DirectXShaderCompiler/lib/HLSL/DxilContainerAssembler.cpp

1431 строка
57 KiB
C++

///////////////////////////////////////////////////////////////////////////////
// //
// DxilContainerAssembler.cpp //
// Copyright (C) Microsoft Corporation. All rights reserved. //
// This file is distributed under the University of Illinois Open Source //
// License. See LICENSE.TXT for details. //
// //
// Provides support for serializing a module into DXIL container structures. //
// //
///////////////////////////////////////////////////////////////////////////////
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/Bitcode/ReaderWriter.h"
#include "llvm/Support/MD5.h"
#include "dxc/HLSL/DxilContainer.h"
#include "dxc/HLSL/DxilModule.h"
#include "dxc/HLSL/DxilShaderModel.h"
#include "dxc/HLSL/DxilRootSignature.h"
#include "dxc/HLSL/DxilUtil.h"
#include "dxc/HLSL/DxilFunctionProps.h"
#include "dxc/HLSL/DxilOperations.h"
#include "dxc/Support/Global.h"
#include "dxc/Support/Unicode.h"
#include "dxc/Support/WinIncludes.h"
#include "dxc/Support/FileIOHelper.h"
#include "dxc/Support/dxcapi.impl.h"
#include "dxc/HLSL/DxilPipelineStateValidation.h"
#include "dxc/HLSL/DxilRuntimeReflection.h"
#include <algorithm>
#include <functional>
using namespace llvm;
using namespace hlsl;
using namespace hlsl::RDAT;
static DxilProgramSigSemantic KindToSystemValue(Semantic::Kind kind, DXIL::TessellatorDomain domain) {
switch (kind) {
case Semantic::Kind::Arbitrary: return DxilProgramSigSemantic::Undefined;
case Semantic::Kind::VertexID: return DxilProgramSigSemantic::VertexID;
case Semantic::Kind::InstanceID: return DxilProgramSigSemantic::InstanceID;
case Semantic::Kind::Position: return DxilProgramSigSemantic::Position;
case Semantic::Kind::Coverage: return DxilProgramSigSemantic::Coverage;
case Semantic::Kind::InnerCoverage: return DxilProgramSigSemantic::InnerCoverage;
case Semantic::Kind::PrimitiveID: return DxilProgramSigSemantic::PrimitiveID;
case Semantic::Kind::SampleIndex: return DxilProgramSigSemantic::SampleIndex;
case Semantic::Kind::IsFrontFace: return DxilProgramSigSemantic::IsFrontFace;
case Semantic::Kind::RenderTargetArrayIndex: return DxilProgramSigSemantic::RenderTargetArrayIndex;
case Semantic::Kind::ViewPortArrayIndex: return DxilProgramSigSemantic::ViewPortArrayIndex;
case Semantic::Kind::ClipDistance: return DxilProgramSigSemantic::ClipDistance;
case Semantic::Kind::CullDistance: return DxilProgramSigSemantic::CullDistance;
case Semantic::Kind::Barycentrics: return DxilProgramSigSemantic::Barycentrics;
case Semantic::Kind::TessFactor: {
switch (domain) {
case DXIL::TessellatorDomain::IsoLine:
// Will bu updated to DetailTessFactor in next row.
return DxilProgramSigSemantic::FinalLineDensityTessfactor;
case DXIL::TessellatorDomain::Tri:
return DxilProgramSigSemantic::FinalTriEdgeTessfactor;
case DXIL::TessellatorDomain::Quad:
return DxilProgramSigSemantic::FinalQuadEdgeTessfactor;
}
}
case Semantic::Kind::InsideTessFactor: {
switch (domain) {
case DXIL::TessellatorDomain::IsoLine:
DXASSERT(0, "invalid semantic");
return DxilProgramSigSemantic::Undefined;
case DXIL::TessellatorDomain::Tri:
return DxilProgramSigSemantic::FinalTriInsideTessfactor;
case DXIL::TessellatorDomain::Quad:
return DxilProgramSigSemantic::FinalQuadInsideTessfactor;
}
}
case Semantic::Kind::Invalid:
return DxilProgramSigSemantic::Undefined;
case Semantic::Kind::Target: return DxilProgramSigSemantic::Target;
case Semantic::Kind::Depth: return DxilProgramSigSemantic::Depth;
case Semantic::Kind::DepthLessEqual: return DxilProgramSigSemantic::DepthLE;
case Semantic::Kind::DepthGreaterEqual: return DxilProgramSigSemantic::DepthGE;
case Semantic::Kind::StencilRef:
__fallthrough;
default:
DXASSERT(kind == Semantic::Kind::StencilRef, "else Invalid or switch is missing a case");
return DxilProgramSigSemantic::StencilRef;
}
// TODO: Final_* values need mappings
}
static DxilProgramSigCompType CompTypeToSigCompType(hlsl::CompType value) {
switch (value.GetKind()) {
case CompType::Kind::I32: return DxilProgramSigCompType::SInt32;
case CompType::Kind::U32: return DxilProgramSigCompType::UInt32;
case CompType::Kind::F32: return DxilProgramSigCompType::Float32;
case CompType::Kind::I16: return DxilProgramSigCompType::SInt16;
case CompType::Kind::I64: return DxilProgramSigCompType::SInt64;
case CompType::Kind::U16: return DxilProgramSigCompType::UInt16;
case CompType::Kind::U64: return DxilProgramSigCompType::UInt64;
case CompType::Kind::F16: return DxilProgramSigCompType::Float16;
case CompType::Kind::F64: return DxilProgramSigCompType::Float64;
case CompType::Kind::Invalid: __fallthrough;
case CompType::Kind::I1: __fallthrough;
default:
return DxilProgramSigCompType::Unknown;
}
}
static DxilProgramSigMinPrecision CompTypeToSigMinPrecision(hlsl::CompType value) {
switch (value.GetKind()) {
case CompType::Kind::I32: return DxilProgramSigMinPrecision::Default;
case CompType::Kind::U32: return DxilProgramSigMinPrecision::Default;
case CompType::Kind::F32: return DxilProgramSigMinPrecision::Default;
case CompType::Kind::I1: return DxilProgramSigMinPrecision::Default;
case CompType::Kind::U64: __fallthrough;
case CompType::Kind::I64: __fallthrough;
case CompType::Kind::F64: return DxilProgramSigMinPrecision::Default;
case CompType::Kind::I16: return DxilProgramSigMinPrecision::SInt16;
case CompType::Kind::U16: return DxilProgramSigMinPrecision::UInt16;
case CompType::Kind::F16: return DxilProgramSigMinPrecision::Float16; // Float2_8 is not supported in DXIL.
case CompType::Kind::Invalid: __fallthrough;
default:
return DxilProgramSigMinPrecision::Default;
}
}
template <typename T>
struct sort_second {
bool operator()(const T &a, const T &b) {
return std::less<decltype(a.second)>()(a.second, b.second);
}
};
struct sort_sig {
bool operator()(const DxilProgramSignatureElement &a,
const DxilProgramSignatureElement &b) {
return (a.Stream < b.Stream) |
((a.Stream == b.Stream) & (a.Register < b.Register));
}
};
class DxilProgramSignatureWriter : public DxilPartWriter {
private:
const DxilSignature &m_signature;
DXIL::TessellatorDomain m_domain;
bool m_isInput;
bool m_useMinPrecision;
size_t m_fixedSize;
typedef std::pair<const char *, uint32_t> NameOffsetPair;
typedef llvm::SmallMapVector<const char *, uint32_t, 8> NameOffsetMap;
uint32_t m_lastOffset;
NameOffsetMap m_semanticNameOffsets;
unsigned m_paramCount;
const char *GetSemanticName(const hlsl::DxilSignatureElement *pElement) {
DXASSERT_NOMSG(pElement != nullptr);
DXASSERT(pElement->GetName() != nullptr, "else sig is malformed");
return pElement->GetName();
}
uint32_t GetSemanticOffset(const hlsl::DxilSignatureElement *pElement) {
const char *pName = GetSemanticName(pElement);
NameOffsetMap::iterator nameOffset = m_semanticNameOffsets.find(pName);
uint32_t result;
if (nameOffset == m_semanticNameOffsets.end()) {
result = m_lastOffset;
m_semanticNameOffsets.insert(NameOffsetPair(pName, result));
m_lastOffset += strlen(pName) + 1;
}
else {
result = nameOffset->second;
}
return result;
}
void write(std::vector<DxilProgramSignatureElement> &orderedSig,
const hlsl::DxilSignatureElement *pElement) {
const std::vector<unsigned> &indexVec = pElement->GetSemanticIndexVec();
unsigned eltCount = pElement->GetSemanticIndexVec().size();
unsigned eltRows = 1;
if (eltCount)
eltRows = pElement->GetRows() / eltCount;
DXASSERT_NOMSG(eltRows == 1);
DxilProgramSignatureElement sig;
memset(&sig, 0, sizeof(DxilProgramSignatureElement));
sig.Stream = pElement->GetOutputStream();
sig.SemanticName = GetSemanticOffset(pElement);
sig.SystemValue = KindToSystemValue(pElement->GetKind(), m_domain);
sig.CompType = CompTypeToSigCompType(pElement->GetCompType());
sig.Register = pElement->GetStartRow();
sig.Mask = pElement->GetColsAsMask();
// Only mark exist channel write for output.
