}
uint32_t HLModule::GetAutoBindingSpace() const {
return m_AutoBindingSpace;
}
Function *HLModule::GetEntryFunction() const {
return m_pEntryFunc;
}
Function *HLModule::GetPatchConstantFunction() {
if (!m_pSM->IsHS())
return nullptr;
if (!m_pEntryFunc)
return nullptr;
DxilFunctionProps &funcProps = GetDxilFunctionProps(m_pEntryFunc);
return funcProps.ShaderProps.HS.patchConstantFunc;
}
void HLModule::SetEntryFunction(Function *pEntryFunc) {
m_pEntryFunc = pEntryFunc;
}
const string &HLModule::GetEntryFunctionName() const { return m_EntryName; }
void HLModule::SetEntryFunctionName(const string &name) { m_EntryName = name; }
template<typename T> unsigned
HLModule::AddResource(vector<unique_ptr<T> > &Vec, unique_ptr<T> pRes) {
DXASSERT_NOMSG((unsigned)Vec.size() < UINT_MAX);
unsigned Id = (unsigned)Vec.size();
Vec.emplace_back(std::move(pRes));
return Id;
}
unsigned HLModule::AddCBuffer(unique_ptr<DxilCBuffer> pCBuffer) {
return AddResource<DxilCBuffer>(m_CBuffers, std::move(pCBuffer));
}
DxilCBuffer &HLModule::GetCBuffer(unsigned idx) {
return *m_CBuffers[idx];
}
const DxilCBuffer &HLModule::GetCBuffer(unsigned idx) const {
return *m_CBuffers[idx];
}
const vector<unique_ptr<DxilCBuffer> > &HLModule::GetCBuffers() const {
return m_CBuffers;
}
unsigned HLModule::AddSampler(unique_ptr<DxilSampler> pSampler) {
return AddResource<DxilSampler>(m_Samplers, std::move(pSampler));
}
DxilSampler &HLModule::GetSampler(unsigned idx) {
return *m_Samplers[idx];
}
const DxilSampler &HLModule::GetSampler(unsigned idx) const {
return *m_Samplers[idx];
}
const vector<unique_ptr<DxilSampler> > &HLModule::GetSamplers() const {
return m_Samplers;
}
unsigned HLModule::AddSRV(unique_ptr<HLResource> pSRV) {
return AddResource<HLResource>(m_SRVs, std::move(pSRV));
}
HLResource &HLModule::GetSRV(unsigned idx) {
return *m_SRVs[idx];
}
const HLResource &HLModule::GetSRV(unsigned idx) const {
return *m_SRVs[idx];
}
const vector<unique_ptr<HLResource> > &HLModule::GetSRVs() const {
return m_SRVs;
}
unsigned HLModule::AddUAV(unique_ptr<HLResource> pUAV) {
return AddResource<HLResource>(m_UAVs, std::move(pUAV));
}
HLResource &HLModule::GetUAV(unsigned idx) {
return *m_UAVs[idx];
}
const HLResource &HLModule::GetUAV(unsigned idx) const {
return *m_UAVs[idx];
}
const vector<unique_ptr<HLResource> > &HLModule::GetUAVs() const {
return m_UAVs;
}
void HLModule::RemoveFunction(llvm::Function *F) {
DXASSERT_NOMSG(F != nullptr);
m_DxilFunctionPropsMap.erase(F);
if (m_pTypeSystem.get()->GetFunctionAnnotation(F))
m_pTypeSystem.get()->EraseFunctionAnnotation(F);
m_pOP->RemoveFunction(F);
}
template <typename TResource>
bool RemoveResource(std::vector<std::unique_ptr<TResource>> &vec,
GlobalVariable *pVariable) {
for (auto p = vec.begin(), e = vec.end(); p != e; ++p) {
if ((*p)->GetGlobalSymbol() == pVariable) {
p = vec.erase(p);
// Update ID.
for (e = vec.end();p != e; ++p) {
unsigned ID = (*p)->GetID()-1;
(*p)->SetID(ID);
}
return true;
}
}
return false;
}
bool RemoveResource(std::vector<GlobalVariable *> &vec,
llvm::GlobalVariable *pVariable) {
for (auto p = vec.begin(), e = vec.end(); p != e; ++p) {
if (*p == pVariable) {
vec.erase(p);
return true;
}
}
return false;
}
void HLModule::RemoveGlobal(llvm::GlobalVariable *GV) {
RemoveResources(&GV, 1);
}
void HLModule::RemoveResources(llvm::GlobalVariable **ppVariables,
unsigned count) {
DXASSERT_NOMSG(count == 0 || ppVariables != nullptr);
unsigned resourcesRemoved = count;
for (unsigned i = 0; i < count; ++i) {
GlobalVariable *pVariable = ppVariables[i];
// This could be considerably faster - check variable type to see which
// resource type this is rather than scanning all lists, and look for
// usage and removal patterns.
if (RemoveResource(m_CBuffers, pVariable))
continue;
if (RemoveResource(m_SRVs, pVariable))
continue;
if (RemoveResource(m_UAVs, pVariable))
continue;
if (RemoveResource(m_Samplers, pVariable))
continue;
// TODO: do m_TGSMVariables and m_StreamOutputs need maintenance?
--resourcesRemoved; // Global variable is not a resource?
