278 строки
9.0 KiB
Python
278 строки
9.0 KiB
Python
# coding=utf-8
|
|
# Copyright 2018 The Google AI Language Team Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
|
|
import collections
|
|
import json
|
|
import random
|
|
import re
|
|
|
|
import modeling
|
|
import six
|
|
import tensorflow as tf
|
|
|
|
|
|
class BertModelTest(tf.test.TestCase):
|
|
|
|
class BertModelTester(object):
|
|
|
|
def __init__(self,
|
|
parent,
|
|
batch_size=13,
|
|
seq_length=7,
|
|
is_training=True,
|
|
use_input_mask=True,
|
|
use_token_type_ids=True,
|
|
vocab_size=99,
|
|
hidden_size=32,
|
|
num_hidden_layers=5,
|
|
num_attention_heads=4,
|
|
intermediate_size=37,
|
|
hidden_act="gelu",
|
|
hidden_dropout_prob=0.1,
|
|
attention_probs_dropout_prob=0.1,
|
|
max_position_embeddings=512,
|
|
type_vocab_size=16,
|
|
initializer_range=0.02,
|
|
scope=None):
|
|
self.parent = parent
|
|
self.batch_size = batch_size
|
|
self.seq_length = seq_length
|
|
self.is_training = is_training
|
|
self.use_input_mask = use_input_mask
|
|
self.use_token_type_ids = use_token_type_ids
|
|
self.vocab_size = vocab_size
|
|
self.hidden_size = hidden_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.intermediate_size = intermediate_size
|
|
self.hidden_act = hidden_act
|
|
self.hidden_dropout_prob = hidden_dropout_prob
|
|
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.type_vocab_size = type_vocab_size
|
|
self.initializer_range = initializer_range
|
|
self.scope = scope
|
|
|
|
def create_model(self):
|
|
input_ids = BertModelTest.ids_tensor([self.batch_size, self.seq_length],
|
|
self.vocab_size)
|
|
|
|
input_mask = None
|
|
if self.use_input_mask:
|
|
input_mask = BertModelTest.ids_tensor(
|
|
[self.batch_size, self.seq_length], vocab_size=2)
|
|
|
|
token_type_ids = None
|
|
if self.use_token_type_ids:
|
|
token_type_ids = BertModelTest.ids_tensor(
|
|
[self.batch_size, self.seq_length], self.type_vocab_size)
|
|
|
|
config = modeling.BertConfig(
|
|
vocab_size=self.vocab_size,
|
|
hidden_size=self.hidden_size,
|
|
num_hidden_layers=self.num_hidden_layers,
|
|
num_attention_heads=self.num_attention_heads,
|
|
intermediate_size=self.intermediate_size,
|
|
hidden_act=self.hidden_act,
|
|
hidden_dropout_prob=self.hidden_dropout_prob,
|
|
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
|
|
max_position_embeddings=self.max_position_embeddings,
|
|
type_vocab_size=self.type_vocab_size,
|
|
initializer_range=self.initializer_range)
|
|
|
|
model = modeling.BertModel(
|
|
config=config,
|
|
is_training=self.is_training,
|
|
input_ids=input_ids,
|
|
input_mask=input_mask,
|
|
token_type_ids=token_type_ids,
|
|
scope=self.scope)
|
|
|
|
outputs = {
|
|
"embedding_output": model.get_embedding_output(),
|
|
"sequence_output": model.get_sequence_output(),
|
|
"pooled_output": model.get_pooled_output(),
|
|
"all_encoder_layers": model.get_all_encoder_layers(),
|
|
}
|
|
return outputs
|
|
|
|
def check_output(self, result):
|
|
self.parent.assertAllEqual(
|
|
result["embedding_output"].shape,
|
|
[self.batch_size, self.seq_length, self.hidden_size])
|
|
|
|
self.parent.assertAllEqual(
|
|
result["sequence_output"].shape,
|
|
[self.batch_size, self.seq_length, self.hidden_size])
|
|
|
|
self.parent.assertAllEqual(result["pooled_output"].shape,
|
|
[self.batch_size, self.hidden_size])
|
|
|
|
def test_default(self):
|
|
self.run_tester(BertModelTest.BertModelTester(self))
|
|
|
|
def test_config_to_json_string(self):
|
|
config = modeling.BertConfig(vocab_size=99, hidden_size=37)
|
|
obj = json.loads(config.to_json_string())
|
|
self.assertEqual(obj["vocab_size"], 99)
|
|
self.assertEqual(obj["hidden_size"], 37)
|
|
|
|
def run_tester(self, tester):
|
|
with self.test_session() as sess:
|
|
ops = tester.create_model()
|
|
init_op = tf.group(tf.global_variables_initializer(),
|
|
tf.local_variables_initializer())
|
|
sess.run(init_op)
|
|
output_result = sess.run(ops)
|
|
tester.check_output(output_result)
|
|
|
|
self.assert_all_tensors_reachable(sess, [init_op, ops])
|
|
|
|
@classmethod
|
|
def ids_tensor(cls, shape, vocab_size, rng=None, name=None):
|
|
"""Creates a random int32 tensor of the shape within the vocab size."""