// All channel not used for input.
if (!m_isInput)
sig.NeverWrites_Mask = ~(sig.Mask);
else
sig.AlwaysReads_Mask = 0;
sig.MinPrecision = m_useMinPrecision
? CompTypeToSigMinPrecision(pElement->GetCompType())
: DxilProgramSigMinPrecision::Default;
for (unsigned i = 0; i < eltCount; ++i) {
sig.SemanticIndex = indexVec[i];
orderedSig.emplace_back(sig);
if (pElement->IsAllocated())
sig.Register += eltRows;
if (sig.SystemValue == DxilProgramSigSemantic::FinalLineDensityTessfactor)
sig.SystemValue = DxilProgramSigSemantic::FinalLineDetailTessfactor;
}
}
void calcSizes() {
// Calculate size for signature elements.
const std::vector<std::unique_ptr<hlsl::DxilSignatureElement>> &elements = m_signature.GetElements();
uint32_t result = sizeof(DxilProgramSignature);
m_paramCount = 0;
for (size_t i = 0; i < elements.size(); ++i) {
DXIL::SemanticInterpretationKind I = elements[i]->GetInterpretation();
if (I == DXIL::SemanticInterpretationKind::NA || I == DXIL::SemanticInterpretationKind::NotInSig)
continue;
unsigned semanticCount = elements[i]->GetSemanticIndexVec().size();
result += semanticCount * sizeof(DxilProgramSignatureElement);
m_paramCount += semanticCount;
}
m_fixedSize = result;
m_lastOffset = m_fixedSize;
// Calculate size for semantic strings.
for (size_t i = 0; i < elements.size(); ++i) {
GetSemanticOffset(elements[i].get());
}
}
public:
DxilProgramSignatureWriter(const DxilSignature &signature,
DXIL::TessellatorDomain domain, bool isInput, bool UseMinPrecision)
: m_signature(signature), m_domain(domain), m_isInput(isInput), m_useMinPrecision(UseMinPrecision) {
calcSizes();
}
uint32_t size() const override {
return m_lastOffset;
}
void write(AbstractMemoryStream *pStream) override {
UINT64 startPos = pStream->GetPosition();
const std::vector<std::unique_ptr<hlsl::DxilSignatureElement>> &elements = m_signature.GetElements();
DxilProgramSignature programSig;
programSig.ParamCount = m_paramCount;
programSig.ParamOffset = sizeof(DxilProgramSignature);
IFT(WriteStreamValue(pStream, programSig));
// Write structures in register order.
std::vector<DxilProgramSignatureElement> orderedSig;
for (size_t i = 0; i < elements.size(); ++i) {
DXIL::SemanticInterpretationKind I = elements[i]->GetInterpretation();
if (I == DXIL::SemanticInterpretationKind::NA || I == DXIL::SemanticInterpretationKind::NotInSig)
continue;
write(orderedSig, elements[i].get());
}
std::sort(orderedSig.begin(), orderedSig.end(), sort_sig());
for (size_t i = 0; i < orderedSig.size(); ++i) {
DxilProgramSignatureElement &sigElt = orderedSig[i];
IFT(WriteStreamValue(pStream, sigElt));
}
// Write strings in the offset order.
std::vector<NameOffsetPair> ordered;
ordered.assign(m_semanticNameOffsets.begin(), m_semanticNameOffsets.end());
std::sort(ordered.begin(), ordered.end(), sort_second<NameOffsetPair>());
for (size_t i = 0; i < ordered.size(); ++i) {
const char *pName = ordered[i].first;
ULONG cbWritten;
UINT64 offsetPos = pStream->GetPosition();
DXASSERT_LOCALVAR(offsetPos, offsetPos - startPos == ordered[i].second, "else str offset is incorrect");
IFT(pStream->Write(pName, strlen(pName) + 1, &cbWritten));
}
// Verify we wrote the bytes we though we would.
UINT64 endPos = pStream->GetPosition();
DXASSERT_LOCALVAR(endPos - startPos, endPos - startPos == size(), "else size is incorrect");
}
};
DxilPartWriter *hlsl::NewProgramSignatureWriter(const DxilModule &M, DXIL::SignatureKind Kind) {
switch (Kind) {
case DXIL::SignatureKind::Input:
return new DxilProgramSignatureWriter(
M.GetInputSignature(), M.GetTessellatorDomain(), true,
M.GetUseMinPrecision());
case DXIL::SignatureKind::Output:
return new DxilProgramSignatureWriter(
M.GetOutputSignature(), M.GetTessellatorDomain(), false,
M.GetUseMinPrecision());
case DXIL::SignatureKind::PatchConstant:
return new DxilProgramSignatureWriter(
M.GetPatchConstantSignature(), M.GetTessellatorDomain(),
/*IsInput*/ M.GetShaderModel()->IsDS(),
/*UseMinPrecision*/M.GetUseMinPrecision());
}
return nullptr;
}
class DxilProgramRootSignatureWriter : public DxilPartWriter {
private:
const RootSignatureHandle &m_Sig;
public:
DxilProgramRootSignatureWriter(const RootSignatureHandle &S) : m_Sig(S) {}
uint32_t size() const {
return m_Sig.GetSerializedSize();
}
void write(AbstractMemoryStream *pStream) {
ULONG cbWritten;
IFT(pStream->Write(m_Sig.GetSerializedBytes(), size(), &cbWritten));
}
};
DxilPartWriter *hlsl::NewRootSignatureWriter(const RootSignatureHandle &S) {
return new DxilProgramRootSignatureWriter(S);
}
class DxilFeatureInfoWriter : public DxilPartWriter {
private:
// Only save the shader properties after create class for it.