}
}
HLModule::tgsm_iterator HLModule::tgsm_begin() {
return m_TGSMVariables.begin();
}
HLModule::tgsm_iterator HLModule::tgsm_end() {
return m_TGSMVariables.end();
}
void HLModule::AddGroupSharedVariable(GlobalVariable *GV) {
m_TGSMVariables.emplace_back(GV);
}
std::vector<uint8_t> &HLModule::GetSerializedRootSignature() {
return m_SerializedRootSignature;
}
void HLModule::SetSerializedRootSignature(const uint8_t *pData, unsigned size) {
m_SerializedRootSignature.clear();
m_SerializedRootSignature.resize(size);
memcpy(m_SerializedRootSignature.data(), pData, size);
}
DxilTypeSystem &HLModule::GetTypeSystem() {
return *m_pTypeSystem;
}
DxilTypeSystem *HLModule::ReleaseTypeSystem() {
return m_pTypeSystem.release();
}
hlsl::OP *HLModule::ReleaseOP() {
return m_pOP.release();
}
DxilFunctionPropsMap &&HLModule::ReleaseFunctionPropsMap() {
return std::move(m_DxilFunctionPropsMap);
}
void HLModule::EmitLLVMUsed() {
if (m_LLVMUsed.empty())
return;
vector<llvm::Constant*> GVs;
GVs.resize(m_LLVMUsed.size());
for (size_t i = 0, e = m_LLVMUsed.size(); i != e; i++) {
GVs[i] = ConstantExpr::getAddrSpaceCast(cast<llvm::Constant>(&*m_LLVMUsed[i]), Type::getInt8PtrTy(m_Ctx));
}
ArrayType *pATy = ArrayType::get(Type::getInt8PtrTy(m_Ctx), GVs.size());
GlobalVariable *pGV = new GlobalVariable(*m_pModule, pATy, false,
GlobalValue::AppendingLinkage,
ConstantArray::get(pATy, GVs),
"llvm.used");
pGV->setSection("llvm.metadata");
}
vector<GlobalVariable* > &HLModule::GetLLVMUsed() {
return m_LLVMUsed;
}
bool HLModule::HasDxilFunctionProps(llvm::Function *F) {
return m_DxilFunctionPropsMap.find(F) != m_DxilFunctionPropsMap.end();
}
DxilFunctionProps &HLModule::GetDxilFunctionProps(llvm::Function *F) {
DXASSERT(m_DxilFunctionPropsMap.count(F) != 0, "cannot find F in map");
return *m_DxilFunctionPropsMap[F];
}
void HLModule::AddDxilFunctionProps(llvm::Function *F, std::unique_ptr<DxilFunctionProps> &info) {
DXASSERT(m_DxilFunctionPropsMap.count(F) == 0, "F already in map, info will be overwritten");
DXASSERT_NOMSG(info->shaderKind != DXIL::ShaderKind::Invalid);
m_DxilFunctionPropsMap[F] = std::move(info);
}
void HLModule::SetPatchConstantFunctionForHS(llvm::Function *hullShaderFunc, llvm::Function *patchConstantFunc) {
auto propIter = m_DxilFunctionPropsMap.find(hullShaderFunc);
DXASSERT(propIter != m_DxilFunctionPropsMap.end(), "else Hull Shader missing function props");
DxilFunctionProps &props = *(propIter->second);
DXASSERT(props.IsHS(), "else hullShaderFunc is not a Hull Shader");
if (props.ShaderProps.HS.patchConstantFunc)
m_PatchConstantFunctions.erase(props.ShaderProps.HS.patchConstantFunc);
props.ShaderProps.HS.patchConstantFunc = patchConstantFunc;
if (patchConstantFunc)
m_PatchConstantFunctions.insert(patchConstantFunc);
}
bool HLModule::IsGraphicsShader(llvm::Function *F) {
return HasDxilFunctionProps(F) && GetDxilFunctionProps(F).IsGraphics();
}
bool HLModule::IsPatchConstantShader(llvm::Function *F) {
return m_PatchConstantFunctions.count(F) != 0;
}
bool HLModule::IsComputeShader(llvm::Function *F) {
return HasDxilFunctionProps(F) && GetDxilFunctionProps(F).IsCS();
}
bool HLModule::IsEntryThatUsesSignatures(llvm::Function *F) {
auto propIter = m_DxilFunctionPropsMap.find(F);
if (propIter != m_DxilFunctionPropsMap.end()) {
DxilFunctionProps &props = *(propIter->second);
return props.IsGraphics() || props.IsCS();
}
// Otherwise, return true if patch constant function
return IsPatchConstantShader(F);
}
DxilFunctionAnnotation *HLModule::GetFunctionAnnotation(llvm::Function *F) {
return m_pTypeSystem->GetFunctionAnnotation(F);
}
DxilFunctionAnnotation *HLModule::AddFunctionAnnotation(llvm::Function *F) {
DXASSERT(m_pTypeSystem->GetFunctionAnnotation(F)==nullptr, "function annotation already exist");
return m_pTypeSystem->AddFunctionAnnotation(F);
}
void HLModule::AddResourceTypeAnnotation(llvm::Type *Ty,
DXIL::ResourceClass resClass,
DXIL::ResourceKind kind) {
if (m_ResTypeAnnotation.count(Ty) == 0) {
m_ResTypeAnnotation.emplace(Ty, std::make_pair(resClass, kind));
} else {
DXASSERT(resClass == m_ResTypeAnnotation[Ty].first, "resClass mismatch");
DXASSERT(kind == m_ResTypeAnnotation[Ty].second, "kind mismatch");
}
}
DXIL::ResourceClass HLModule::GetResourceClass(llvm::Type *Ty) {
if (m_ResTypeAnnotation.count(Ty) > 0) {
return m_ResTypeAnnotation[Ty].first;
} else {
return DXIL::ResourceClass::Invalid;
}
}
DXIL::ResourceKind HLModule::GetResourceKind(llvm::Type *Ty) {
if (m_ResTypeAnnotation.count(Ty) > 0) {
return m_ResTypeAnnotation[Ty].second;
} else {
return DXIL::ResourceKind::Invalid;
}
}
DXIL::Float32DenormMode HLModule::GetFloat32DenormMode() const {
return m_Float32DenormMode;
}
void HLModule::SetFloat32DenormMode(const DXIL::Float32DenormMode mode) {
m_Float32DenormMode = mode;
}
DXIL::DefaultLinkage HLModule::GetDefaultLinkage() const {
return m_DefaultLinkage;
}
void HLModule::SetDefaultLinkage(const DXIL::DefaultLinkage linkage) {
m_DefaultLinkage = linkage;
}
static const StringRef kHLDxilFunctionPropertiesMDName = "dx.fnprops";
static const StringRef kHLDxilOptionsMDName = "dx.options";
static const StringRef kHLDxilResourceTypeAnnotationMDName = "dx.resource.type.annotation";
// DXIL metadata serialization/deserialization.
