DirectXTK/Src/SimpleMath.cpp

248 строки
9.4 KiB
C++
Исходник Обычный вид История

2016-08-22 21:17:20 +03:00
//-------------------------------------------------------------------------------------
// SimpleMath.cpp -- Simplified C++ Math wrapper for DirectXMath
//
2021-02-27 10:00:12 +03:00
// Copyright (c) Microsoft Corporation.
2018-02-23 22:49:48 +03:00
// Licensed under the MIT License.
2016-08-22 21:17:20 +03:00
//
// http://go.microsoft.com/fwlink/?LinkId=248929
2018-02-23 22:49:48 +03:00
// http://go.microsoft.com/fwlink/?LinkID=615561
2016-08-22 21:17:20 +03:00
//-------------------------------------------------------------------------------------
#include "pch.h"
#include "SimpleMath.h"
/****************************************************************************
*
* Constants
*
****************************************************************************/
namespace DirectX
{
namespace SimpleMath
{
const Vector2 Vector2::Zero = { 0.f, 0.f };
const Vector2 Vector2::One = { 1.f, 1.f };
const Vector2 Vector2::UnitX = { 1.f, 0.f };
const Vector2 Vector2::UnitY = { 0.f, 1.f };
const Vector3 Vector3::Zero = { 0.f, 0.f, 0.f };
const Vector3 Vector3::One = { 1.f, 1.f, 1.f };
const Vector3 Vector3::UnitX = { 1.f, 0.f, 0.f };
const Vector3 Vector3::UnitY = { 0.f, 1.f, 0.f };
const Vector3 Vector3::UnitZ = { 0.f, 0.f, 1.f };
const Vector3 Vector3::Up = { 0.f, 1.f, 0.f };
const Vector3 Vector3::Down = { 0.f, -1.f, 0.f };
const Vector3 Vector3::Right = { 1.f, 0.f, 0.f };
const Vector3 Vector3::Left = { -1.f, 0.f, 0.f };
const Vector3 Vector3::Forward = { 0.f, 0.f, -1.f };
const Vector3 Vector3::Backward = { 0.f, 0.f, 1.f };
const Vector4 Vector4::Zero = { 0.f, 0.f, 0.f, 0.f };
const Vector4 Vector4::One = { 1.f, 1.f, 1.f, 1.f };
const Vector4 Vector4::UnitX = { 1.f, 0.f, 0.f, 0.f };
const Vector4 Vector4::UnitY = { 0.f, 1.f, 0.f, 0.f };
const Vector4 Vector4::UnitZ = { 0.f, 0.f, 1.f, 0.f };
const Vector4 Vector4::UnitW = { 0.f, 0.f, 0.f, 1.f };
const Matrix Matrix::Identity = { 1.f, 0.f, 0.f, 0.f,
0.f, 1.f, 0.f, 0.f,
0.f, 0.f, 1.f, 0.f,
0.f, 0.f, 0.f, 1.f };
const Quaternion Quaternion::Identity = { 0.f, 0.f, 0.f, 1.f };
}
}
using namespace DirectX;
using namespace DirectX::SimpleMath;
2016-08-22 21:17:20 +03:00
/****************************************************************************
*
* Quaternion
*
****************************************************************************/
void Quaternion::RotateTowards(const Quaternion& target, float maxAngle, Quaternion& result) const noexcept
{
2022-02-21 13:02:17 +03:00
const XMVECTOR T = XMLoadFloat4(this);
// We can use the conjugate here instead of inverse assuming q1 & q2 are normalized.
2022-02-21 13:02:17 +03:00
const XMVECTOR R = XMQuaternionMultiply(XMQuaternionConjugate(T), target);
2022-02-21 13:02:17 +03:00
const float rs = XMVectorGetW(R);
const XMVECTOR L = XMVector3Length(R);
const float angle = 2.f * atan2f(XMVectorGetX(L), rs);
if (angle > maxAngle)
{
2022-02-21 13:02:17 +03:00
const XMVECTOR delta = XMQuaternionRotationAxis(R, maxAngle);
const XMVECTOR Q = XMQuaternionMultiply(delta, T);
XMStoreFloat4(&result, Q);
}
else
{
// Don't overshoot.
result = target;
}
}
void Quaternion::FromToRotation(const Vector3& fromDir, const Vector3& toDir, Quaternion& result) noexcept
{
// Melax, "The Shortest Arc Quaternion", Game Programming Gems, Charles River Media (2000).
