merged master and fixed commits

This commit is contained in:
miguelgfierro 2018-09-06 16:10:23 +01:00
Родитель d44094f750 72f06cb5a3
Коммит 24b52baee4
8 изменённых файлов: 445 добавлений и 39 удалений

6
.gitignore поставляемый
Просмотреть файл

@ -99,3 +99,9 @@ ENV/
# mypy # mypy
.mypy_cache/ .mypy_cache/
# Pycharm
.idea/
#################
job.json

Просмотреть файл

@ -0,0 +1,3 @@
FROM pytorch/pytorch:0.4_cuda9_cudnn7
RUN pip install --no-cache-dir h5py scipy jupyter ipykernel numpy toolz pandas scikit-learn pillow

11
Pytorch/Makefile Normal file
Просмотреть файл

@ -0,0 +1,11 @@
DATA_DIR:=/mnt/imagenet
PWD:=$(shell pwd)
FAKE:='False'
FAKE_DATA_LENGTH:=1281167
name_prefix:=iliauk
tag:=latest
image-open:=$(name_prefix)/pytorch_gloo:$(tag)
open-path:=$(PWD)/Docker
script:=\$$AZ_BATCHAI_INPUT_SCRIPTS/imagenet_pytorch_gloo.py
include ../include/build.mk