void HLModule::EmitHLMetadata() {
m_pMDHelper->EmitDxilVersion(m_DxilMajor, m_DxilMinor);
m_pMDHelper->EmitValidatorVersion(m_ValMajor, m_ValMinor);
m_pMDHelper->EmitDxilShaderModel(m_pSM);
MDTuple *pMDResources = EmitHLResources();
MDTuple *pMDProperties = EmitHLShaderProperties();
m_pMDHelper->EmitDxilTypeSystem(GetTypeSystem(), m_LLVMUsed);
EmitLLVMUsed();
MDTuple *const pNullMDSig = nullptr;
MDTuple *pEntry = m_pMDHelper->EmitDxilEntryPointTuple(GetEntryFunction(), m_EntryName, pNullMDSig, pMDResources, pMDProperties);
vector<MDNode *> Entries;
Entries.emplace_back(pEntry);
m_pMDHelper->EmitDxilEntryPoints(Entries);
{
NamedMDNode * fnProps = m_pModule->getOrInsertNamedMetadata(kHLDxilFunctionPropertiesMDName);
for (auto && pair : m_DxilFunctionPropsMap) {
const hlsl::DxilFunctionProps * props = pair.second.get();
MDTuple *pProps = m_pMDHelper->EmitDxilFunctionProps(props, pair.first);
fnProps->addOperand(pProps);
}
NamedMDNode * options = m_pModule->getOrInsertNamedMetadata(kHLDxilOptionsMDName);
uint32_t hlOptions = m_Options.GetHLOptionsRaw();
options->addOperand(MDNode::get(m_Ctx, m_pMDHelper->Uint32ToConstMD(hlOptions)));
options->addOperand(MDNode::get(m_Ctx, m_pMDHelper->Uint32ToConstMD(GetAutoBindingSpace())));
NamedMDNode * resTyAnnotations = m_pModule->getOrInsertNamedMetadata(kHLDxilResourceTypeAnnotationMDName);
resTyAnnotations->addOperand(EmitResTyAnnotations());
}
if (!m_SerializedRootSignature.empty()) {
m_pMDHelper->EmitRootSignature(m_SerializedRootSignature);
}
// Save Subobjects
if (GetSubobjects()) {
m_pMDHelper->EmitSubobjects(*GetSubobjects());
}
}
void HLModule::LoadHLMetadata() {
m_pMDHelper->LoadDxilVersion(m_DxilMajor, m_DxilMinor);
m_pMDHelper->LoadValidatorVersion(m_ValMajor, m_ValMinor);
m_pMDHelper->LoadDxilShaderModel(m_pSM);
m_SerializedRootSignature.clear();
const llvm::NamedMDNode *pEntries = m_pMDHelper->GetDxilEntryPoints();
Function *pEntryFunc;
string EntryName;
const llvm::MDOperand *pSignatures, *pResources, *pProperties;
m_pMDHelper->GetDxilEntryPoint(pEntries->getOperand(0), pEntryFunc, EntryName, pSignatures, pResources, pProperties);
SetEntryFunction(pEntryFunc);
SetEntryFunctionName(EntryName);
LoadHLResources(*pResources);
LoadHLShaderProperties(*pProperties);
m_pMDHelper->LoadDxilTypeSystem(*m_pTypeSystem.get());
{
NamedMDNode * fnProps = m_pModule->getNamedMetadata(kHLDxilFunctionPropertiesMDName);
size_t propIdx = 0;
while (propIdx < fnProps->getNumOperands()) {
MDTuple *pProps = dyn_cast<MDTuple>(fnProps->getOperand(propIdx++));
std::unique_ptr<hlsl::DxilFunctionProps> props =
llvm::make_unique<hlsl::DxilFunctionProps>();
const Function *F = m_pMDHelper->LoadDxilFunctionProps(pProps, props.get());
if (props->IsHS() && props->ShaderProps.HS.patchConstantFunc) {
// Add patch constant function to m_PatchConstantFunctions
m_PatchConstantFunctions.insert(props->ShaderProps.HS.patchConstantFunc);
}
m_DxilFunctionPropsMap[F] = std::move(props);
}
const NamedMDNode * options = m_pModule->getOrInsertNamedMetadata(kHLDxilOptionsMDName);
const MDNode *MDOptions = options->getOperand(0);
m_Options.SetHLOptionsRaw(DxilMDHelper::ConstMDToUint32(MDOptions->getOperand(0)));
if (options->getNumOperands() > 1)
SetAutoBindingSpace(DxilMDHelper::ConstMDToUint32(options->getOperand(1)->getOperand(0)));
NamedMDNode * resTyAnnotations = m_pModule->getOrInsertNamedMetadata(kHLDxilResourceTypeAnnotationMDName);
const MDNode *MDResTyAnnotations = resTyAnnotations->getOperand(0);
if (MDResTyAnnotations->getNumOperands())
LoadResTyAnnotations(MDResTyAnnotations->getOperand(0));
}
m_pMDHelper->LoadRootSignature(m_SerializedRootSignature);
// Load Subobjects
std::unique_ptr<DxilSubobjects> pSubobjects(new DxilSubobjects());
m_pMDHelper->LoadSubobjects(*pSubobjects);
if (pSubobjects->GetSubobjects().size()) {
ResetSubobjects(pSubobjects.release());
}
}
void HLModule::ClearHLMetadata(llvm::Module &M) {
Module::named_metadata_iterator
b = M.named_metadata_begin(),
e = M.named_metadata_end();
SmallVector<NamedMDNode*, 8> nodes;
for (; b != e; ++b) {
StringRef name = b->getName();
if (name == DxilMDHelper::kDxilVersionMDName ||
name == DxilMDHelper::kDxilShaderModelMDName ||
name == DxilMDHelper::kDxilEntryPointsMDName ||
name == DxilMDHelper::kDxilRootSignatureMDName ||
name == DxilMDHelper::kDxilResourcesMDName ||
name == DxilMDHelper::kDxilTypeSystemMDName ||
name == DxilMDHelper::kDxilValidatorVersionMDName ||
name == kHLDxilFunctionPropertiesMDName || // TODO: adjust to proper name
name == kHLDxilResourceTypeAnnotationMDName ||
name == kHLDxilOptionsMDName ||
name.startswith(DxilMDHelper::kDxilTypeSystemHelperVariablePrefix)) {
nodes.push_back(b);
}
}
for (size_t i = 0; i < nodes.size(); ++i) {
M.eraseNamedMetadata(nodes[i]);
}
}
MDTuple *HLModule::EmitHLResources() {
// Emit SRV records.