2022-02-21 13:02:17 +03:00
const XMVECTOR F = XMVector3Normalize(fromDir);
const XMVECTOR T = XMVector3Normalize(toDir);
2022-02-21 13:02:17 +03:00
const float dot = XMVectorGetX(XMVector3Dot(F, T));
if (dot >= 1.f)
{
result = Identity;
}
else if (dot <= -1.f)
{
XMVECTOR axis = XMVector3Cross(F, Vector3::Right);
if (XMVector3NearEqual(XMVector3LengthSq(axis), g_XMZero, g_XMEpsilon))
{
axis = XMVector3Cross(F, Vector3::Up);
}
2022-02-21 13:02:17 +03:00
const XMVECTOR Q = XMQuaternionRotationAxis(axis, XM_PI);
XMStoreFloat4(&result, Q);
}
else
{
2022-02-21 13:02:17 +03:00
const XMVECTOR C = XMVector3Cross(F, T);
XMStoreFloat4(&result, C);
2022-02-21 13:02:17 +03:00
const float s = sqrtf((1.f + dot) * 2.f);
result.x /= s;
result.y /= s;
result.z /= s;
result.w = s * 0.5f;
}
}
void Quaternion::LookRotation(const Vector3& forward, const Vector3& up, Quaternion& result) noexcept
{
Quaternion q1;
FromToRotation(Vector3::Forward, forward, q1);
2022-02-21 13:02:17 +03:00
const XMVECTOR C = XMVector3Cross(forward, up);
if (XMVector3NearEqual(XMVector3LengthSq(C), g_XMZero, g_XMEpsilon))
{
// forward and up are co-linear
result = q1;
return;
}
2022-02-21 13:02:17 +03:00
const XMVECTOR U = XMQuaternionMultiply(q1, Vector3::Up);
Quaternion q2;
FromToRotation(U, up, q2);
XMStoreFloat4(&result, XMQuaternionMultiply(q2, q1));
}
/****************************************************************************
2016-08-22 21:17:20 +03:00
*
* Viewport
*
****************************************************************************/
#if defined(__d3d11_h__) || defined(__d3d11_x_h__)
static_assert(sizeof(DirectX::SimpleMath::Viewport) == sizeof(D3D11_VIEWPORT), "Size mismatch");
static_assert(offsetof(DirectX::SimpleMath::Viewport, x) == offsetof(D3D11_VIEWPORT, TopLeftX), "Layout mismatch");
static_assert(offsetof(DirectX::SimpleMath::Viewport, y) == offsetof(D3D11_VIEWPORT, TopLeftY), "Layout mismatch");
static_assert(offsetof(DirectX::SimpleMath::Viewport, width) == offsetof(D3D11_VIEWPORT, Width), "Layout mismatch");
static_assert(offsetof(DirectX::SimpleMath::Viewport, height) == offsetof(D3D11_VIEWPORT, Height), "Layout mismatch");
static_assert(offsetof(DirectX::SimpleMath::Viewport, minDepth) == offsetof(D3D11_VIEWPORT, MinDepth), "Layout mismatch");
static_assert(offsetof(DirectX::SimpleMath::Viewport, maxDepth) == offsetof(D3D11_VIEWPORT, MaxDepth), "Layout mismatch");
2016-08-22 21:17:20 +03:00
#endif
2019-12-13 03:23:30 +03:00
#if defined(__d3d12_h__) || defined(__d3d12_x_h__) || defined(__XBOX_D3D12_X__)
2016-08-22 21:17:20 +03:00
static_assert(sizeof(DirectX::SimpleMath::Viewport) == sizeof(D3D12_VIEWPORT), "Size mismatch");
static_assert(offsetof(DirectX::SimpleMath::Viewport, x) == offsetof(D3D12_VIEWPORT, TopLeftX), "Layout mismatch");
static_assert(offsetof(DirectX::SimpleMath::Viewport, y) == offsetof(D3D12_VIEWPORT, TopLeftY), "Layout mismatch");
static_assert(offsetof(DirectX::SimpleMath::Viewport, width) == offsetof(D3D12_VIEWPORT, Width), "Layout mismatch");
static_assert(offsetof(DirectX::SimpleMath::Viewport, height) == offsetof(D3D12_VIEWPORT, Height), "Layout mismatch");