Просмотреть файл

@ -0,0 +1,283 @@
import argparse
import logging
import os
from os import path
import numpy as np
import pandas as pd
import multiprocessing
from toolz import pipe
from timer import Timer
from PIL import Image
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torchvision.transforms as transforms
from torch.utils.data import DataLoader, Dataset
import torchvision.models as models
import torch.distributed as dist
import torch.utils.data.distributed
print("PyTorch: ", torch.__version__)
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Distributed training settings
parser = argparse.ArgumentParser(description='PyTorch ResNet Example')
parser.add_argument('--world-size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str, help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='gloo', type=str, help='distributed backend')
parser.add_argument('--rank', default=-1, type=int, help='rank of the worker')
_WIDTH = 224
_HEIGHT = 224
_LR = 0.001
_EPOCHS = 1
_NUM_GPU = int(torch.cuda.device_count())
_BATCHSIZE = 64*_NUM_GPU
_RGB_MEAN = [0.485, 0.456, 0.406]
_RGB_SD = [0.229, 0.224, 0.225]
args = parser.parse_args()
def _str_to_bool(in_str):
if 't' in in_str.lower():
return True
else:
return False
_FAKE = _str_to_bool(os.getenv('FAKE', 'True'))
_DATA_LENGTH = int(os.getenv('FAKE_DATA_LENGTH', 1281167)) # How much fake data to simulate, default to size of imagenet dataset
#_DISTRIBUTED = _str_to_bool(os.getenv('DISTRIBUTED', 'False'))
_DISTRIBUTED = True
_CPU_COUNT = 8
logger.info("Distributed mode: ", _DISTRIBUTED)
logger.info("CPU Count: ", _CPU_COUNT)
def _append_path_to(data_path, data_series):
return data_series.apply(lambda x: path.join(data_path, x))
def _load_training(data_dir):
train_df = pd.read_csv(path.join(data_dir, 'train.csv'))
return train_df.assign(filenames=_append_path_to(path.join(data_dir, 'train'),
train_df.filenames))
def _load_validation(data_dir):
train_df = pd.read_csv(path.join(data_dir, 'validation.csv'))
return train_df.assign(filenames=_append_path_to(path.join(data_dir, 'validation'),
train_df.filenames))
def _create_data_fn(train_path, test_path):
logger.info('Reading training data info')
train_df = _load_training(train_path)
logger.info('Reading validation data info')
validation_df = _load_validation(test_path)
# File-path
train_X = train_df['filenames'].values
validation_X = validation_df['filenames'].values
# One-hot encoded labels for torch
train_labels = train_df[['num_id']].values.ravel()
validation_labels = validation_df[['num_id']].values.ravel()
# Index starts from 0
train_labels -= 1
validation_labels -= 1
return train_X, train_labels, validation_X, validation_labels
class ImageNet(Dataset):
def __init__(self, img_locs, img_labels, transform=None):
self.img_locs, self.labels = img_locs, img_labels
self.transform = transform
logger.info("Loaded {} labels and {} images".format(len(self.labels), len(self.img_locs)))
def __getitem__(self, idx):
im_file = self.img_locs[idx]
label = self.labels[idx]
with open(im_file, 'rb') as f:
im_rgb = Image.open(f)
# Make sure 3-channel (RGB)
im_rgb = im_rgb.convert('RGB')
if self.transform is not None:
im_rgb = self.transform(im_rgb)
return im_rgb, label
def __len__(self):
return len(self.img_locs)
class FakeData(Dataset):
def __init__(self,
batch_size=32,
num_batches=20,
dim=(224, 224),
n_channels=3,
n_classes=10,
length=_DATA_LENGTH,
seed=42,
data_transform=None):
self.dim = dim
self.n_channels = n_channels
self.n_classes = n_classes
self.num_batches = num_batches
self._data = _create_data(batch_size, self.num_batches, self.dim, self.n_channels)
self._labels = _create_labels(batch_size, self.num_batches, self.n_classes)
self.translation_index = np.random.choice(len(self._labels), length)
self._length=length
self._data_transform = data_transform
#logger = _get_logger()
logger.info("Creating fake data {} labels and {} images".format(n_classes, len(self._data)))
def __getitem__(self, idx):
#logger = _get_logger()
