301 строка
11 KiB
C++
301 строка
11 KiB
C++
//===- llvm/ADT/PostOrderIterator.h - PostOrder iterator --------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file builds on the ADT/GraphTraits.h file to build a generic graph
|
|
// post order iterator. This should work over any graph type that has a
|
|
// GraphTraits specialization.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_ADT_POSTORDERITERATOR_H
|
|
#define LLVM_ADT_POSTORDERITERATOR_H
|
|
|
|
#include "llvm/ADT/GraphTraits.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include <set>
|
|
#include <vector>
|
|
|
|
namespace llvm {
|
|
|
|
// The po_iterator_storage template provides access to the set of already
|
|
// visited nodes during the po_iterator's depth-first traversal.
|
|
//
|
|
// The default implementation simply contains a set of visited nodes, while
|
|
// the Extended=true version uses a reference to an external set.
|
|
//
|
|
// It is possible to prune the depth-first traversal in several ways:
|
|
//
|
|
// - When providing an external set that already contains some graph nodes,
|
|
// those nodes won't be visited again. This is useful for restarting a
|
|
// post-order traversal on a graph with nodes that aren't dominated by a
|
|
// single node.
|
|
//
|
|
// - By providing a custom SetType class, unwanted graph nodes can be excluded
|
|
// by having the insert() function return false. This could for example
|
|
// confine a CFG traversal to blocks in a specific loop.
|
|
//
|
|
// - Finally, by specializing the po_iterator_storage template itself, graph
|
|
// edges can be pruned by returning false in the insertEdge() function. This
|
|
// could be used to remove loop back-edges from the CFG seen by po_iterator.
|
|
//
|
|
// A specialized po_iterator_storage class can observe both the pre-order and
|
|
// the post-order. The insertEdge() function is called in a pre-order, while
|
|
// the finishPostorder() function is called just before the po_iterator moves
|
|
// on to the next node.
|
|
|
|
/// Default po_iterator_storage implementation with an internal set object.
|
|
template<class SetType, bool External>
|
|
class po_iterator_storage {
|
|
SetType Visited;
|
|
public:
|
|
// Return true if edge destination should be visited.
|
|
template<typename NodeType>
|
|
bool insertEdge(NodeType *From, NodeType *To) {
|
|
return Visited.insert(To).second;
|
|
}
|
|
|
|
// Called after all children of BB have been visited.
|
|
template<typename NodeType>
|
|
void finishPostorder(NodeType *BB) {}
|
|
};
|
|
|
|
/// Specialization of po_iterator_storage that references an external set.
|
|
template<class SetType>
|
|
class po_iterator_storage<SetType, true> {
|
|
SetType &Visited;
|
|
public:
|
|
po_iterator_storage(SetType &VSet) : Visited(VSet) {}
|
|
po_iterator_storage(const po_iterator_storage &S) : Visited(S.Visited) {}
|
|
|
|
// Return true if edge destination should be visited, called with From = 0 for
|
|
// the root node.
|
|
// Graph edges can be pruned by specializing this function.
|
|
template <class NodeType> bool insertEdge(NodeType *From, NodeType *To) {
|
|
return Visited.insert(To).second;
|
|
}
|
|
|
|
// Called after all children of BB have been visited.
|
|
template<class NodeType>
|
|
void finishPostorder(NodeType *BB) {}
|
|
};
|
|
|
|
template<class GraphT,
|
|
class SetType = llvm::SmallPtrSet<typename GraphTraits<GraphT>::NodeType*, 8>,
|
|
bool ExtStorage = false,
|
|
class GT = GraphTraits<GraphT> >
|
|
class po_iterator : public std::iterator<std::forward_iterator_tag,
|
|
typename GT::NodeType, ptrdiff_t>,
|
|
public po_iterator_storage<SetType, ExtStorage> {
|
|
typedef std::iterator<std::forward_iterator_tag,
|
|
typename GT::NodeType, ptrdiff_t> super;
|
|
typedef typename GT::NodeType NodeType;
|
|
typedef typename GT::ChildIteratorType ChildItTy;
|
|
|
|
// VisitStack - Used to maintain the ordering. Top = current block
|
|
// First element is basic block pointer, second is the 'next child' to visit
|
|
std::vector<std::pair<NodeType *, ChildItTy> > VisitStack;
|
|
|
|
void traverseChild() {
|
|
while (VisitStack.back().second != GT::child_end(VisitStack.back().first)) {
|
|
NodeType *BB = *VisitStack.back().second++;
|
|
if (this->insertEdge(VisitStack.back().first, BB)) {
|
|
// If the block is not visited...