MDTuple *pTupleSRVs = nullptr;
if (!m_SRVs.empty()) {
vector<Metadata *> MDVals;
for (size_t i = 0; i < m_SRVs.size(); i++) {
MDVals.emplace_back(m_pMDHelper->EmitDxilSRV(*m_SRVs[i]));
}
pTupleSRVs = MDNode::get(m_Ctx, MDVals);
}
// Emit UAV records.
MDTuple *pTupleUAVs = nullptr;
if (!m_UAVs.empty()) {
vector<Metadata *> MDVals;
for (size_t i = 0; i < m_UAVs.size(); i++) {
MDVals.emplace_back(m_pMDHelper->EmitDxilUAV(*m_UAVs[i]));
}
pTupleUAVs = MDNode::get(m_Ctx, MDVals);
}
// Emit CBuffer records.
MDTuple *pTupleCBuffers = nullptr;
if (!m_CBuffers.empty()) {
vector<Metadata *> MDVals;
for (size_t i = 0; i < m_CBuffers.size(); i++) {
MDVals.emplace_back(m_pMDHelper->EmitDxilCBuffer(*m_CBuffers[i]));
}
pTupleCBuffers = MDNode::get(m_Ctx, MDVals);
}
// Emit Sampler records.
MDTuple *pTupleSamplers = nullptr;
if (!m_Samplers.empty()) {
vector<Metadata *> MDVals;
for (size_t i = 0; i < m_Samplers.size(); i++) {
MDVals.emplace_back(m_pMDHelper->EmitDxilSampler(*m_Samplers[i]));
}
pTupleSamplers = MDNode::get(m_Ctx, MDVals);
}
if (pTupleSRVs != nullptr || pTupleUAVs != nullptr || pTupleCBuffers != nullptr || pTupleSamplers != nullptr) {
return m_pMDHelper->EmitDxilResourceTuple(pTupleSRVs, pTupleUAVs, pTupleCBuffers, pTupleSamplers);
} else {
return nullptr;
}
}
void HLModule::LoadHLResources(const llvm::MDOperand &MDO) {
const llvm::MDTuple *pSRVs, *pUAVs, *pCBuffers, *pSamplers;
m_pMDHelper->GetDxilResources(MDO, pSRVs, pUAVs, pCBuffers, pSamplers);
// Load SRV records.
if (pSRVs != nullptr) {
for (unsigned i = 0; i < pSRVs->getNumOperands(); i++) {
unique_ptr<HLResource> pSRV(new HLResource);
m_pMDHelper->LoadDxilSRV(pSRVs->getOperand(i), *pSRV);
AddSRV(std::move(pSRV));
}
}
// Load UAV records.
if (pUAVs != nullptr) {
for (unsigned i = 0; i < pUAVs->getNumOperands(); i++) {
unique_ptr<HLResource> pUAV(new HLResource);
m_pMDHelper->LoadDxilUAV(pUAVs->getOperand(i), *pUAV);
AddUAV(std::move(pUAV));
}
}
// Load CBuffer records.
if (pCBuffers != nullptr) {
for (unsigned i = 0; i < pCBuffers->getNumOperands(); i++) {
unique_ptr<DxilCBuffer> pCB = llvm::make_unique<DxilCBuffer>();
m_pMDHelper->LoadDxilCBuffer(pCBuffers->getOperand(i), *pCB);
AddCBuffer(std::move(pCB));
}
}
// Load Sampler records.
if (pSamplers != nullptr) {
for (unsigned i = 0; i < pSamplers->getNumOperands(); i++) {
unique_ptr<DxilSampler> pSampler(new DxilSampler);
m_pMDHelper->LoadDxilSampler(pSamplers->getOperand(i), *pSampler);
AddSampler(std::move(pSampler));
}
}
}
llvm::MDTuple *HLModule::EmitResTyAnnotations() {
vector<Metadata *> MDVals;
for (auto &resAnnotation : m_ResTypeAnnotation) {
Metadata *TyMeta =
ValueAsMetadata::get(UndefValue::get(resAnnotation.first));
MDVals.emplace_back(TyMeta);
MDVals.emplace_back(m_pMDHelper->Uint32ToConstMD(
static_cast<unsigned>(resAnnotation.second.first)));
MDVals.emplace_back(m_pMDHelper->Uint32ToConstMD(
static_cast<unsigned>(resAnnotation.second.second)));
}
return MDNode::get(m_Ctx, MDVals);
}
void HLModule::LoadResTyAnnotations(const llvm::MDOperand &MDO) {
if (MDO.get() == nullptr)
return;
const MDTuple *pTupleMD = dyn_cast<MDTuple>(MDO.get());
IFTBOOL(pTupleMD != nullptr, DXC_E_INCORRECT_DXIL_METADATA);
IFTBOOL((pTupleMD->getNumOperands() & 0x3) == 0,
DXC_E_INCORRECT_DXIL_METADATA);
for (unsigned iNode = 0; iNode < pTupleMD->getNumOperands(); iNode += 3) {
const MDOperand &MDTy = pTupleMD->getOperand(iNode);
const MDOperand &MDClass = pTupleMD->getOperand(iNode + 1);
const MDOperand &MDKind = pTupleMD->getOperand(iNode + 2);
Type *Ty = m_pMDHelper->ValueMDToValue(MDTy)->getType();
DXIL::ResourceClass resClass = static_cast<DXIL::ResourceClass>(
DxilMDHelper::ConstMDToUint32(MDClass));
DXIL::ResourceKind kind =
static_cast<DXIL::ResourceKind>(DxilMDHelper::ConstMDToUint32(MDKind));
AddResourceTypeAnnotation(Ty, resClass, kind);
}
}
MDTuple *HLModule::EmitHLShaderProperties() {
return nullptr;
}
void HLModule::LoadHLShaderProperties(const MDOperand &MDO) {
return;
}
MDNode *HLModule::DxilSamplerToMDNode(const DxilSampler &S) {
MDNode *MD = m_pMDHelper->EmitDxilSampler(S);
ValueAsMetadata *ResClass =
m_pMDHelper->Uint32ToConstMD((unsigned)DXIL::ResourceClass::Sampler);
return MDNode::get(m_Ctx, {ResClass, MD});
}
MDNode *HLModule::DxilSRVToMDNode(const DxilResource &SRV) {