logger.debug('Retrieving samples')
logger.debug(str(idx))
tr_index_array = self.translation_index[idx]
if self._data_transform is not None:
data=self._data_transform(self._data[tr_index_array])
else:
data=self._data[tr_index_array]
return data, self._labels[tr_index_array]
def __len__(self):
return self._length
def _log_summary(data_length, duration):
#logger = _get_logger()
images_per_second = data_length / duration
logger.info('Data length: {}'.format(data_length))
logger.info('Total duration: {:.3f}'.format(duration))
logger.info('Total images/sec: {:.3f}'.format(images_per_second))
logger.info('Batch size: (Per GPU {}: Total {})'.format(int(_BATCHSIZE/_NUM_GPU), _BATCHSIZE))
logger.info('Distributed: {}'.format('True' if _DISTRIBUTED else 'False'))
logger.info('Num GPUs: {:.3f}'.format(_NUM_GPU)) # May need to pass in argument to get this
logger.info('Dataset: {}'.format('Synthetic' if _FAKE else 'Imagenet'))
def _create_data(batch_size, num_batches, dim, channels, seed=42):
np.random.seed(seed)
return np.random.rand(batch_size * num_batches,
channels,
dim[0],
dim[1]).astype(np.float32)
def _create_labels(batch_size, num_batches, n_classes):
return np.random.choice(n_classes, batch_size * num_batches)
def train(train_loader, model, criterion, optimizer, epoch):
logger.info("Training ...")
model.train()
for i, (input, target) in enumerate(train_loader):
input, target = input.cuda(non_blocking=True), target.cuda(non_blocking=True)
# compute output
output = model(input)
loss = criterion(output, target)
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
def validate(val_loader, model, criterion):
logger.info("Validating ...")
model.eval()
correct = 0
total = 0
with torch.no_grad():
for i, (input, target) in enumerate(val_loader):
target = target.cuda(non_blocking=True)
# compute output
output = model(input)
_, predicted = torch.max(output.data, 1)
total += target.size(0)
correct += (predicted == target).sum().item()
logger.info('Top-1 Accuracy: %.2f %%' % (100 * correct / total))
def main():
# Autotune
cudnn.benchmark = True
# Load symbol
model = models.__dict__['resnet50'](pretrained=False)
if _DISTRIBUTED:
logger.info('Running in distributed mode')
dist.init_process_group(
backend=args.dist_backend,
init_method=args.dist_url,
world_size=args.world_size,
rank=args.rank)
model.cuda()
model = torch.nn.parallel.DistributedDataParallel(model)
else:
model = torch.nn.DataParallel(model).cuda()
# Optimisers
criterion = nn.CrossEntropyLoss().cuda()
optimizer = torch.optim.SGD(model.parameters(), lr=_LR)
# Data-sets
if _FAKE:
logger.info("Setting up fake loaders")
train_dataset = FakeData(n_classes=1000, data_transform=torch.FloatTensor)
else:
normalize = transforms.Normalize(_RGB_MEAN, _RGB_SD)
train_X, train_y, valid_X, valid_y = _create_data_fn(os.getenv('AZ_BATCHAI_INPUT_TRAIN'),
os.getenv('AZ_BATCHAI_INPUT_TEST'))
train_dataset = ImageNet(
train_X,
train_y,
transforms.Compose([
transforms.RandomResizedCrop(_WIDTH),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize]))
if _DISTRIBUTED:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
else:
train_sampler = None
# Data-loaders
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=_BATCHSIZE, shuffle=(train_sampler is None), num_workers=_CPU_COUNT, sampler=train_sampler)
#val_loader = torch.utils.data.DataLoader(
# ImageNet(
# valid_X,
# valid_y,
# transforms.Compose([
# transforms.Resize(256),
# transforms.CenterCrop(_WIDTH),
# transforms.ToTensor(),
# normalize])), batch_size=_BATCHSIZE, shuffle=False,
# num_workers=_CPU_COUNT)
# Main training-loop
for epoch in range(_EPOCHS):
if _DISTRIBUTED:
train_sampler.set_epoch(epoch)
# Train
with Timer(output=logger.info, prefix="Training") as t:
train(train_loader, model, criterion, optimizer, epoch)
_log_summary(len(train_dataset), t.elapsed)
# Validate
#with Timer(output=logger.info, prefix="Testing"):
# validate(val_loader, model, criterion)
print("Finished")
if __name__ == '__main__':
print("Pytorch")
main()