DxilShaderFeatureInfo featureInfo;
public:
DxilFeatureInfoWriter(const DxilModule &M) {
featureInfo.FeatureFlags = M.m_ShaderFlags.GetFeatureInfo();
}
uint32_t size() const override {
return sizeof(DxilShaderFeatureInfo);
}
void write(AbstractMemoryStream *pStream) override {
IFT(WriteStreamValue(pStream, featureInfo.FeatureFlags));
}
};
DxilPartWriter *hlsl::NewFeatureInfoWriter(const DxilModule &M) {
return new DxilFeatureInfoWriter(M);
}
class DxilPSVWriter : public DxilPartWriter {
private:
const DxilModule &m_Module;
PSVInitInfo m_PSVInitInfo;
DxilPipelineStateValidation m_PSV;
uint32_t m_PSVBufferSize;
SmallVector<char, 512> m_PSVBuffer;
SmallVector<char, 256> m_StringBuffer;
SmallVector<uint32_t, 8> m_SemanticIndexBuffer;
std::vector<PSVSignatureElement0> m_SigInputElements;
std::vector<PSVSignatureElement0> m_SigOutputElements;
std::vector<PSVSignatureElement0> m_SigPatchConstantElements;
void SetPSVSigElement(PSVSignatureElement0 &E, const DxilSignatureElement &SE) {
memset(&E, 0, sizeof(PSVSignatureElement0));
if (SE.GetKind() == DXIL::SemanticKind::Arbitrary && strlen(SE.GetName()) > 0) {
E.SemanticName = (uint32_t)m_StringBuffer.size();
StringRef Name(SE.GetName());
m_StringBuffer.append(Name.size()+1, '\0');
memcpy(m_StringBuffer.data() + E.SemanticName, Name.data(), Name.size());
} else {
// m_StringBuffer always starts with '\0' so offset 0 is empty string:
E.SemanticName = 0;
}
// Search index buffer for matching semantic index sequence
DXASSERT_NOMSG(SE.GetRows() == SE.GetSemanticIndexVec().size());
auto &SemIdx = SE.GetSemanticIndexVec();
bool match = false;
for (uint32_t offset = 0; offset + SE.GetRows() - 1 < m_SemanticIndexBuffer.size(); offset++) {
match = true;
for (uint32_t row = 0; row < SE.GetRows(); row++) {
if ((uint32_t)SemIdx[row] != m_SemanticIndexBuffer[offset + row]) {
match = false;
break;
}
}
if (match) {
E.SemanticIndexes = offset;
break;
}
}
if (!match) {
E.SemanticIndexes = m_SemanticIndexBuffer.size();
for (uint32_t row = 0; row < SemIdx.size(); row++) {
m_SemanticIndexBuffer.push_back((uint32_t)SemIdx[row]);
}
}
DXASSERT_NOMSG(SE.GetRows() <= 32);
E.Rows = (uint8_t)SE.GetRows();
DXASSERT_NOMSG(SE.GetCols() <= 4);
E.ColsAndStart = (uint8_t)SE.GetCols() & 0xF;
if (SE.IsAllocated()) {
DXASSERT_NOMSG(SE.GetStartCol() < 4);
DXASSERT_NOMSG(SE.GetStartRow() < 32);
E.ColsAndStart |= 0x40 | (SE.GetStartCol() << 4);
E.StartRow = (uint8_t)SE.GetStartRow();
}
E.SemanticKind = (uint8_t)SE.GetKind();
E.ComponentType = (uint8_t)CompTypeToSigCompType(SE.GetCompType());
E.InterpolationMode = (uint8_t)SE.GetInterpolationMode()->GetKind();
DXASSERT_NOMSG(SE.GetOutputStream() < 4);
E.DynamicMaskAndStream = (uint8_t)((SE.GetOutputStream() & 0x3) << 4);
E.DynamicMaskAndStream |= (SE.GetDynIdxCompMask()) & 0xF;
}
const uint32_t *CopyViewIDState(const uint32_t *pSrc, uint32_t InputScalars, uint32_t OutputScalars, PSVComponentMask ViewIDMask, PSVDependencyTable IOTable) {
unsigned MaskDwords = PSVComputeMaskDwordsFromVectors(PSVALIGN4(OutputScalars) / 4);
if (ViewIDMask.IsValid()) {
DXASSERT_NOMSG(!IOTable.Table || ViewIDMask.NumVectors == IOTable.OutputVectors);
memcpy(ViewIDMask.Mask, pSrc, 4 * MaskDwords);
pSrc += MaskDwords;
}
if (IOTable.IsValid() && IOTable.InputVectors && IOTable.OutputVectors) {
DXASSERT_NOMSG((InputScalars <= IOTable.InputVectors * 4) && (IOTable.InputVectors * 4 - InputScalars < 4));
DXASSERT_NOMSG((OutputScalars <= IOTable.OutputVectors * 4) && (IOTable.OutputVectors * 4 - OutputScalars < 4));
memcpy(IOTable.Table, pSrc, 4 * MaskDwords * InputScalars);
pSrc += MaskDwords * InputScalars;
}
return pSrc;
}
public:
DxilPSVWriter(const DxilModule &module, uint32_t PSVVersion = 0)
: m_Module(module),
m_PSVInitInfo(PSVVersion)
{
unsigned ValMajor, ValMinor;
m_Module.GetValidatorVersion(ValMajor, ValMinor);
// Allow PSVVersion to be upgraded
if (m_PSVInitInfo.PSVVersion < 1 && (ValMajor > 1 || (ValMajor == 1 && ValMinor >= 1)))
m_PSVInitInfo.PSVVersion = 1;
const ShaderModel *SM = m_Module.GetShaderModel();
UINT uCBuffers = m_Module.GetCBuffers().size();
UINT uSamplers = m_Module.GetSamplers().size();
UINT uSRVs = m_Module.GetSRVs().size();
UINT uUAVs = m_Module.GetUAVs().size();
m_PSVInitInfo.ResourceCount = uCBuffers + uSamplers + uSRVs + uUAVs;
// TODO: for >= 6.2 version, create more efficient structure
if (m_PSVInitInfo.PSVVersion > 0) {
m_PSVInitInfo.ShaderStage = (PSVShaderKind)SM->GetKind();
// Copy Dxil Signatures
m_StringBuffer.push_back('\0'); // For empty semantic name (system value)
m_PSVInitInfo.SigInputElements = m_Module.GetInputSignature().GetElements().size();
m_SigInputElements.resize(m_PSVInitInfo.SigInputElements);
m_PSVInitInfo.SigOutputElements = m_Module.GetOutputSignature().GetElements().size();
m_SigOutputElements.resize(m_PSVInitInfo.SigOutputElements);
m_PSVInitInfo.SigPatchConstantElements = m_Module.GetPatchConstantSignature().GetElements().size();
m_SigPatchConstantElements.resize(m_PSVInitInfo.SigPatchConstantElements);
uint32_t i = 0;
for (auto &SE : m_Module.GetInputSignature().GetElements()) {
SetPSVSigElement(m_SigInputElements[i++], *(SE.get()));
}
i = 0;
for (auto &SE : m_Module.GetOutputSignature().GetElements()) {
SetPSVSigElement(m_SigOutputElements[i++], *(SE.get()));
}
i = 0;
for (auto &SE : m_Module.GetPatchConstantSignature().GetElements()) {
SetPSVSigElement(m_SigPatchConstantElements[i++], *(SE.get()));
}
// Set String and SemanticInput Tables
m_PSVInitInfo.StringTable.Table = m_StringBuffer.data();
m_PSVInitInfo.StringTable.Size = m_StringBuffer.size();
m_PSVInitInfo.SemanticIndexTable.Table = m_SemanticIndexBuffer.data();
m_PSVInitInfo.SemanticIndexTable.Entries = m_SemanticIndexBuffer.size();
// Set up ViewID and signature dependency info
m_PSVInitInfo.UsesViewID = m_Module.m_ShaderFlags.GetViewID() ? true : false;
m_PSVInitInfo.SigInputVectors = m_Module.GetInputSignature().NumVectorsUsed(0);
for (unsigned streamIndex = 0; streamIndex < 4; streamIndex++) {
m_PSVInitInfo.SigOutputVectors[streamIndex] = m_Module.GetOutputSignature().NumVectorsUsed(streamIndex);
}
m_PSVInitInfo.SigPatchConstantVectors = m_PSVInitInfo.SigPatchConstantVectors = 0;
if (SM->IsHS()) {
m_PSVInitInfo.SigPatchConstantVectors = m_Module.GetPatchConstantSignature().NumVectorsUsed(0);
}
if (SM->IsDS()) {
m_PSVInitInfo.SigPatchConstantVectors = m_Module.GetPatchConstantSignature().NumVectorsUsed(0);
}
}
if (!m_PSV.InitNew(m_PSVInitInfo, nullptr, &m_PSVBufferSize)) {
DXASSERT(false, "PSV InitNew failed computing size!");
}
}
uint32_t size() const override {
return m_PSVBufferSize;
}
void write(AbstractMemoryStream *pStream) override {
m_PSVBuffer.resize(m_PSVBufferSize);
if (!m_PSV.InitNew(m_PSVInitInfo, m_PSVBuffer.data(), &m_PSVBufferSize)) {
DXASSERT(false, "PSV InitNew failed!");
}
DXASSERT_NOMSG(m_PSVBuffer.size() == m_PSVBufferSize);
// Set DxilRuntimInfo
PSVRuntimeInfo0* pInfo = m_PSV.GetPSVRuntimeInfo0();
PSVRuntimeInfo1* pInfo1 = m_PSV.GetPSVRuntimeInfo1();
const ShaderModel* SM = m_Module.GetShaderModel();
pInfo->MinimumExpectedWaveLaneCount = 0;
pInfo->MaximumExpectedWaveLaneCount = (UINT)-1;
switch (SM->GetKind()) {
case ShaderModel::Kind::Vertex: {
pInfo->VS.OutputPositionPresent = 0;
const DxilSignature &S = m_Module.GetOutputSignature();
for (auto &&E : S.GetElements()) {
if (E->GetKind() == Semantic::Kind::Position) {
// Ideally, we might check never writes mask here,
// but this is not yet part of the signature element in Dxil
pInfo->VS.OutputPositionPresent = 1;
break;
}
}
break;
}
case ShaderModel::Kind::Hull: {
pInfo->HS.InputControlPointCount = (UINT)m_Module.GetInputControlPointCount();
pInfo->HS.OutputControlPointCount = (UINT)m_Module.GetOutputControlPointCount();
pInfo->HS.TessellatorDomain = (UINT)m_Module.GetTessellatorDomain();
pInfo->HS.TessellatorOutputPrimitive = (UINT)m_Module.GetTessellatorOutputPrimitive();
break;
}
case ShaderModel::Kind::Domain: {
pInfo->DS.InputControlPointCount = (UINT)m_Module.GetInputControlPointCount();
pInfo->DS.OutputPositionPresent = 0;
const DxilSignature &S = m_Module.GetOutputSignature();
for (auto &&E : S.GetElements()) {
if (E->GetKind() == Semantic::Kind::Position) {
// Ideally, we might check never writes mask here,
// but this is not yet part of the signature element in Dxil
pInfo->DS.OutputPositionPresent = 1;
break;
}
}
pInfo->DS.TessellatorDomain = (UINT)m_Module.GetTessellatorDomain();
break;
}
case ShaderModel::Kind::Geometry: {
pInfo->GS.InputPrimitive = (UINT)m_Module.GetInputPrimitive();
// NOTE: For OutputTopology, pick one from a used stream, or if none
// are used, use stream 0, and set OutputStreamMask to 1.
