.. |
AutomatedML
|
Update copyright and links to point to PyWhy
|
2023-03-20 17:30:53 -04:00 |
CustomerScenarios
|
Allow newer shap, matlab, and seaborn versions
|
2023-10-25 01:38:49 -04:00 |
Solutions
|
Get datasets from web instead of blob
|
2023-06-16 15:26:36 -04:00 |
images
|
Scaling ortholearners using Ray (#800)
|
2023-10-27 18:17:14 -04:00 |
CATE validation.ipynb
|
CATE validation - uplift uniform confidence bands (#840)
|
2024-03-19 12:54:10 -04:00 |
Causal Forest and Orthogonal Random Forest Examples.ipynb
|
Get datasets from web instead of blob
|
2023-06-16 15:26:36 -04:00 |
Causal Model Selection with the RScorer.ipynb
|
Remove linear_first_stages from docs and tests
|
2024-02-06 11:15:05 -05:00 |
Choosing First Stage Models.ipynb
|
Remove linear_first_stages from docs and tests
|
2024-02-06 11:15:05 -05:00 |
Deep IV Examples.ipynb
|
Vasilis/docs (#370)
|
2021-01-19 08:50:10 -05:00 |
Double Machine Learning Examples.ipynb
|
Remove linear_first_stages from docs and tests
|
2024-02-06 11:15:05 -05:00 |
Doubly Robust Learner and Interpretability.ipynb
|
add notebook for DRIV
|
2022-02-02 15:53:20 -05:00 |
Dynamic Double Machine Learning Examples.ipynb
|
Create panel subpackage
|
2022-11-15 10:41:42 -05:00 |
ForestLearners Basic Example.ipynb
|
Store nuisance models and scores (#433)
|
2021-03-19 16:52:28 -04:00 |
Generalized Random Forests.ipynb
|
Change the summary table format (#407)
|
2021-02-19 20:33:34 -05:00 |
Interpretability with SHAP.ipynb
|
DMLIV/DRIV (#460)
|
2021-08-12 21:40:43 +00:00 |
Metalearners Examples.ipynb
|
Vasilis/docs (#370)
|
2021-01-19 08:50:10 -05:00 |
OrthoIV and DRIV Examples.ipynb
|
add notebook for DRIV
|
2022-02-02 15:53:20 -05:00 |
Policy Learning with Trees and Forests.ipynb
|
Remove linear_first_stages from docs and tests
|
2024-02-06 11:15:05 -05:00 |
Scaling EconML using Ray.ipynb
|
Enable model selection for first stage models (#808)
|
2023-11-11 19:57:59 +00:00 |
Treatment Featurization Examples.ipynb
|
enable treatment featurization (#615)
|
2022-10-28 13:15:25 -04:00 |
Weighted Double Machine Learning Examples.ipynb
|
create both sample_weight and freq_weight for fit (#439)
|
2021-03-31 12:56:39 -04:00 |