Просмотреть файл

@ -1,5 +1,5 @@
# Variables for Batch AI - change as necessary # Variables for Batch AI - change as necessary
ID:=disdl ID:=iliadl2
LOCATION:=eastus LOCATION:=eastus
GROUP_NAME:=batch${ID}rg GROUP_NAME:=batch${ID}rg
STORAGE_ACCOUNT_NAME:=batch${ID}st STORAGE_ACCOUNT_NAME:=batch${ID}st
@ -8,8 +8,8 @@ SELECTED_SUBSCRIPTION:="Team Danielle Internal"
WORKSPACE:=workspace WORKSPACE:=workspace
VM_SIZE:=Standard_NC24rs_v3 VM_SIZE:=Standard_NC24rs_v3
NUM_NODES:=8 NUM_NODES:=2
CLUSTER_NAME:=msv100 CLUSTER_NAME:=ikv100
GPU_TYPE:=V100 GPU_TYPE:=V100

Просмотреть файл

@ -8,36 +8,36 @@ logger = logging.getLogger(__name__)
# #
# Config for Intel # Config for Intel
cmd_for_intel = \ cmd_for_intel = \
"""source /opt/intel/compilers_and_libraries_2017.4.196/linux/mpi/intel64/bin/mpivars.sh; """source /opt/intel/compilers_and_libraries_2017.4.196/linux/mpi/intel64/bin/mpivars.sh;
echo $AZ_BATCH_HOST_LIST; echo $AZ_BATCH_HOST_LIST;
mpirun -n {total_processes} -ppn {processes_per_node} {hosts} mpirun -n {total_processes} -ppn {processes_per_node} {hosts}
-env I_MPI_FABRICS=dapl -env I_MPI_FABRICS=dapl
-env I_MPI_DAPL_PROVIDER=ofa-v2-ib0 -env I_MPI_DAPL_PROVIDER=ofa-v2-ib0
-env I_MPI_DYNAMIC_CONNECTION=0 -env I_MPI_DYNAMIC_CONNECTION=0
-env I_MPI_DEBUG=6 -env I_MPI_DEBUG=6
-env I_MPI_HYDRA_DEBUG=on -env I_MPI_HYDRA_DEBUG=on
-env DISTRIBUTED=True -env DISTRIBUTED=True
{fake} {fake}
{fake_length} {fake_length}
python -u {script}""".replace('\n', '') python -u {script}""".replace('\n', '')
# Config for OpenMPI # Config for OpenMPI
cmd_for_openmpi = \ cmd_for_openmpi = \
"""echo $AZ_BATCH_HOST_LIST; """echo $AZ_BATCH_HOST_LIST;
cat $AZ_BATCHAI_MPI_HOST_FILE; cat $AZ_BATCHAI_MPI_HOST_FILE;
mpirun -np {total_processes} {hosts} mpirun -np {total_processes} {hosts}
-bind-to none -map-by slot -bind-to none -map-by slot
-x NCCL_DEBUG=INFO -x LD_LIBRARY_PATH -x NCCL_DEBUG=INFO -x LD_LIBRARY_PATH
-mca btl_tcp_if_include eth0 -mca btl_tcp_if_include eth0
-x NCCL_SOCKET_IFNAME=eth0 -x NCCL_SOCKET_IFNAME=eth0
-mca btl ^openib -mca btl ^openib
-x NCCL_IB_DISABLE=1 -x NCCL_IB_DISABLE=1
-x DISTRIBUTED=True -x DISTRIBUTED=True
-x AZ_BATCHAI_INPUT_TRAIN -x AZ_BATCHAI_INPUT_TRAIN
-x AZ_BATCHAI_INPUT_TEST -x AZ_BATCHAI_INPUT_TEST
{fake} {fake}
{fake_length} {fake_length}
--allow-run-as-root --allow-run-as-root
python -u {script}""".replace('\n', '') python -u {script}""".replace('\n', '')
# Running on single node without mpi # Running on single node without mpi
@ -89,7 +89,8 @@ def _fake_length_for(mpitype, fake_length, data):
return '' return ''
def _prepare_command(mpitype, total_processes, processes_per_node, script, node_count, data=None, synthetic_length=1281167): def _prepare_command(mpitype, total_processes, processes_per_node, script, node_count, data=None,
synthetic_length=1281167):
command = cmd_choice_dict.get(mpitype, cmd_for_intel) command = cmd_choice_dict.get(mpitype, cmd_for_intel)
return command.format(total_processes=total_processes, return command.format(total_processes=total_processes,
processes_per_node=processes_per_node, processes_per_node=processes_per_node,
@ -141,6 +142,48 @@ def generate_job_dict(image_name,
} }
def generate_job_dict_gloo(image_name,
script,
node_count=2):
# Command is hard-coded for time-being
# Not sure what world-size is?? Probably node_count but check
return {
"$schema": "https://raw.githubusercontent.com/Azure/BatchAI/master/schemas/2018-05-01/job.json",
"properties": {
"pyTorchSettings": {
"pythonScriptFilePath": script,
"commandLineArgs": "--world-size 2 --dist-backend $AZ_BATCHAI_PYTORCH_BACKEND --dist-url $AZ_BATCHAI_PYTORCH_INIT_METHOD --rank $AZ_BATCHAI_TASK_INDEX",
"communicationBackend": "gloo"
},
"nodeCount": node_count,
"stdOutErrPathPrefix": "$AZ_BATCHAI_MOUNT_ROOT/extfs",
"inputDirectories": [{
"id": "SCRIPTS",
"path": "$AZ_BATCHAI_MOUNT_ROOT/extfs/scripts"
},
{
"id": "TRAIN",
"path": "$AZ_BATCHAI_MOUNT_ROOT/nfs/imagenet",
},
{
"id": "TEST",
"path": "$AZ_BATCHAI_MOUNT_ROOT/nfs/imagenet",
},
],
"outputDirectories": [{
"id": "MODEL",
"pathPrefix": "$AZ_BATCHAI_MOUNT_ROOT/extfs",
"pathSuffix": "Models"
}],
"containerSettings": {
"imageSourceRegistry": {
"image": image_name
}
}
}
}
def generate_job_dict_cntk(image_name, def generate_job_dict_cntk(image_name,
command, command,
node_count=2, node_count=2,
@ -203,15 +246,21 @@ def synthetic_data_job(image_name,
filename, image_name)) filename, image_name))
total_processes = processes_per_node * \ total_processes = processes_per_node * \
node_count if total_processes is None else total_processes node_count if total_processes is None else total_processes
command = _prepare_command(mpitype, if mpitype == "gloo":
total_processes, job_template = generate_job_dict_gloo(image_name,
processes_per_node, script,
script, node_count=node_count)
node_count, else:
synthetic_length=synthetic_length) command = _prepare_command(mpitype,
job_template = generate_job_dict(image_name, total_processes,
command, processes_per_node,
node_count=node_count) script,
node_count,
synthetic_length=synthetic_length)
job_template = generate_job_dict(image_name,
command,
node_count=node_count)
write_json_to_file(job_template, filename) write_json_to_file(job_template, filename)
logger.info('Done') logger.info('Done')
@ -228,6 +277,7 @@ def imagenet_data_job(image_name,
filename, image_name)) filename, image_name))
total_processes = processes_per_node * \ total_processes = processes_per_node * \
node_count if total_processes is None else total_processes node_count if total_processes is None else total_processes
# non-synthetic gloo to add
command = _prepare_command(mpitype, command = _prepare_command(mpitype,
total_processes, total_processes,
processes_per_node, processes_per_node,