pInfo->GS.OutputTopology = (UINT)m_Module.GetStreamPrimitiveTopology();
pInfo->GS.OutputStreamMask = m_Module.GetActiveStreamMask();
if (pInfo->GS.OutputStreamMask == 0) {
pInfo->GS.OutputStreamMask = 1; // This is what runtime expects.
}
pInfo->GS.OutputPositionPresent = 0;
const DxilSignature &S = m_Module.GetOutputSignature();
for (auto &&E : S.GetElements()) {
if (E->GetKind() == Semantic::Kind::Position) {
// Ideally, we might check never writes mask here,
// but this is not yet part of the signature element in Dxil
pInfo->GS.OutputPositionPresent = 1;
break;
}
}
break;
}
case ShaderModel::Kind::Pixel: {
pInfo->PS.DepthOutput = 0;
pInfo->PS.SampleFrequency = 0;
{
const DxilSignature &S = m_Module.GetInputSignature();
for (auto &&E : S.GetElements()) {
if (E->GetInterpolationMode()->IsAnySample() ||
E->GetKind() == Semantic::Kind::SampleIndex) {
pInfo->PS.SampleFrequency = 1;
}
}
}
{
const DxilSignature &S = m_Module.GetOutputSignature();
for (auto &&E : S.GetElements()) {
if (E->IsAnyDepth()) {
pInfo->PS.DepthOutput = 1;
break;
}
}
}
break;
}
}
// Set resource binding information
UINT uResIndex = 0;
for (auto &&R : m_Module.GetCBuffers()) {
DXASSERT_NOMSG(uResIndex < m_PSVInitInfo.ResourceCount);
PSVResourceBindInfo0* pBindInfo = m_PSV.GetPSVResourceBindInfo0(uResIndex);
DXASSERT_NOMSG(pBindInfo);
pBindInfo->ResType = (UINT)PSVResourceType::CBV;
pBindInfo->Space = R->GetSpaceID();
pBindInfo->LowerBound = R->GetLowerBound();
pBindInfo->UpperBound = R->GetUpperBound();
uResIndex++;
}
for (auto &&R : m_Module.GetSamplers()) {
DXASSERT_NOMSG(uResIndex < m_PSVInitInfo.ResourceCount);
PSVResourceBindInfo0* pBindInfo = m_PSV.GetPSVResourceBindInfo0(uResIndex);
DXASSERT_NOMSG(pBindInfo);
pBindInfo->ResType = (UINT)PSVResourceType::Sampler;
pBindInfo->Space = R->GetSpaceID();
pBindInfo->LowerBound = R->GetLowerBound();
pBindInfo->UpperBound = R->GetUpperBound();
uResIndex++;
}
for (auto &&R : m_Module.GetSRVs()) {
DXASSERT_NOMSG(uResIndex < m_PSVInitInfo.ResourceCount);
PSVResourceBindInfo0* pBindInfo = m_PSV.GetPSVResourceBindInfo0(uResIndex);
DXASSERT_NOMSG(pBindInfo);
if (R->IsStructuredBuffer()) {
pBindInfo->ResType = (UINT)PSVResourceType::SRVStructured;
} else if (R->IsRawBuffer()) {
pBindInfo->ResType = (UINT)PSVResourceType::SRVRaw;
} else {
pBindInfo->ResType = (UINT)PSVResourceType::SRVTyped;
}
pBindInfo->Space = R->GetSpaceID();
pBindInfo->LowerBound = R->GetLowerBound();
pBindInfo->UpperBound = R->GetUpperBound();
uResIndex++;
}
for (auto &&R : m_Module.GetUAVs()) {
DXASSERT_NOMSG(uResIndex < m_PSVInitInfo.ResourceCount);
PSVResourceBindInfo0* pBindInfo = m_PSV.GetPSVResourceBindInfo0(uResIndex);
DXASSERT_NOMSG(pBindInfo);
if (R->IsStructuredBuffer()) {
if (R->HasCounter())
pBindInfo->ResType = (UINT)PSVResourceType::UAVStructuredWithCounter;
else
pBindInfo->ResType = (UINT)PSVResourceType::UAVStructured;
} else if (R->IsRawBuffer()) {
pBindInfo->ResType = (UINT)PSVResourceType::UAVRaw;
} else {
pBindInfo->ResType = (UINT)PSVResourceType::UAVTyped;
}
pBindInfo->Space = R->GetSpaceID();
pBindInfo->LowerBound = R->GetLowerBound();
pBindInfo->UpperBound = R->GetUpperBound();
uResIndex++;
}
DXASSERT_NOMSG(uResIndex == m_PSVInitInfo.ResourceCount);
if (m_PSVInitInfo.PSVVersion > 0) {
DXASSERT_NOMSG(pInfo1);
// Write MaxVertexCount
if (SM->IsGS()) {
DXASSERT_NOMSG(m_Module.GetMaxVertexCount() <= 1024);
pInfo1->MaxVertexCount = (uint16_t)m_Module.GetMaxVertexCount();
}
// Write Dxil Signature Elements
for (unsigned i = 0; i < m_PSV.GetSigInputElements(); i++) {
PSVSignatureElement0 *pInputElement = m_PSV.GetInputElement0(i);
DXASSERT_NOMSG(pInputElement);
memcpy(pInputElement, &m_SigInputElements[i], sizeof(PSVSignatureElement0));
}
for (unsigned i = 0; i < m_PSV.GetSigOutputElements(); i++) {
PSVSignatureElement0 *pOutputElement = m_PSV.GetOutputElement0(i);
DXASSERT_NOMSG(pOutputElement);
memcpy(pOutputElement, &m_SigOutputElements[i], sizeof(PSVSignatureElement0));
}
for (unsigned i = 0; i < m_PSV.GetSigPatchConstantElements(); i++) {
PSVSignatureElement0 *pPatchConstantElement = m_PSV.GetPatchConstantElement0(i);
DXASSERT_NOMSG(pPatchConstantElement);
memcpy(pPatchConstantElement, &m_SigPatchConstantElements[i], sizeof(PSVSignatureElement0));
}
// Gather ViewID dependency information
auto &viewState = m_Module.GetViewIdState().GetSerialized();
if (!viewState.empty()) {
const uint32_t *pSrc = viewState.data();
const uint32_t InputScalars = *(pSrc++);
uint32_t OutputScalars[4];
for (unsigned streamIndex = 0; streamIndex < 4; streamIndex++) {
OutputScalars[streamIndex] = *(pSrc++);
pSrc = CopyViewIDState(pSrc, InputScalars, OutputScalars[streamIndex], m_PSV.GetViewIDOutputMask(streamIndex), m_PSV.GetInputToOutputTable(streamIndex));
if (!SM->IsGS())
break;
}
if (SM->IsHS()) {
const uint32_t PCScalars = *(pSrc++);
pSrc = CopyViewIDState(pSrc, InputScalars, PCScalars, m_PSV.GetViewIDPCOutputMask(), m_PSV.GetInputToPCOutputTable());
} else if (SM->IsDS()) {
const uint32_t PCScalars = *(pSrc++);
pSrc = CopyViewIDState(pSrc, PCScalars, OutputScalars[0], PSVComponentMask(), m_PSV.GetPCInputToOutputTable());
}
DXASSERT_NOMSG(viewState.data() + viewState.size() == pSrc);
}
}
ULONG cbWritten;
IFT(pStream->Write(m_PSVBuffer.data(), m_PSVBufferSize, &cbWritten));
DXASSERT_NOMSG(cbWritten == m_PSVBufferSize);
}
};
// Size-checked writer
// on overrun: throw buffer_overrun{};
// on overlap: throw buffer_overlap{};
class CheckedWriter {
char *Ptr;
size_t Size;
size_t Offset;
public:
class exception : public std::exception {};
class buffer_overrun : public exception {
public:
buffer_overrun() noexcept {}
virtual const char * what() const noexcept override {
return ("buffer_overrun");
}
};
class buffer_overlap : public exception {
public:
buffer_overlap() noexcept {}
virtual const char * what() const noexcept override {
return ("buffer_overlap");
}
};
CheckedWriter(void *ptr, size_t size) :
Ptr(reinterpret_cast<char*>(ptr)), Size(size), Offset(0) {}
size_t GetOffset() const { return Offset; }
void Reset(size_t offset = 0) {
if (offset >= Size) throw buffer_overrun{};
Offset = offset;
}
// offset is absolute, ensure offset is >= current offset