MDNode *MD = m_pMDHelper->EmitDxilSRV(SRV);
ValueAsMetadata *ResClass =
m_pMDHelper->Uint32ToConstMD((unsigned)DXIL::ResourceClass::SRV);
return MDNode::get(m_Ctx, {ResClass, MD});
}
MDNode *HLModule::DxilUAVToMDNode(const DxilResource &UAV) {
MDNode *MD = m_pMDHelper->EmitDxilUAV(UAV);
ValueAsMetadata *ResClass =
m_pMDHelper->Uint32ToConstMD((unsigned)DXIL::ResourceClass::UAV);
return MDNode::get(m_Ctx, {ResClass, MD});
}
MDNode *HLModule::DxilCBufferToMDNode(const DxilCBuffer &CB) {
MDNode *MD = m_pMDHelper->EmitDxilCBuffer(CB);
ValueAsMetadata *ResClass =
m_pMDHelper->Uint32ToConstMD((unsigned)DXIL::ResourceClass::CBuffer);
return MDNode::get(m_Ctx, {ResClass, MD});
}
void HLModule::LoadDxilResourceBaseFromMDNode(MDNode *MD, DxilResourceBase &R) {
return m_pMDHelper->LoadDxilResourceBaseFromMDNode(MD, R);
}
void HLModule::AddResourceWithGlobalVariableAndMDNode(llvm::Constant *GV,
llvm::MDNode *MD) {
IFTBOOL(MD->getNumOperands() >= DxilMDHelper::kHLDxilResourceAttributeNumFields,
DXC_E_INCORRECT_DXIL_METADATA);
DxilResource::Class RC =
static_cast<DxilResource::Class>(m_pMDHelper->ConstMDToUint32(
MD->getOperand(DxilMDHelper::kHLDxilResourceAttributeClass)));
const MDOperand &Meta =
MD->getOperand(DxilMDHelper::kHLDxilResourceAttributeMeta);
unsigned rangeSize = 1;
Type *Ty = GV->getType()->getPointerElementType();
if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
rangeSize = AT->getNumElements();
switch (RC) {
case DxilResource::Class::Sampler: {
std::unique_ptr<DxilSampler> S = llvm::make_unique<DxilSampler>();
m_pMDHelper->LoadDxilSampler(Meta, *S);
S->SetGlobalSymbol(GV);
S->SetGlobalName(GV->getName());
S->SetRangeSize(rangeSize);
AddSampler(std::move(S));
} break;
case DxilResource::Class::SRV: {
std::unique_ptr<HLResource> Res = llvm::make_unique<HLResource>();
m_pMDHelper->LoadDxilSRV(Meta, *Res);
Res->SetGlobalSymbol(GV);
Res->SetGlobalName(GV->getName());
Res->SetRangeSize(rangeSize);
AddSRV(std::move(Res));
} break;
case DxilResource::Class::UAV: {
std::unique_ptr<HLResource> Res = llvm::make_unique<HLResource>();
m_pMDHelper->LoadDxilUAV(Meta, *Res);
Res->SetGlobalSymbol(GV);
Res->SetGlobalName(GV->getName());
Res->SetRangeSize(rangeSize);
AddUAV(std::move(Res));
} break;
default:
DXASSERT(0, "Invalid metadata for AddResourceWithGlobalVariableAndMDNode");
}
}
// TODO: Don't check names.
bool HLModule::IsStreamOutputType(llvm::Type *Ty) {
if (StructType *ST = dyn_cast<StructType>(Ty)) {
if (ST->getName().startswith("class.PointStream"))
return true;
if (ST->getName().startswith("class.LineStream"))
return true;
if (ST->getName().startswith("class.TriangleStream"))
return true;
}
return false;
}
bool HLModule::IsStreamOutputPtrType(llvm::Type *Ty) {
if (!Ty->isPointerTy())
return false;
Ty = Ty->getPointerElementType();
return IsStreamOutputType(Ty);
}
void HLModule::GetParameterRowsAndCols(Type *Ty, unsigned &rows, unsigned &cols,
DxilParameterAnnotation &paramAnnotation) {
if (Ty->isPointerTy())
Ty = Ty->getPointerElementType();
// For array input of HS, DS, GS,
// we need to skip the first level which size is based on primitive type.
DxilParamInputQual inputQual = paramAnnotation.GetParamInputQual();
bool skipOneLevelArray = inputQual == DxilParamInputQual::InputPatch;
skipOneLevelArray |= inputQual == DxilParamInputQual::OutputPatch;
skipOneLevelArray |= inputQual == DxilParamInputQual::InputPrimitive;
if (skipOneLevelArray) {
if (Ty->isArrayTy())
Ty = Ty->getArrayElementType();
}
unsigned arraySize = 1;
while (Ty->isArrayTy()) {
arraySize *= Ty->getArrayNumElements();
Ty = Ty->getArrayElementType();
}
rows = 1;
cols = 1;
if (paramAnnotation.HasMatrixAnnotation()) {
const DxilMatrixAnnotation &matrix = paramAnnotation.GetMatrixAnnotation();
if (matrix.Orientation == MatrixOrientation::RowMajor) {
rows = matrix.Rows;
cols = matrix.Cols;
} else {
DXASSERT_NOMSG(matrix.Orientation == MatrixOrientation::ColumnMajor);
cols = matrix.Rows;
rows = matrix.Cols;
}
} else if (Ty->isVectorTy())
cols = Ty->getVectorNumElements();
rows *= arraySize;
}
static Value *MergeGEP(GEPOperator *SrcGEP, GetElementPtrInst *GEP) {
IRBuilder<> Builder(GEP);
SmallVector<Value *, 8> Indices;
// Find out whether the last index in the source GEP is a sequential idx.