Просмотреть файл

@ -45,6 +45,11 @@ define submit_pytorch_local
$(call submit_job, $(2)) $(call submit_job, $(2))
endef endef
define submit_pytorch_gloo
$(call generate_job_gloo,iliauk/pytorch_gloo,\$$AZ_BATCHAI_INPUT_SCRIPTS/imagenet_pytorch_gloo.py,$(1),$(2), --synthetic_length ${FAKE_DATA_LENGTH})
$(call submit_job, $(3))
endef
define submit_cntk define submit_cntk
$(call generate_job_openmpi,hoaphumanoid/cntk:distributed,\$$AZ_BATCHAI_INPUT_SCRIPTS/imagenet_cntk.py,$(1),$(2), --synthetic_length ${FAKE_DATA_LENGTH}) $(call generate_job_openmpi,hoaphumanoid/cntk:distributed,\$$AZ_BATCHAI_INPUT_SCRIPTS/imagenet_cntk.py,$(1),$(2), --synthetic_length ${FAKE_DATA_LENGTH})
$(call submit_job, $(3)) $(call submit_job, $(3))
@ -75,6 +80,7 @@ create-cluster: upload-nodeprep-scripts
submit-all: submit-keras-intel32 submit-keras-intel16 submit-keras-intel8 submit-keras-intel4 \ submit-all: submit-keras-intel32 submit-keras-intel16 submit-keras-intel8 submit-keras-intel4 \
submit-tf-intel32 submit-tf-intel16 submit-tf-intel8 submit-tf-intel4 \ submit-tf-intel32 submit-tf-intel16 submit-tf-intel8 submit-tf-intel4 \
submit-pytorch32 submit-pytorch16 submit-pytorch8 submit-pytorch4 \ submit-pytorch32 submit-pytorch16 submit-pytorch8 submit-pytorch4 \
submit-pytorch_gloo32 submit-pytorch_gloo16 submit-pytorch_gloo8 submit-pytorch_gloo4 \
submit-cntk32 submit-cntk16 submit-cntk8 submit-cntk4 \ submit-cntk32 submit-cntk16 submit-cntk8 submit-cntk4 \
submit-keras-local submit-tf-local submit-pytorch-local submit_cntk_local submit-keras-local submit-tf-local submit-pytorch-local submit_cntk_local
@ -139,4 +145,17 @@ submit-cntk4:
$(call submit_cntk,1,$(PROCESSES_PER_NODE),cntk-4) $(call submit_cntk,1,$(PROCESSES_PER_NODE),cntk-4)
submit-cntk-local: submit-cntk-local:
$(call submit_cntk_local,1,cntk-local) $(call submit_cntk_local,1,cntk-local)
submit-pytorch_gloo32:
$(call submit_pytorch_gloo,8,$(PROCESSES_PER_NODE),pytorch_gloo-32)
submit-pytorch_gloo16:
$(call submit_pytorch_gloo,4,$(PROCESSES_PER_NODE),pytorch_gloo-16)
submit-pytorch_gloo8:
$(call submit_pytorch_gloo,2,$(PROCESSES_PER_NODE),pytorch_gloo-8)
submit-pytorch_gloo4:
$(call submit_pytorch_gloo,1,$(PROCESSES_PER_NODE),pytorch_gloo-4)