void Advance(size_t offset = 0) {
if (offset < Offset) throw buffer_overlap{};
if (offset >= Size) throw buffer_overrun{};
Offset = offset;
}
void CheckBounds(size_t size) const {
assert(Offset <= Size && "otherwise, offset larger than size");
if (size > Size - Offset)
throw buffer_overrun{};
}
template <typename T>
T *Cast(size_t size = 0) {
if (0 == size) size = sizeof(T);
CheckBounds(size);
return reinterpret_cast<T*>(Ptr + Offset);
}
// Map and Write advance Offset:
template <typename T>
T &Map() {
const size_t size = sizeof(T);
T * p = Cast<T>(size);
Offset += size;
return *p;
}
template <typename T>
T *MapArray(size_t count = 1) {
const size_t size = sizeof(T) * count;
T *p = Cast<T>(size);
Offset += size;
return p;
}
template <typename T>
void Write(const T &obj) {
const size_t size = sizeof(T);
*Cast<T>(size) = obj;
Offset += size;
}
template <typename T>
void WriteArray(const T *pArray, size_t count = 1) {
const size_t size = sizeof(T) * count;
memcpy(Cast<T>(size), pArray, size);
Offset += size;
}
};
// Like DXIL container, RDAT itself is a mini container that contains multiple RDAT parts
class RDATPart {
public:
virtual uint32_t GetPartSize() const { return 0; }
virtual void Write(void *ptr) {}
virtual RuntimeDataPartType GetType() const { return RuntimeDataPartType::Invalid; }
virtual ~RDATPart() {}
};
// Most RDAT parts are tables each containing a list of structures of same type.
// Exceptions are string table and index table because each string or list of
// indicies can be of different sizes.
template <class T>
class RDATTable : public RDATPart {
protected:
std::vector<T> m_rows;
public:
virtual void Insert(T *data) {}
virtual ~RDATTable() {}
void Insert(const T &data) {
m_rows.push_back(data);
}
void Write(void *ptr) {
char *pCur = (char*)ptr;
RuntimeDataTableHeader &header = *reinterpret_cast<RuntimeDataTableHeader*>(pCur);
header.RecordCount = m_rows.size();
header.RecordStride = sizeof(T);
pCur += sizeof(RuntimeDataTableHeader);
memcpy(pCur, m_rows.data(), header.RecordCount * header.RecordStride);
};
uint32_t GetPartSize() const {
if (m_rows.empty())
return 0;
return sizeof(RuntimeDataTableHeader) + m_rows.size() * sizeof(T);
}
};
// Resource table will contain a list of RuntimeDataResourceInfo in order of
// CBuffer, Sampler, SRV, and UAV resource classes.
class ResourceTable : public RDATTable<RuntimeDataResourceInfo> {
public:
RuntimeDataPartType GetType() const { return RuntimeDataPartType::ResourceTable; }
};
class FunctionTable : public RDATTable<RuntimeDataFunctionInfo> {
public:
RuntimeDataPartType GetType() const { return RuntimeDataPartType::FunctionTable; }
};
class StringBufferPart : public RDATPart {
private:
StringMap<uint32_t> m_StringMap;
SmallVector<char, 256> m_StringBuffer;
uint32_t curIndex;
public:
StringBufferPart() : m_StringMap(), m_StringBuffer(), curIndex(0) {
// Always start string table with null so empty/null strings have offset of zero
m_StringBuffer.push_back('\0');
}
// returns the offset of the name inserted
uint32_t Insert(StringRef name) {
if (name.empty())
return 0;
// Don't add duplicate strings
auto found = m_StringMap.find(name);
if (found != m_StringMap.end())
return found->second;
uint32_t prevIndex = (uint32_t)m_StringBuffer.size();
m_StringMap[name] = prevIndex;
m_StringBuffer.reserve(m_StringBuffer.size() + name.size() + 1);
m_StringBuffer.append(name.begin(), name.end());
m_StringBuffer.push_back('\0');
return prevIndex;
}
RuntimeDataPartType GetType() const { return RuntimeDataPartType::StringBuffer; }
uint32_t GetPartSize() const { return m_StringBuffer.size(); }
void Write(void *ptr) { memcpy(ptr, m_StringBuffer.data(), m_StringBuffer.size()); }
};
struct IndexArraysPart : public RDATPart {
private:
std::vector<uint32_t> m_IndexBuffer;
// Use m_IndexSet with CmpIndices to avoid duplicate index arrays
struct CmpIndices {
const IndexArraysPart &Table;
CmpIndices(const IndexArraysPart &table) : Table(table) {}
bool operator()(uint32_t left, uint32_t right) const {
const uint32_t *pLeft = Table.m_IndexBuffer.data() + left;
const uint32_t *pRight = Table.m_IndexBuffer.data() + right;
if (*pLeft != *pRight)
return (*pLeft < *pRight);
uint32_t count = *pLeft;
for (unsigned i = 0; i < count; i++) {
++pLeft; ++pRight;
if (*pLeft != *pRight)
return (*pLeft < *pRight);
}
return false;
}
};
std::set<uint32_t, CmpIndices> m_IndexSet;
public:
IndexArraysPart() : m_IndexBuffer(), m_IndexSet(*this) {}
template <class iterator>
uint32_t AddIndex(iterator begin, iterator end) {
uint32_t newOffset = m_IndexBuffer.size();
m_IndexBuffer.push_back(0); // Size: update after insertion
m_IndexBuffer.insert(m_IndexBuffer.end(), begin, end);
m_IndexBuffer[newOffset] = (m_IndexBuffer.size() - newOffset) - 1;
// Check for duplicate, return new offset if not duplicate
auto insertResult = m_IndexSet.insert(newOffset);
if (insertResult.second)
return newOffset;
// Otherwise it was a duplicate, so chop off the size and return the original
m_IndexBuffer.resize(newOffset);
return *insertResult.first;
}
RuntimeDataPartType GetType() const { return RuntimeDataPartType::IndexArrays; }
uint32_t GetPartSize() const {
return sizeof(uint32_t) * m_IndexBuffer.size();
}
void Write(void *ptr) {
memcpy(ptr, m_IndexBuffer.data(), m_IndexBuffer.size() * sizeof(uint32_t));
}
};
using namespace DXIL;
class DxilRDATWriter : public DxilPartWriter {
private:
const DxilModule &m_Module;
SmallVector<char, 1024> m_RDATBuffer;
std::vector<std::unique_ptr<RDATPart>> m_Parts;
typedef llvm::SmallSetVector<uint32_t, 8> Indices;
typedef std::unordered_map<llvm::Function *, Indices> FunctionIndexMap;
FunctionIndexMap m_FuncToResNameOffset; // list of resources used
FunctionIndexMap m_FuncToDependencies; // list of unresolved functions used
llvm::Function *FindUsingFunction(llvm::Value *User) {
if (llvm::Instruction *I = dyn_cast<llvm::Instruction>(User)) {
// Instruction should be inside a basic block, which is in a function
return cast<llvm::Function>(I->getParent()->getParent());
}
// User can be either instruction, constant, or operator. But User is an
// operator only if constant is a scalar value, not resource pointer.