|
|
if rng is None:
|
|
rng = random.Random()
|
|
|
|
total_dims = 1
|
|
for dim in shape:
|
|
total_dims *= dim
|
|
|
|
values = []
|
|
for _ in range(total_dims):
|
|
values.append(rng.randint(0, vocab_size - 1))
|
|
|
|
return tf.constant(value=values, dtype=tf.int32, shape=shape, name=name)
|
|
|
|
def assert_all_tensors_reachable(self, sess, outputs):
|
|
"""Checks that all the tensors in the graph are reachable from outputs."""
|
|
graph = sess.graph
|
|
|
|
ignore_strings = [
|
|
"^.*/assert_less_equal/.*$",
|
|
"^.*/dilation_rate$",
|
|
"^.*/Tensordot/concat$",
|
|
"^.*/Tensordot/concat/axis$",
|
|
"^testing/.*$",
|
|
]
|
|
|
|
ignore_regexes = [re.compile(x) for x in ignore_strings]
|
|
|
|
unreachable = self.get_unreachable_ops(graph, outputs)
|
|
filtered_unreachable = []
|
|
for x in unreachable:
|
|
do_ignore = False
|
|
for r in ignore_regexes:
|
|
m = r.match(x.name)
|
|
if m is not None:
|
|
do_ignore = True
|
|
if do_ignore:
|
|
continue
|
|
filtered_unreachable.append(x)
|
|
unreachable = filtered_unreachable
|
|
|
|
self.assertEqual(
|
|
len(unreachable), 0, "The following ops are unreachable: %s" %
|
|
(" ".join([x.name for x in unreachable])))
|
|
|
|
@classmethod
|
|
def get_unreachable_ops(cls, graph, outputs):
|
|
"""Finds all of the tensors in graph that are unreachable from outputs."""
|
|
outputs = cls.flatten_recursive(outputs)
|
|
output_to_op = collections.defaultdict(list)
|
|
op_to_all = collections.defaultdict(list)
|
|
assign_out_to_in = collections.defaultdict(list)
|
|
|
|
for op in graph.get_operations():
|
|
for x in op.inputs:
|
|
op_to_all[op.name].append(x.name)
|
|
for y in op.outputs:
|
|
output_to_op[y.name].append(op.name)
|
|
op_to_all[op.name].append(y.name)
|
|
if str(op.type) == "Assign":
|
|
for y in op.outputs:
|
|
for x in op.inputs:
|
|
assign_out_to_in[y.name].append(x.name)
|
|
|
|
assign_groups = collections.defaultdict(list)
|
|
for out_name in assign_out_to_in.keys():
|
|
name_group = assign_out_to_in[out_name]
|
|
for n1 in name_group:
|
|
assign_groups[n1].append(out_name)
|
|
for n2 in name_group:
|
|
if n1 != n2:
|
|
assign_groups[n1].append(n2)
|
|
|
|
seen_tensors = {}
|
|
stack = [x.name for x in outputs]
|
|
while stack:
|
|
name = stack.pop()
|
|
if name in seen_tensors:
|
|
continue
|
|
seen_tensors[name] = True
|
|
|
|
if name in output_to_op:
|
|
for op_name in output_to_op[name]:
|
|
if op_name in op_to_all:
|
|
for input_name in op_to_all[op_name]:
|
|
if input_name not in stack:
|
|
stack.append(input_name)
|
|
|
|
expanded_names = []
|
|
if name in assign_groups:
|
|
for assign_name in assign_groups[name]:
|
|
expanded_names.append(assign_name)
|
|
|
|
for expanded_name in expanded_names:
|
|
if expanded_name not in stack:
|
|
stack.append(expanded_name)
|
|
|
|
unreachable_ops = []
|
|
for op in graph.get_operations():
|
|
is_unreachable = False
|
|
all_names = [x.name for x in op.inputs] + [x.name for x in op.outputs]
|
|
for name in all_names:
|
|
if name not in seen_tensors:
|
|
is_unreachable = True
|
|
if is_unreachable:
|
|
unreachable_ops.append(op)
|
|
return unreachable_ops
|
|
|
|
@classmethod
|
|
def flatten_recursive(cls, item):
|
|
"""Flattens (potentially nested) a tuple/dictionary/list to a list."""
|
|
output = []
|
|
if isinstance(item, list):
|
|
output.extend(item)
|
|
elif isinstance(item, tuple):
|
|
output.extend(list(item))
|
|
elif isinstance(item, dict):
|
|
for (_, v) in six.iteritems(item):
|
|
output.append(v)
|
|
else:
|
|
return [item]
|
|
|
|
flat_output = []
|
|
for x in output:
|
|
flat_output.extend(cls.flatten_recursive(x))
|
|
return flat_output
|
|
|
|
|
|
if __name__ == "__main__":
|
|
tf.test.main()
|