bool EndsWithSequential = false;
for (gep_type_iterator I = gep_type_begin(*SrcGEP), E = gep_type_end(*SrcGEP);
I != E; ++I)
EndsWithSequential = !(*I)->isStructTy();
if (EndsWithSequential) {
Value *Sum;
Value *SO1 = SrcGEP->getOperand(SrcGEP->getNumOperands() - 1);
Value *GO1 = GEP->getOperand(1);
if (SO1 == Constant::getNullValue(SO1->getType())) {
Sum = GO1;
} else if (GO1 == Constant::getNullValue(GO1->getType())) {
Sum = SO1;
} else {
// If they aren't the same type, then the input hasn't been processed
// by the loop above yet (which canonicalizes sequential index types to
// intptr_t). Just avoid transforming this until the input has been
// normalized.
if (SO1->getType() != GO1->getType())
return nullptr;
// Only do the combine when GO1 and SO1 are both constants. Only in
// this case, we are sure the cost after the merge is never more than
// that before the merge.
if (!isa<Constant>(GO1) || !isa<Constant>(SO1))
return nullptr;
Sum = Builder.CreateAdd(SO1, GO1);
}
// Update the GEP in place if possible.
if (SrcGEP->getNumOperands() == 2) {
GEP->setOperand(0, SrcGEP->getOperand(0));
GEP->setOperand(1, Sum);
return GEP;
}
Indices.append(SrcGEP->op_begin() + 1, SrcGEP->op_end() - 1);
Indices.push_back(Sum);
Indices.append(GEP->op_begin() + 2, GEP->op_end());
} else if (isa<Constant>(*GEP->idx_begin()) &&
cast<Constant>(*GEP->idx_begin())->isNullValue() &&
SrcGEP->getNumOperands() != 1) {
// Otherwise we can do the fold if the first index of the GEP is a zero
Indices.append(SrcGEP->op_begin() + 1, SrcGEP->op_end());
Indices.append(GEP->idx_begin() + 1, GEP->idx_end());
}
if (!Indices.empty())
return Builder.CreateInBoundsGEP(SrcGEP->getSourceElementType(),
SrcGEP->getOperand(0), Indices,
GEP->getName());
else
llvm_unreachable("must merge");
}
void HLModule::MergeGepUse(Value *V) {
for (auto U = V->user_begin(); U != V->user_end();) {
auto Use = U++;
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*Use)) {
if (GEPOperator *prevGEP = dyn_cast<GEPOperator>(V)) {
// merge the 2 GEPs
Value *newGEP = MergeGEP(prevGEP, GEP);
// Don't need to replace when GEP is updated in place
if (newGEP != GEP) {
GEP->replaceAllUsesWith(newGEP);
GEP->eraseFromParent();
}
MergeGepUse(newGEP);
} else {
MergeGepUse(*Use);
}
} else if (dyn_cast<GEPOperator>(*Use)) {
if (GEPOperator *prevGEP = dyn_cast<GEPOperator>(V)) {
// merge the 2 GEPs
Value *newGEP = MergeGEP(prevGEP, GEP);
// Don't need to replace when GEP is updated in place
if (newGEP != GEP) {
GEP->replaceAllUsesWith(newGEP);
GEP->eraseFromParent();
}
MergeGepUse(newGEP);
} else {
MergeGepUse(*Use);
}
}
}
if (V->user_empty()) {
// Only remove GEP here, root ptr will be removed by DCE.
if (GetElementPtrInst *I = dyn_cast<GetElementPtrInst>(V))
I->eraseFromParent();
}
}
template<typename BuilderTy>
CallInst *HLModule::EmitHLOperationCall(BuilderTy &Builder,
HLOpcodeGroup group, unsigned opcode,
Type *RetType,
ArrayRef<Value *> paramList,
llvm::Module &M) {
SmallVector<llvm::Type *, 4> paramTyList;
// Add the opcode param
llvm::Type *opcodeTy = llvm::Type::getInt32Ty(M.getContext());
paramTyList.emplace_back(opcodeTy);
for (Value *param : paramList) {
paramTyList.emplace_back(param->getType());
}
llvm::FunctionType *funcTy =
llvm::FunctionType::get(RetType, paramTyList, false);
Function *opFunc = GetOrCreateHLFunction(M, funcTy, group, opcode);
SmallVector<Value *, 4> opcodeParamList;
Value *opcodeConst = Constant::getIntegerValue(opcodeTy, APInt(32, opcode));
opcodeParamList.emplace_back(opcodeConst);
opcodeParamList.append(paramList.begin(), paramList.end());
return Builder.CreateCall(opFunc, opcodeParamList);
}
template
CallInst *HLModule::EmitHLOperationCall(IRBuilder<> &Builder,
HLOpcodeGroup group, unsigned opcode,
Type *RetType,
ArrayRef<Value *> paramList,
llvm::Module &M);
unsigned HLModule::FindCastOp(bool fromUnsigned, bool toUnsigned,
llvm::Type *SrcTy, llvm::Type *DstTy) {
Instruction::CastOps castOp = llvm::Instruction::CastOps::BitCast;
if (SrcTy->isAggregateType() || DstTy->isAggregateType())
return llvm::Instruction::CastOps::BitCast;
uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
uint32_t DstBitSize = DstTy->getScalarSizeInBits();
if (SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy()) {
if (SrcBitSize > DstBitSize)
return Instruction::Trunc;
if (toUnsigned)
return Instruction::ZExt;
else
return Instruction::SExt;
}
if (SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy()) {
if (SrcBitSize > DstBitSize)
return Instruction::FPTrunc;
else
return Instruction::FPExt;
}
if (SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy()) {
if (fromUnsigned)
return Instruction::UIToFP;
else
return Instruction::SIToFP;
}
if (SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy()) {
if (toUnsigned)
return Instruction::FPToUI;
else
return Instruction::FPToSI;
}
DXASSERT_NOMSG(0);
return castOp;
}
bool HLModule::HasPreciseAttributeWithMetadata(Instruction *I) {
return DxilMDHelper::IsMarkedPrecise(I);
}
void HLModule::MarkPreciseAttributeWithMetadata(Instruction *I) {
return DxilMDHelper::MarkPrecise(I);
}
void HLModule::ClearPreciseAttributeWithMetadata(Instruction *I) {
I->setMetadata(DxilMDHelper::kDxilPreciseAttributeMDName, nullptr);
}
static void MarkPreciseAttribute(Function *F) {
LLVMContext &Ctx = F->getContext();
MDNode *preciseNode = MDNode::get(
Ctx, {MDString::get(Ctx, DxilMDHelper::kDxilPreciseAttributeMDName)});
F->setMetadata(DxilMDHelper::kDxilPreciseAttributeMDName, preciseNode);
}
static void MarkPreciseAttributeOnValWithFunctionCall(
llvm::Value *V, llvm::IRBuilder<> &Builder, llvm::Module &M) {
Type *Ty = V->getType();
Type *EltTy = Ty->getScalarType();
// TODO: Only do this on basic types.