llvm::Constant *CU = cast<llvm::Constant>(User);
if (!CU->user_empty())
return FindUsingFunction(*CU->user_begin());
else
return nullptr;
}
void UpdateFunctionToResourceInfo(const DxilResourceBase *resource,
uint32_t offset) {
Constant *var = resource->GetGlobalSymbol();
if (var) {
for (auto user : var->users()) {
// Find the function.
llvm::Function *F = FindUsingFunction(user);
if (!F)
continue;
if (m_FuncToResNameOffset.find(F) == m_FuncToResNameOffset.end()) {
m_FuncToResNameOffset[F] = Indices();
}
m_FuncToResNameOffset[F].insert(offset);
}
}
}
void InsertToResourceTable(DxilResourceBase &resource,
ResourceClass resourceClass,
ResourceTable &resourceTable,
StringBufferPart &stringBufferPart,
uint32_t &resourceIndex) {
uint32_t stringIndex = stringBufferPart.Insert(resource.GetGlobalName());
UpdateFunctionToResourceInfo(&resource, resourceIndex++);
RuntimeDataResourceInfo info = {};
info.ID = resource.GetID();
info.Class = static_cast<uint32_t>(resourceClass);
info.Kind = static_cast<uint32_t>(resource.GetKind());
info.Space = resource.GetSpaceID();
info.LowerBound = resource.GetLowerBound();
info.UpperBound = resource.GetUpperBound();
info.Name = stringIndex;
info.Flags = 0;
if (ResourceClass::UAV == resourceClass) {
DxilResource *pRes = static_cast<DxilResource*>(&resource);
if (pRes->HasCounter())
info.Flags |= static_cast<uint32_t>(DxilResourceFlag::UAVCounter);
if (pRes->IsGloballyCoherent())
info.Flags |= static_cast<uint32_t>(DxilResourceFlag::UAVGloballyCoherent);
if (pRes->IsROV())
info.Flags |= static_cast<uint32_t>(DxilResourceFlag::UAVRasterizerOrderedView);
// TODO: add dynamic index flag
}
resourceTable.Insert(info);
}
void UpdateResourceInfo(StringBufferPart &stringBufferPart) {
// Try to allocate string table for resources. String table is a sequence
// of strings delimited by \0
m_Parts.emplace_back(std::make_unique<ResourceTable>());
ResourceTable &resourceTable = *reinterpret_cast<ResourceTable*>(m_Parts.back().get());
uint32_t resourceIndex = 0;
for (auto &resource : m_Module.GetCBuffers()) {
InsertToResourceTable(*resource.get(), ResourceClass::CBuffer, resourceTable, stringBufferPart,
resourceIndex);
}
for (auto &resource : m_Module.GetSamplers()) {
InsertToResourceTable(*resource.get(), ResourceClass::Sampler, resourceTable, stringBufferPart,
resourceIndex);
}
for (auto &resource : m_Module.GetSRVs()) {
InsertToResourceTable(*resource.get(), ResourceClass::SRV, resourceTable, stringBufferPart,
resourceIndex);
}
for (auto &resource : m_Module.GetUAVs()) {
InsertToResourceTable(*resource.get(), ResourceClass::UAV, resourceTable, stringBufferPart,
resourceIndex);
}
}
void UpdateFunctionDependency(llvm::Function *F, StringBufferPart &stringBufferPart) {
for (const auto &user : F->users()) {
llvm::Function *userFunction = FindUsingFunction(user);
uint32_t index = stringBufferPart.Insert(F->getName());
if (m_FuncToDependencies.find(userFunction) ==
m_FuncToDependencies.end()) {
m_FuncToDependencies[userFunction] =
Indices();
}
m_FuncToDependencies[userFunction].insert(index);
}
}
void UpdateFunctionInfo(StringBufferPart &stringBufferPart) {
// TODO: get a list of valid shader flags
// TODO: get a minimum shader version
std::unordered_map<llvm::Function *, std::vector<StringRef>>
FuncToUnresolvedDependencies;
m_Parts.emplace_back(std::make_unique<FunctionTable>());
FunctionTable &functionTable = *reinterpret_cast<FunctionTable*>(m_Parts.back().get());
m_Parts.emplace_back(std::make_unique<IndexArraysPart>());
IndexArraysPart &indexArraysPart = *reinterpret_cast<IndexArraysPart*>(m_Parts.back().get());
for (auto &function : m_Module.GetModule()->getFunctionList()) {
// If function is a declaration, it is an unresolved dependency in the library
if (function.isDeclaration() && !OP::IsDxilOpFunc(&function)) {
UpdateFunctionDependency(&function, stringBufferPart);
}
}
for (auto &function : m_Module.GetModule()->getFunctionList()) {
if (!function.isDeclaration()) {
StringRef mangled = function.getName();
StringRef unmangled = hlsl::dxilutil::DemangleFunctionName(function.getName());
uint32_t mangledIndex = stringBufferPart.Insert(mangled);
uint32_t unmangledIndex = stringBufferPart.Insert(unmangled);
// Update resource Index
uint32_t resourceIndex = UINT_MAX;
uint32_t functionDependencies = UINT_MAX;
uint32_t payloadSizeInBytes = 0;
uint32_t attrSizeInBytes = 0;
uint32_t shaderKind = static_cast<uint32_t>(DXIL::ShaderKind::Library);
if (m_FuncToResNameOffset.find(&function) != m_FuncToResNameOffset.end())
resourceIndex =
indexArraysPart.AddIndex(m_FuncToResNameOffset[&function].begin(),
m_FuncToResNameOffset[&function].end());
if (m_FuncToDependencies.find(&function) != m_FuncToDependencies.end())
functionDependencies =
indexArraysPart.AddIndex(m_FuncToDependencies[&function].begin(),
m_FuncToDependencies[&function].end());
if (m_Module.HasDxilFunctionProps(&function)) {
auto props = m_Module.GetDxilFunctionProps(&function);
if (props.IsClosestHit() || props.IsAnyHit()) {
payloadSizeInBytes = props.ShaderProps.Ray.payloadSizeInBytes;
attrSizeInBytes = props.ShaderProps.Ray.attributeSizeInBytes;
}
else if (props.IsMiss()) {
payloadSizeInBytes = props.ShaderProps.Ray.payloadSizeInBytes;
}
else if (props.IsCallable()) {
payloadSizeInBytes = props.ShaderProps.Ray.paramSizeInBytes;
}
shaderKind = (uint32_t)props.shaderKind;
}
ShaderFlags flags = ShaderFlags::CollectShaderFlags(&function, &m_Module);
RuntimeDataFunctionInfo info = {};
info.Name = mangledIndex;
info.UnmangledName = unmangledIndex;
info.ShaderKind = shaderKind;
info.Resources = resourceIndex;
info.FunctionDependencies = functionDependencies;
info.PayloadSizeInBytes = payloadSizeInBytes;
info.AttributeSizeInBytes = attrSizeInBytes;
uint64_t featureFlags = flags.GetFeatureInfo();
info.FeatureInfo1 = featureFlags & 0xffffffff;
info.FeatureInfo2 = (featureFlags >> 32) & 0xffffffff;