|
|
VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
|
|
}
|
|
}
|
|
}
|
|
|
|
po_iterator(NodeType *BB) {
|
|
this->insertEdge((NodeType*)nullptr, BB);
|
|
VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
|
|
traverseChild();
|
|
}
|
|
po_iterator() {} // End is when stack is empty.
|
|
|
|
po_iterator(NodeType *BB, SetType &S)
|
|
: po_iterator_storage<SetType, ExtStorage>(S) {
|
|
if (this->insertEdge((NodeType*)nullptr, BB)) {
|
|
VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
|
|
traverseChild();
|
|
}
|
|
}
|
|
|
|
po_iterator(SetType &S)
|
|
: po_iterator_storage<SetType, ExtStorage>(S) {
|
|
} // End is when stack is empty.
|
|
public:
|
|
typedef typename super::pointer pointer;
|
|
|
|
// Provide static "constructors"...
|
|
static po_iterator begin(GraphT G) {
|
|
return po_iterator(GT::getEntryNode(G));
|
|
}
|
|
static po_iterator end(GraphT G) { return po_iterator(); }
|
|
|
|
static po_iterator begin(GraphT G, SetType &S) {
|
|
return po_iterator(GT::getEntryNode(G), S);
|
|
}
|
|
static po_iterator end(GraphT G, SetType &S) { return po_iterator(S); }
|
|
|
|
bool operator==(const po_iterator &x) const {
|
|
return VisitStack == x.VisitStack;
|
|
}
|
|
bool operator!=(const po_iterator &x) const { return !(*this == x); }
|
|
|
|
pointer operator*() const { return VisitStack.back().first; }
|
|
|
|
// This is a nonstandard operator-> that dereferences the pointer an extra
|
|
// time... so that you can actually call methods ON the BasicBlock, because
|
|
// the contained type is a pointer. This allows BBIt->getTerminator() f.e.
|
|
//
|
|
NodeType *operator->() const { return **this; }
|
|
|
|
po_iterator &operator++() { // Preincrement
|
|
this->finishPostorder(VisitStack.back().first);
|
|
VisitStack.pop_back();
|
|
if (!VisitStack.empty())
|
|
traverseChild();
|
|
return *this;
|
|
}
|
|
|
|
po_iterator operator++(int) { // Postincrement
|
|
po_iterator tmp = *this;
|
|
++*this;
|
|
return tmp;
|
|
}
|
|
};
|
|
|
|
// Provide global constructors that automatically figure out correct types...
|
|
//
|
|
template <class T>
|
|
po_iterator<T> po_begin(const T &G) { return po_iterator<T>::begin(G); }
|
|
template <class T>
|
|
po_iterator<T> po_end (const T &G) { return po_iterator<T>::end(G); }
|
|
|
|
template <class T> iterator_range<po_iterator<T>> post_order(const T &G) {
|
|
return make_range(po_begin(G), po_end(G));
|
|
}
|
|
|
|
// Provide global definitions of external postorder iterators...
|
|
template<class T, class SetType=std::set<typename GraphTraits<T>::NodeType*> >
|
|
struct po_ext_iterator : public po_iterator<T, SetType, true> {
|
|
po_ext_iterator(const po_iterator<T, SetType, true> &V) :
|
|
po_iterator<T, SetType, true>(V) {}
|
|
};
|
|
|
|
template<class T, class SetType>
|
|
po_ext_iterator<T, SetType> po_ext_begin(T G, SetType &S) {
|
|
return po_ext_iterator<T, SetType>::begin(G, S);
|
|
}
|
|
|
|
template<class T, class SetType>
|
|
po_ext_iterator<T, SetType> po_ext_end(T G, SetType &S) {
|
|
return po_ext_iterator<T, SetType>::end(G, S);
|
|
}
|
|
|
|
template <class T, class SetType>
|
|
iterator_range<po_ext_iterator<T, SetType>> post_order_ext(const T &G, SetType &S) {
|
|
return make_range(po_ext_begin(G, S), po_ext_end(G, S));
|
|
}
|
|
|
|
// Provide global definitions of inverse post order iterators...