FunctionType *preciseFuncTy =
FunctionType::get(Type::getVoidTy(M.getContext()), {EltTy}, false);
// The function will be deleted after precise propagate.
std::string preciseFuncName = "dx.attribute.precise.";
raw_string_ostream mangledNameStr(preciseFuncName);
EltTy->print(mangledNameStr);
mangledNameStr.flush();
Function *preciseFunc =
cast<Function>(M.getOrInsertFunction(preciseFuncName, preciseFuncTy));
if (!HLModule::HasPreciseAttribute(preciseFunc))
MarkPreciseAttribute(preciseFunc);
if (Ty->isVectorTy()) {
for (unsigned i = 0; i < Ty->getVectorNumElements(); i++) {
Value *Elt = Builder.CreateExtractElement(V, i);
Builder.CreateCall(preciseFunc, {Elt});
}
} else
Builder.CreateCall(preciseFunc, {V});
}
void HLModule::MarkPreciseAttributeOnPtrWithFunctionCall(llvm::Value *Ptr,
llvm::Module &M) {
for (User *U : Ptr->users()) {
// Skip load inst.
if (dyn_cast<LoadInst>(U))
continue;
if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
Value *V = SI->getValueOperand();
if (isa<Instruction>(V)) {
// Mark the Value with function call.
IRBuilder<> Builder(SI);
MarkPreciseAttributeOnValWithFunctionCall(V, Builder, M);
}
} else if (CallInst *CI = dyn_cast<CallInst>(U)) {
if (CI->getType()->isVoidTy()) {
IRBuilder<> Builder(CI);
// For void type, cannot use as function arg.
// Mark all arg for it?
for (auto &arg : CI->arg_operands()) {
MarkPreciseAttributeOnValWithFunctionCall(arg, Builder, M);
}
} else {
IRBuilder<> Builder(CI->getNextNode());
MarkPreciseAttributeOnValWithFunctionCall(CI, Builder, M);
}
} else {
// Must be GEP here.
GetElementPtrInst *GEP = cast<GetElementPtrInst>(U);
MarkPreciseAttributeOnPtrWithFunctionCall(GEP, M);
}
}
}
bool HLModule::HasPreciseAttribute(Function *F) {
MDNode *preciseNode =
F->getMetadata(DxilMDHelper::kDxilPreciseAttributeMDName);
return preciseNode != nullptr;
}
void HLModule::MarkDxilResourceAttrib(llvm::Function *F, MDNode *MD) {
F->setMetadata(DxilMDHelper::kHLDxilResourceAttributeMDName, MD);
}
MDNode *HLModule::GetDxilResourceAttrib(llvm::Function *F) {
return F->getMetadata(DxilMDHelper::kHLDxilResourceAttributeMDName);
}
void HLModule::MarkDxilResourceAttrib(llvm::Argument *Arg, llvm::MDNode *MD) {
unsigned i = Arg->getArgNo();
Function *F = Arg->getParent();
DxilFunctionAnnotation *FuncAnnot = m_pTypeSystem->GetFunctionAnnotation(F);
if (!FuncAnnot) {
DXASSERT(0, "Invalid function");
return;
}
DxilParameterAnnotation &ParamAnnot = FuncAnnot->GetParameterAnnotation(i);
ParamAnnot.SetResourceAttribute(MD);
}
MDNode *HLModule::GetDxilResourceAttrib(llvm::Argument *Arg) {
unsigned i = Arg->getArgNo();
Function *F = Arg->getParent();
DxilFunctionAnnotation *FuncAnnot = m_pTypeSystem->GetFunctionAnnotation(F);
if (!FuncAnnot)
return nullptr;
DxilParameterAnnotation &ParamAnnot = FuncAnnot->GetParameterAnnotation(i);
return ParamAnnot.GetResourceAttribute();
}
MDNode *HLModule::GetDxilResourceAttrib(Type *Ty, Module &M) {
for (Function &F : M.functions()) {
if (hlsl::GetHLOpcodeGroupByName(&F) == HLOpcodeGroup::HLCreateHandle) {
Type *ResTy = F.getFunctionType()->getParamType(
HLOperandIndex::kCreateHandleResourceOpIdx);
if (ResTy == Ty)
return GetDxilResourceAttrib(&F);
}
}
return nullptr;
}
DIGlobalVariable *
HLModule::FindGlobalVariableDebugInfo(GlobalVariable *GV,
DebugInfoFinder &DbgInfoFinder) {
struct GlobalFinder {
GlobalVariable *GV;
bool operator()(llvm::DIGlobalVariable *const arg) const {
return arg->getVariable() == GV;
}
};
GlobalFinder F = {GV};
DebugInfoFinder::global_variable_iterator Found =
std::find_if(DbgInfoFinder.global_variables().begin(),
DbgInfoFinder.global_variables().end(), F);
if (Found != DbgInfoFinder.global_variables().end()) {
return *Found;
}
return nullptr;
}
static void AddDIGlobalVariable(DIBuilder &Builder, DIGlobalVariable *LocDIGV,
StringRef Name, DIType *DITy,
GlobalVariable *GV, DebugInfoFinder &DbgInfoFinder, bool removeLocDIGV) {
DIGlobalVariable *EltDIGV = Builder.createGlobalVariable(
LocDIGV->getScope(), Name, GV->getName(), LocDIGV->getFile(),
LocDIGV->getLine(), DITy, false, GV);
DICompileUnit *DICU = dyn_cast<DICompileUnit>(LocDIGV->getScope());
if (!DICU) {
DISubprogram *DIS = dyn_cast<DISubprogram>(LocDIGV->getScope());
if (DIS) {
// Find the DICU which has this Subprogram.