functionTable.Insert(info);
}
}
}
public:
DxilRDATWriter(const DxilModule &module, uint32_t InfoVersion = 0)
: m_Module(module), m_RDATBuffer(), m_Parts(), m_FuncToResNameOffset() {
// It's important to keep the order of this update
m_Parts.emplace_back(std::make_unique<StringBufferPart>());
StringBufferPart &stringBufferPart = *reinterpret_cast<StringBufferPart*>(m_Parts.back().get());
UpdateResourceInfo(stringBufferPart);
UpdateFunctionInfo(stringBufferPart);
// Delete any empty parts:
std::vector<std::unique_ptr<RDATPart>>::iterator it = m_Parts.begin();
while (it != m_Parts.end()) {
if (it->get()->GetPartSize() == 0) {
it = m_Parts.erase(it);
}
else
it++;
}
}
__override uint32_t size() const {
// header + offset array
uint32_t total = sizeof(RuntimeDataHeader) + m_Parts.size() * sizeof(uint32_t);
// For each part: part header + part size
for (auto &part : m_Parts)
total += sizeof(RuntimeDataPartHeader) + PSVALIGN4(part->GetPartSize());
return total;
}
__override void write(AbstractMemoryStream *pStream) {
try {
m_RDATBuffer.resize(size(), 0);
CheckedWriter W(m_RDATBuffer.data(), m_RDATBuffer.size());
// write RDAT header
RuntimeDataHeader &header = W.Map<RuntimeDataHeader>();
header.Version = RDAT_Version_0;
header.PartCount = m_Parts.size();
// map offsets
uint32_t *offsets = W.MapArray<uint32_t>(header.PartCount);
// write parts
unsigned i = 0;
for (auto &part : m_Parts) {
offsets[i++] = W.GetOffset();
RuntimeDataPartHeader &partHeader = W.Map<RuntimeDataPartHeader>();
partHeader.Type = part->GetType();
partHeader.Size = PSVALIGN4(part->GetPartSize());
DXASSERT(partHeader.Size, "otherwise, failed to remove empty part");
char *bytes = W.MapArray<char>(partHeader.Size);
part->Write(bytes);
}
}
catch (CheckedWriter::exception e) {
throw hlsl::Exception(DXC_E_GENERAL_INTERNAL_ERROR, e.what());
}
ULONG cbWritten;
IFT(pStream->Write(m_RDATBuffer.data(), m_RDATBuffer.size(), &cbWritten));
DXASSERT_NOMSG(cbWritten == m_RDATBuffer.size());
}
};
DxilPartWriter *hlsl::NewPSVWriter(const DxilModule &M, uint32_t PSVVersion) {
return new DxilPSVWriter(M, PSVVersion);
}
class DxilContainerWriter_impl : public DxilContainerWriter {
private:
class DxilPart {
public:
DxilPartHeader Header;
WriteFn Write;
DxilPart(uint32_t fourCC, uint32_t size, WriteFn write) : Write(write) {
Header.PartFourCC = fourCC;
Header.PartSize = size;
}
};
llvm::SmallVector<DxilPart, 8> m_Parts;
public:
void AddPart(uint32_t FourCC, uint32_t Size, WriteFn Write) override {
m_Parts.emplace_back(FourCC, Size, Write);
}
uint32_t size() const override {
uint32_t partSize = 0;
for (auto &part : m_Parts) {
partSize += part.Header.PartSize;
}
return (uint32_t)GetDxilContainerSizeFromParts((uint32_t)m_Parts.size(), partSize);
}
void write(AbstractMemoryStream *pStream) override {
DxilContainerHeader header;
const uint32_t PartCount = (uint32_t)m_Parts.size();
uint32_t containerSizeInBytes = size();
InitDxilContainer(&header, PartCount, containerSizeInBytes);
IFT(pStream->Reserve(header.ContainerSizeInBytes));
IFT(WriteStreamValue(pStream, header));
uint32_t offset = sizeof(header) + (uint32_t)GetOffsetTableSize(PartCount);
for (auto &&part : m_Parts) {
IFT(WriteStreamValue(pStream, offset));
offset += sizeof(DxilPartHeader) + part.Header.PartSize;
}
for (auto &&part : m_Parts) {
IFT(WriteStreamValue(pStream, part.Header));
size_t start = pStream->GetPosition();
part.Write(pStream);
DXASSERT_LOCALVAR(start, pStream->GetPosition() - start == (size_t)part.Header.PartSize, "out of bound");
}
DXASSERT(containerSizeInBytes == (uint32_t)pStream->GetPosition(), "else stream size is incorrect");
}
};
DxilContainerWriter *hlsl::NewDxilContainerWriter() {
return new DxilContainerWriter_impl();
}
static bool HasDebugInfo(const Module &M) {
for (Module::const_named_metadata_iterator NMI = M.named_metadata_begin(),
NME = M.named_metadata_end();
NMI != NME; ++NMI) {
if (NMI->getName().startswith("llvm.dbg.")) {
return true;
}
}
return false;
}
static void GetPaddedProgramPartSize(AbstractMemoryStream *pStream,
uint32_t &bitcodeInUInt32,
uint32_t &bitcodePaddingBytes) {
bitcodeInUInt32 = pStream->GetPtrSize();
bitcodePaddingBytes = (bitcodeInUInt32 % 4);
bitcodeInUInt32 = (bitcodeInUInt32 / 4) + (bitcodePaddingBytes ? 1 : 0);
}
static void WriteProgramPart(const ShaderModel *pModel,
AbstractMemoryStream *pModuleBitcode,
AbstractMemoryStream *pStream) {
DXASSERT(pModel != nullptr, "else generation should have failed");
DxilProgramHeader programHeader;
uint32_t shaderVersion =
EncodeVersion(pModel->GetKind(), pModel->GetMajor(), pModel->GetMinor());
unsigned dxilMajor, dxilMinor;
pModel->GetDxilVersion(dxilMajor, dxilMinor);
uint32_t dxilVersion = DXIL::MakeDxilVersion(dxilMajor, dxilMinor);
InitProgramHeader(programHeader, shaderVersion, dxilVersion, pModuleBitcode->GetPtrSize());
uint32_t programInUInt32, programPaddingBytes;
GetPaddedProgramPartSize(pModuleBitcode, programInUInt32,
programPaddingBytes);
ULONG cbWritten;
IFT(WriteStreamValue(pStream, programHeader));
IFT(pStream->Write(pModuleBitcode->GetPtr(), pModuleBitcode->GetPtrSize(),
&cbWritten));
if (programPaddingBytes) {
uint32_t paddingValue = 0;
IFT(pStream->Write(&paddingValue, programPaddingBytes, &cbWritten));
}
}
void hlsl::SerializeDxilContainerForModule(DxilModule *pModule,
AbstractMemoryStream *pModuleBitcode,
AbstractMemoryStream *pFinalStream,
SerializeDxilFlags Flags) {
// TODO: add a flag to update the module and remove information that is not part
// of DXIL proper and is used only to assemble the container.
DXASSERT_NOMSG(pModule != nullptr);
DXASSERT_NOMSG(pModuleBitcode != nullptr);
DXASSERT_NOMSG(pFinalStream != nullptr);
unsigned ValMajor, ValMinor;
pModule->GetValidatorVersion(ValMajor, ValMinor);
if (ValMajor == 1 && ValMinor == 0)
Flags &= ~SerializeDxilFlags::IncludeDebugNamePart;
DxilContainerWriter_impl writer;
// Write the feature part.