Просмотреть файл

@ -51,6 +51,16 @@ define generate_job_local
endef endef
define generate_job_gloo
python ../generate_job_spec.py $(1) gloo \
$(2) \
--filename job.json \
--node_count $(3) \
--ppn $(4) \
$(5)
endef
define stream_stdout define stream_stdout
az batchai job file stream -w $(WORKSPACE) -e $(EXPERIMENT) \ az batchai job file stream -w $(WORKSPACE) -e $(EXPERIMENT) \
--j $(1) --output-directory-id stdouterr -f stdout.txt --j $(1) --output-directory-id stdouterr -f stdout.txt
@ -113,6 +123,7 @@ upload-scripts: set-storage
$(call upload_script, ../../HorovodPytorch/src/imagenet_pytorch_horovod.py) $(call upload_script, ../../HorovodPytorch/src/imagenet_pytorch_horovod.py)
$(call upload_script, ../../CNTK/src/imagenet_cntk.py) $(call upload_script, ../../CNTK/src/imagenet_cntk.py)
$(call upload_script, ../../CNTK/src/resnet_models.py) $(call upload_script, ../../CNTK/src/resnet_models.py)
$(call upload_script, ../../Pytorch/src/imagenet_pytorch_gloo.py)
$(call upload_script, ../../common/timer.py) $(call upload_script, ../../common/timer.py)
upload-nodeprep-scripts: set-storage upload-nodeprep-scripts: set-storage
@ -160,7 +171,7 @@ delete: delete-cluster
az group delete --name ${GROUP_NAME} -y az group delete --name ${GROUP_NAME} -y
setup: select-subscription create-resource-group create-workspace create-storage set-storage set-az-defaults create-fileshare create-cluster list-clusters setup: select-subscription create-resource-group create-workspace create-storage set-storage set-az-defaults create-fileshare create-directory upload-scripts create-cluster list-clusters create-experiment
@echo "Cluster created" @echo "Cluster created"
# #
@ -169,6 +180,7 @@ setup: select-subscription create-resource-group create-workspace create-storage
submit-all: submit-keras-intel32 submit-keras-intel16 submit-keras-intel8 submit-keras-intel4 \ submit-all: submit-keras-intel32 submit-keras-intel16 submit-keras-intel8 submit-keras-intel4 \
submit-tf-intel32 submit-tf-intel16 submit-tf-intel8 submit-tf-intel4 \ submit-tf-intel32 submit-tf-intel16 submit-tf-intel8 submit-tf-intel4 \
submit-pytorch32 submit-pytorch16 submit-pytorch8 submit-pytorch4 \ submit-pytorch32 submit-pytorch16 submit-pytorch8 submit-pytorch4 \
submit-pytorch_gloo32 submit-pytorch_gloo16 submit-pytorch_gloo8 submit-pytorch_gloo4 \
submit-cntk32 submit-cntk16 submit-cntk8 submit-cntk4 \ submit-cntk32 submit-cntk16 submit-cntk8 submit-cntk4 \
submit-keras-local submit-tf-local submit-pytorch-local submit_cntk_local submit-keras-local submit-tf-local submit-pytorch-local submit_cntk_local
@ -191,6 +203,11 @@ clean-jobs:
$(call delete_job, pytorch-16) $(call delete_job, pytorch-16)
$(call delete_job, pytorch-32) $(call delete_job, pytorch-32)
$(call delete_job, pytorch_gloo-4)
$(call delete_job, pytorch_gloo-8)