NamedMDNode *CompileUnits = GV->getParent()->getNamedMetadata("llvm.dbg.cu");
DXASSERT_NOMSG(CompileUnits);
for (unsigned I = 0, E = CompileUnits->getNumOperands(); I != E; ++I) {
auto *CU = cast<DICompileUnit>(CompileUnits->getOperand(I));
DXASSERT(CU , "Expected valid compile unit");
for (DISubprogram *SP : CU->getSubprograms()) {
if (SP == DIS) {
DICU = CU;
break;
}
}
}
}
}
DXASSERT_NOMSG(DICU);
// Add global to CU.
auto *GlobalVariables = DICU->getRawGlobalVariables();
DXASSERT_NOMSG(GlobalVariables);
MDTuple *GTuple = cast<MDTuple>(GlobalVariables);
std::vector<Metadata *> AllGVs(GTuple->operands().begin(),
GTuple->operands().end());
if (removeLocDIGV) {
auto locIt = std::find(AllGVs.begin(), AllGVs.end(), LocDIGV);
AllGVs.erase(locIt);
}
AllGVs.emplace_back(EltDIGV);
DICU->replaceGlobalVariables(MDTuple::get(GV->getContext(), AllGVs));
DXVERIFY_NOMSG(DbgInfoFinder.appendGlobalVariable(EltDIGV));
}
void HLModule::CreateElementGlobalVariableDebugInfo(
GlobalVariable *GV, DebugInfoFinder &DbgInfoFinder, GlobalVariable *EltGV,
unsigned sizeInBits, unsigned alignInBits, unsigned offsetInBits,
StringRef eltName) {
DIGlobalVariable *DIGV = FindGlobalVariableDebugInfo(GV, DbgInfoFinder);
DXASSERT_NOMSG(DIGV);
DIBuilder Builder(*GV->getParent());
DITypeIdentifierMap EmptyMap;
DIType *DITy = DIGV->getType().resolve(EmptyMap);
DIScope *DITyScope = DITy->getScope().resolve(EmptyMap);
// Create Elt type.
DIType *EltDITy =
Builder.createMemberType(DITyScope, DITy->getName().str() + eltName.str(),
DITy->getFile(), DITy->getLine(), sizeInBits,
alignInBits, offsetInBits, /*Flags*/ 0, DITy);
AddDIGlobalVariable(Builder, DIGV, DIGV->getName().str() + eltName.str(),
EltDITy, EltGV, DbgInfoFinder, /*removeDIGV*/false);
}
void HLModule::UpdateGlobalVariableDebugInfo(
llvm::GlobalVariable *GV, llvm::DebugInfoFinder &DbgInfoFinder,
llvm::GlobalVariable *NewGV) {
DIGlobalVariable *DIGV = FindGlobalVariableDebugInfo(GV, DbgInfoFinder);
DXASSERT_NOMSG(DIGV);
DIBuilder Builder(*GV->getParent());
DITypeIdentifierMap EmptyMap;
DIType *DITy = DIGV->getType().resolve(EmptyMap);
AddDIGlobalVariable(Builder, DIGV, DIGV->getName(), DITy, NewGV,
DbgInfoFinder,/*removeDIGV*/true);
}
DebugInfoFinder &HLModule::GetOrCreateDebugInfoFinder() {
if (m_pDebugInfoFinder == nullptr) {
m_pDebugInfoFinder = llvm::make_unique<llvm::DebugInfoFinder>();
m_pDebugInfoFinder->processModule(*m_pModule);
}
return *m_pDebugInfoFinder;
}
//------------------------------------------------------------------------------
//
// Subobject methods.
//
DxilSubobjects *HLModule::GetSubobjects() {
return m_pSubobjects.get();
}
const DxilSubobjects *HLModule::GetSubobjects() const {
return m_pSubobjects.get();
}
DxilSubobjects *HLModule::ReleaseSubobjects() {
return m_pSubobjects.release();
}
void HLModule::ResetSubobjects(DxilSubobjects *subobjects) {
m_pSubobjects.reset(subobjects);
}
//------------------------------------------------------------------------------
//
// Signature methods.
//
HLExtraPropertyHelper::HLExtraPropertyHelper(llvm::Module *pModule)
: DxilExtraPropertyHelper(pModule) {
}
void HLExtraPropertyHelper::EmitSignatureElementProperties(const DxilSignatureElement &SE,
vector<Metadata *> &MDVals) {
}
void HLExtraPropertyHelper::LoadSignatureElementProperties(const MDOperand &MDO,
DxilSignatureElement &SE) {
if (MDO.get() == nullptr)
return;
}
} // namespace hlsl
namespace llvm {
hlsl::HLModule &Module::GetOrCreateHLModule(bool skipInit) {
std::unique_ptr<hlsl::HLModule> M;
if (!HasHLModule()) {
M = llvm::make_unique<hlsl::HLModule>(this);
if (!skipInit) {
M->LoadHLMetadata();
}
SetHLModule(M.release());
}
return GetHLModule();
}
}