DxilFeatureInfoWriter featureInfoWriter(*pModule);
writer.AddPart(DFCC_FeatureInfo, featureInfoWriter.size(), [&](AbstractMemoryStream *pStream) {
featureInfoWriter.write(pStream);
});
std::unique_ptr<DxilProgramSignatureWriter> pInputSigWriter = nullptr;
std::unique_ptr<DxilProgramSignatureWriter> pOutputSigWriter = nullptr;
std::unique_ptr<DxilProgramSignatureWriter> pPatchConstantSigWriter = nullptr;
if (!pModule->GetShaderModel()->IsLib()) {
pInputSigWriter = llvm::make_unique<DxilProgramSignatureWriter>(
pModule->GetInputSignature(), pModule->GetTessellatorDomain(),
/*IsInput*/ true,
/*UseMinPrecision*/ pModule->GetUseMinPrecision());
pOutputSigWriter = llvm::make_unique<DxilProgramSignatureWriter>(
pModule->GetOutputSignature(), pModule->GetTessellatorDomain(),
/*IsInput*/ false,
/*UseMinPrecision*/ pModule->GetUseMinPrecision());
// Write the input and output signature parts.
writer.AddPart(DFCC_InputSignature, pInputSigWriter->size(),
[&](AbstractMemoryStream *pStream) {
pInputSigWriter->write(pStream);
});
writer.AddPart(DFCC_OutputSignature, pOutputSigWriter->size(),
[&](AbstractMemoryStream *pStream) {
pOutputSigWriter->write(pStream);
});
pPatchConstantSigWriter = llvm::make_unique<DxilProgramSignatureWriter>(
pModule->GetPatchConstantSignature(), pModule->GetTessellatorDomain(),
/*IsInput*/ pModule->GetShaderModel()->IsDS(),
/*UseMinPrecision*/ pModule->GetUseMinPrecision());
if (pModule->GetPatchConstantSignature().GetElements().size()) {
writer.AddPart(DFCC_PatchConstantSignature,
pPatchConstantSigWriter->size(),
[&](AbstractMemoryStream *pStream) {
pPatchConstantSigWriter->write(pStream);
});
}
}
// Write the DxilPipelineStateValidation (PSV0) part.
std::unique_ptr<DxilRDATWriter> pRDATWriter = nullptr;
std::unique_ptr<DxilPSVWriter> pPSVWriter = nullptr;
unsigned int major, minor;
pModule->GetDxilVersion(major, minor);
if (pModule->GetShaderModel()->IsLib()) {
pRDATWriter = llvm::make_unique<DxilRDATWriter>(*pModule);
writer.AddPart(
DFCC_RuntimeData, pRDATWriter->size(),
[&](AbstractMemoryStream *pStream) { pRDATWriter->write(pStream); });
} else if (!pModule->GetShaderModel()->IsLib()) {
pPSVWriter = llvm::make_unique<DxilPSVWriter>(*pModule);
writer.AddPart(
DFCC_PipelineStateValidation, pPSVWriter->size(),
[&](AbstractMemoryStream *pStream) { pPSVWriter->write(pStream); });
}
// Write the root signature (RTS0) part.
DxilProgramRootSignatureWriter rootSigWriter(pModule->GetRootSignature());
CComPtr<AbstractMemoryStream> pInputProgramStream = pModuleBitcode;
if (!pModule->GetRootSignature().IsEmpty()) {
writer.AddPart(
DFCC_RootSignature, rootSigWriter.size(),
[&](AbstractMemoryStream *pStream) { rootSigWriter.write(pStream); });
pModule->StripRootSignatureFromMetadata();
pInputProgramStream.Release();
IFT(CreateMemoryStream(DxcGetThreadMallocNoRef(), &pInputProgramStream));
raw_stream_ostream outStream(pInputProgramStream.p);
WriteBitcodeToFile(pModule->GetModule(), outStream, true);
}
// If we have debug information present, serialize it to a debug part, then use the stripped version as the canonical program version.
CComPtr<AbstractMemoryStream> pProgramStream = pInputProgramStream;
if (HasDebugInfo(*pModule->GetModule())) {
uint32_t debugInUInt32, debugPaddingBytes;
GetPaddedProgramPartSize(pInputProgramStream, debugInUInt32, debugPaddingBytes);
if (Flags & SerializeDxilFlags::IncludeDebugInfoPart) {
writer.AddPart(DFCC_ShaderDebugInfoDXIL, debugInUInt32 * sizeof(uint32_t) + sizeof(DxilProgramHeader), [&](AbstractMemoryStream *pStream) {
WriteProgramPart(pModule->GetShaderModel(), pInputProgramStream, pStream);
});
}
pProgramStream.Release();
llvm::StripDebugInfo(*pModule->GetModule());
pModule->StripDebugRelatedCode();
IFT(CreateMemoryStream(DxcGetThreadMallocNoRef(), &pProgramStream));
raw_stream_ostream outStream(pProgramStream.p);
WriteBitcodeToFile(pModule->GetModule(), outStream, true);
if (Flags & SerializeDxilFlags::IncludeDebugNamePart) {
CComPtr<AbstractMemoryStream> pHashStream;
// If the debug name should be specific to the sources, base the name on the debug
// bitcode, which will include the source references, line numbers, etc. Otherwise,
// do it exclusively on the target shader bitcode.
pHashStream = (int)(Flags & SerializeDxilFlags::DebugNameDependOnSource)
? CComPtr<AbstractMemoryStream>(pModuleBitcode)
: CComPtr<AbstractMemoryStream>(pProgramStream);
const uint32_t DebugInfoNameHashLen = 32; // 32 chars of MD5
const uint32_t DebugInfoNameSuffix = 4; // '.lld'
const uint32_t DebugInfoNameNullAndPad = 4; // '\0\0\0\0'
const uint32_t DebugInfoContentLen =
sizeof(DxilShaderDebugName) + DebugInfoNameHashLen +
DebugInfoNameSuffix + DebugInfoNameNullAndPad;
writer.AddPart(DFCC_ShaderDebugName, DebugInfoContentLen, [&](AbstractMemoryStream *pStream) {
DxilShaderDebugName NameContent;
NameContent.Flags = 0;
NameContent.NameLength = DebugInfoNameHashLen + DebugInfoNameSuffix;
IFT(WriteStreamValue(pStream, NameContent));
ArrayRef<uint8_t> Data((uint8_t *)pHashStream->GetPtr(), pHashStream->GetPtrSize());
llvm::MD5 md5;
llvm::MD5::MD5Result md5Result;
SmallString<32> Hash;
md5.update(Data);
md5.final(md5Result);
md5.stringifyResult(md5Result, Hash);
ULONG cbWritten;
IFT(pStream->Write(Hash.data(), Hash.size(), &cbWritten));
const char SuffixAndPad[] = ".lld\0\0\0";
IFT(pStream->Write(SuffixAndPad, _countof(SuffixAndPad), &cbWritten));
});
}
}
// Compute padded bitcode size.
uint32_t programInUInt32, programPaddingBytes;
GetPaddedProgramPartSize(pProgramStream, programInUInt32, programPaddingBytes);
// Write the program part.
writer.AddPart(DFCC_DXIL, programInUInt32 * sizeof(uint32_t) + sizeof(DxilProgramHeader), [&](AbstractMemoryStream *pStream) {
WriteProgramPart(pModule->GetShaderModel(), pProgramStream, pStream);
});
writer.write(pFinalStream);
}
void hlsl::SerializeDxilContainerForRootSignature(hlsl::RootSignatureHandle *pRootSigHandle,
AbstractMemoryStream *pFinalStream) {
DXASSERT_NOMSG(pRootSigHandle != nullptr);
DXASSERT_NOMSG(pFinalStream != nullptr);
DxilContainerWriter_impl writer;
// Write the root signature (RTS0) part.
DxilProgramRootSignatureWriter rootSigWriter(*pRootSigHandle);
if (!pRootSigHandle->IsEmpty()) {
writer.AddPart(
DFCC_RootSignature, rootSigWriter.size(),
[&](AbstractMemoryStream *pStream) { rootSigWriter.write(pStream); });
}
writer.write(pFinalStream);
}