static_assert(offsetof(DirectX::SimpleMath::Viewport, minDepth) == offsetof(D3D12_VIEWPORT, MinDepth), "Layout mismatch");
static_assert(offsetof(DirectX::SimpleMath::Viewport, maxDepth) == offsetof(D3D12_VIEWPORT, MaxDepth), "Layout mismatch");
2016-08-22 21:17:20 +03:00
#endif
#if defined(__dxgi1_2_h__) || defined(__d3d11_x_h__) || defined(__d3d12_x_h__) || defined(__XBOX_D3D12_X__)
RECT Viewport::ComputeDisplayArea(DXGI_SCALING scaling, UINT backBufferWidth, UINT backBufferHeight, int outputWidth, int outputHeight) noexcept
2016-08-22 21:17:20 +03:00
{
RECT rct = {};
2016-08-22 21:17:20 +03:00
switch (int(scaling))
{
case DXGI_SCALING_STRETCH:
// Output fills the entire window area
rct.top = 0;
rct.left = 0;
rct.right = outputWidth;
rct.bottom = outputHeight;
break;
case 2 /*DXGI_SCALING_ASPECT_RATIO_STRETCH*/:
// Output fills the window area but respects the original aspect ratio, using pillar boxing or letter boxing as required
// Note: This scaling option is not supported for legacy Win32 windows swap chains
2016-08-22 21:17:20 +03:00
{
assert(backBufferHeight > 0);
2022-02-21 13:02:17 +03:00
const float aspectRatio = float(backBufferWidth) / float(backBufferHeight);
2016-08-22 21:17:20 +03:00
// Horizontal fill
float scaledWidth = float(outputWidth);
float scaledHeight = float(outputWidth) / aspectRatio;
if (scaledHeight >= float(outputHeight))
2016-08-22 21:17:20 +03:00
{
// Do vertical fill
scaledWidth = float(outputHeight) * aspectRatio;
scaledHeight = float(outputHeight);
}
2022-02-21 13:02:17 +03:00
const float offsetX = (float(outputWidth) - scaledWidth) * 0.5f;
const float offsetY = (float(outputHeight) - scaledHeight) * 0.5f;
2016-08-22 21:17:20 +03:00
2018-03-16 21:33:06 +03:00
rct.left = static_cast<LONG>(offsetX);
rct.top = static_cast<LONG>(offsetY);
rct.right = static_cast<LONG>(offsetX + scaledWidth);
rct.bottom = static_cast<LONG>(offsetY + scaledHeight);
2016-08-22 21:17:20 +03:00
// Clip to display window
2018-03-16 21:33:06 +03:00
rct.left = std::max<LONG>(0, rct.left);
rct.top = std::max<LONG>(0, rct.top);
rct.right = std::min<LONG>(outputWidth, rct.right);
rct.bottom = std::min<LONG>(outputHeight, rct.bottom);
2016-08-22 21:17:20 +03:00
}
break;
case DXGI_SCALING_NONE:
default:
// Output is displayed in the upper left corner of the window area
rct.top = 0;
rct.left = 0;
rct.right = std::min<LONG>(static_cast<LONG>(backBufferWidth), outputWidth);
rct.bottom = std::min<LONG>(static_cast<LONG>(backBufferHeight), outputHeight);
break;
2016-08-22 21:17:20 +03:00
}
return rct;
}
#endif
2016-08-22 21:17:20 +03:00
RECT Viewport::ComputeTitleSafeArea(UINT backBufferWidth, UINT backBufferHeight) noexcept
2016-08-22 21:17:20 +03:00
{
2022-02-21 13:02:17 +03:00
const float safew = (float(backBufferWidth) + 19.f) / 20.f;
const float safeh = (float(backBufferHeight) + 19.f) / 20.f;
2016-08-22 21:17:20 +03:00
RECT rct;
rct.left = static_cast<LONG>(safew);
rct.top = static_cast<LONG>(safeh);
rct.right = static_cast<LONG>(float(backBufferWidth) - safew + 0.5f);
rct.bottom = static_cast<LONG>(float(backBufferHeight) - safeh + 0.5f);
return rct;
}