$(call delete_job, pytorch_gloo-16)
$(call delete_job, pytorch_gloo-32)
$(call delete_job, cntk-local) $(call delete_job, cntk-local)
$(call delete_job, cntk-4) $(call delete_job, cntk-4)
$(call delete_job, cntk-8) $(call delete_job, cntk-8)
@ -198,6 +215,7 @@ clean-jobs:
$(call delete_job, cntk-32) $(call delete_job, cntk-32)
####### Gather Results ###### ####### Gather Results ######
# TODO for PyTorch_Gloo
gather-results:results.json gather-results:results.json
@echo "All results gathered" @echo "All results gathered"
@ -205,6 +223,9 @@ gather-results:results.json
results.json: pytorch_1gpulocal_$(GPU_TYPE)_local.results pytorch_4gpuopen_$(GPU_TYPE)_open.results \ results.json: pytorch_1gpulocal_$(GPU_TYPE)_local.results pytorch_4gpuopen_$(GPU_TYPE)_open.results \
pytorch_8gpuopen_$(GPU_TYPE)_open.results pytorch_16gpuopen_$(GPU_TYPE)_open.results \ pytorch_8gpuopen_$(GPU_TYPE)_open.results pytorch_16gpuopen_$(GPU_TYPE)_open.results \
pytorch_32gpuopen_$(GPU_TYPE)_open.results \ pytorch_32gpuopen_$(GPU_TYPE)_open.results \
pytorch_gloo_1gpulocal_$(GPU_TYPE)_local.results pytorch_gloo_4gpuopen_$(GPU_TYPE)_open.results \
pytorch_gloo_8gpuopen_$(GPU_TYPE)_open.results pytorch_gloo_16gpuopen_$(GPU_TYPE)_open.results \
pytorch_gloo_32gpuopen_$(GPU_TYPE)_open.results \
tf_1gpulocal_$(GPU_TYPE)_local.results tf_4gpuintel_$(GPU_TYPE)_intel.results \ tf_1gpulocal_$(GPU_TYPE)_local.results tf_4gpuintel_$(GPU_TYPE)_intel.results \
tf_8gpuintel_$(GPU_TYPE)_intel.results tf_16gpuintel_$(GPU_TYPE)_intel.results \ tf_8gpuintel_$(GPU_TYPE)_intel.results tf_16gpuintel_$(GPU_TYPE)_intel.results \
tf_32gpuintel_$(GPU_TYPE)_intel.results \ tf_32gpuintel_$(GPU_TYPE)_intel.results \
@ -233,7 +254,20 @@ pytorch_32gpuopen_$(GPU_TYPE)_open.results:
$(call stream_stdout, pytorch-32)>pytorch_32gpuopen_$(GPU_TYPE)_open.results $(call stream_stdout, pytorch-32)>pytorch_32gpuopen_$(GPU_TYPE)_open.results
pytorch_gloo_1gpulocal_$(GPU_TYPE)_local.results:
$(call stream_stdout, pytorch_gloo-local)>pytorch_gloo_1gpulocal_$(GPU_TYPE)_local.results
pytorch_gloo_4gpuopen_$(GPU_TYPE)_open.results:
$(call stream_stdout, pytorch_gloo-4)>pytorch_gloo_4gpuopen_$(GPU_TYPE)_open.results
pytorch_gloo_8gpuopen_$(GPU_TYPE)_open.results:
$(call stream_stdout, pytorch_gloo-8)>pytorch_gloo_8gpuopen_$(GPU_TYPE)_open.results
pytorch_gloo_16gpuopen_$(GPU_TYPE)_open.results:
$(call stream_stdout, pytorch_gloo-16)>pytorch_gloo_16gpuopen_$(GPU_TYPE)_open.results
pytorch_gloo_32gpuopen_$(GPU_TYPE)_open.results:
$(call stream_stdout, pytorch_gloo-32)>pytorch_gloo_32gpuopen_$(GPU_TYPE)_open.results
tf_1gpulocal_$(GPU_TYPE)_local.results: tf_1gpulocal_$(GPU_TYPE)_local.results:
$(call stream_stdout, tf-local)>tf_1gpulocal_$(GPU_TYPE)_local.results $(call stream_stdout, tf-local)>tf_1gpulocal_$(GPU_TYPE)_local.results