|
|
template <class T,
|
|
class SetType = std::set<typename GraphTraits<T>::NodeType*>,
|
|
bool External = false>
|
|
struct ipo_iterator : public po_iterator<Inverse<T>, SetType, External > {
|
|
ipo_iterator(const po_iterator<Inverse<T>, SetType, External> &V) :
|
|
po_iterator<Inverse<T>, SetType, External> (V) {}
|
|
};
|
|
|
|
template <class T>
|
|
ipo_iterator<T> ipo_begin(const T &G, bool Reverse = false) {
|
|
return ipo_iterator<T>::begin(G, Reverse);
|
|
}
|
|
|
|
template <class T>
|
|
ipo_iterator<T> ipo_end(const T &G){
|
|
return ipo_iterator<T>::end(G);
|
|
}
|
|
|
|
template <class T>
|
|
iterator_range<ipo_iterator<T>> inverse_post_order(const T &G, bool Reverse = false) {
|
|
return make_range(ipo_begin(G, Reverse), ipo_end(G));
|
|
}
|
|
|
|
// Provide global definitions of external inverse postorder iterators...
|
|
template <class T,
|
|
class SetType = std::set<typename GraphTraits<T>::NodeType*> >
|
|
struct ipo_ext_iterator : public ipo_iterator<T, SetType, true> {
|
|
ipo_ext_iterator(const ipo_iterator<T, SetType, true> &V) :
|
|
ipo_iterator<T, SetType, true>(V) {}
|
|
ipo_ext_iterator(const po_iterator<Inverse<T>, SetType, true> &V) :
|
|
ipo_iterator<T, SetType, true>(V) {}
|
|
};
|
|
|
|
template <class T, class SetType>
|
|
ipo_ext_iterator<T, SetType> ipo_ext_begin(const T &G, SetType &S) {
|
|
return ipo_ext_iterator<T, SetType>::begin(G, S);
|
|
}
|
|
|
|
template <class T, class SetType>
|
|
ipo_ext_iterator<T, SetType> ipo_ext_end(const T &G, SetType &S) {
|
|
return ipo_ext_iterator<T, SetType>::end(G, S);
|
|
}
|
|
|
|
template <class T, class SetType>
|
|
iterator_range<ipo_ext_iterator<T, SetType>>
|
|
inverse_post_order_ext(const T &G, SetType &S) {
|
|
return make_range(ipo_ext_begin(G, S), ipo_ext_end(G, S));
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Reverse Post Order CFG iterator code
|
|
//===--------------------------------------------------------------------===//
|
|
//
|
|
// This is used to visit basic blocks in a method in reverse post order. This
|
|
// class is awkward to use because I don't know a good incremental algorithm to
|
|
// computer RPO from a graph. Because of this, the construction of the
|
|
// ReversePostOrderTraversal object is expensive (it must walk the entire graph
|
|
// with a postorder iterator to build the data structures). The moral of this
|
|
// story is: Don't create more ReversePostOrderTraversal classes than necessary.
|
|
//
|
|
// This class should be used like this:
|
|
// {
|
|
// ReversePostOrderTraversal<Function*> RPOT(FuncPtr); // Expensive to create
|
|
// for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
|
|
// ...
|
|
// }
|
|
// for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
|
|
// ...
|
|
// }
|
|
// }
|
|
//
|
|
|
|
template<class GraphT, class GT = GraphTraits<GraphT> >
|
|
class ReversePostOrderTraversal {
|
|
typedef typename GT::NodeType NodeType;
|
|
std::vector<NodeType*> Blocks; // Block list in normal PO order
|
|
void Initialize(NodeType *BB) {
|
|
std::copy(po_begin(BB), po_end(BB), std::back_inserter(Blocks));
|
|
}
|
|
public:
|
|
typedef typename std::vector<NodeType*>::reverse_iterator rpo_iterator;
|
|
|
|
ReversePostOrderTraversal(GraphT G) { Initialize(GT::getEntryNode(G)); }
|
|
|
|
// Because we want a reverse post order, use reverse iterators from the vector
|
|
rpo_iterator begin() { return Blocks.rbegin(); }
|
|
rpo_iterator end() { return Blocks.rend(); }
|
|
};
|
|
|
|
} // End llvm namespace
|
|
|
|
#endif
|