Moving example to examples/ directory and renaming driver filese

This commit is contained in:
Don Dennis 2018-02-19 15:44:25 +05:30
Родитель f0e1a12061
Коммит bd24e4734d
4 изменённых файлов: 20 добавлений и 12 удалений

Просмотреть файл

@ -328,19 +328,24 @@ class BonsaiTrainer:
self.bonsaiObj.sigmaI = oldSigmaI
sys.stdout.flush()
# sigmaI has to be set to infinity to ensure only a single path is used in inference
# sigmaI has to be set to infinity to ensure
# only a single path is used in inference
self.bonsaiObj.sigmaI = 1e9
print("Maximum Test accuracy at compressed model size(including early stopping): " +
print("Maximum Test accuracy at compressed" +
" model size(including early stopping): " +
str(maxTestAcc) + " at Epoch: " +
str(maxTestAccEpoch + 1) + "\nFinal Test Accuracy: " + str(testAcc))
str(maxTestAccEpoch + 1) + "\nFinal Test" +
" Accuracy: " + str(testAcc))
print("\nNon-Zeros: " + str(self.getModelSize()[1]) + " Model Size: " +
str(float(self.getModelSize()[1]) / 1024.0) + " KB hasSparse: " +
str(self.getModelSize()[2]) + "\n")
resultFile.write("MaxTestAcc: " + str(maxTestAcc) +
" at Epoch(totalEpochs): " + str(maxTestAccEpoch + 1) +
" at Epoch(totalEpochs): " +
str(maxTestAccEpoch + 1) +
"(" + str(totalEpochs) + ")" + " ModelSize: " +
str(float(self.getModelSize()[1]) / 1024.0) +
" KB hasSparse: " + str(self.getModelSize()[2]) +
" Param Directory: " + str(os.path.abspath(currDir)) + "\n")
" Param Directory: " +
str(os.path.abspath(currDir)) + "\n")
resultFile.close()

Просмотреть файл

@ -1,4 +1,4 @@
import bonsaiPreProcess
import bonsaipreprocess
import tensorflow as tf
import numpy as np
from bonsaiTrainer import BonsaiTrainer
@ -10,7 +10,7 @@ tf.set_random_seed(42)
np.random.seed(42)
# Hyper Param pre-processing
args = bonsaiPreProcess.getArgs()
args = bonsaipreprocess.getArgs()
sigma = args.sigma
depth = args.depth
@ -28,7 +28,7 @@ learningRate = args.learningRate
data_dir = args.data_dir
(dataDimension, numClasses,
Xtrain, Ytrain, Xtest, Ytest) = bonsaiPreProcess.preProcessData(data_dir)
Xtrain, Ytrain, Xtest, Ytest) = bonsaipreprocess.preProcessData(data_dir)
sparZ = args.sZ
@ -61,7 +61,7 @@ if numClasses == 2:
X = tf.placeholder("float32", [None, dataDimension])
Y = tf.placeholder("float32", [None, numClasses])
currDir = bonsaiPreProcess.createDir(data_dir)
currDir = bonsaipreprocess.createDir(data_dir)
# numClasses = 1 for binary case
bonsaiObj = Bonsai(numClasses, dataDimension,

Просмотреть файл

@ -1,10 +1,12 @@
'''
Functions to check sanity of input arguments
for the example script.
'''
import argparse
import numpy as np
import datetime
import os
# Functions to check sanity of input arguments
def checkIntPos(value):
ivalue = int(value)
@ -45,7 +47,8 @@ def getArgs():
parser = argparse.ArgumentParser(
description='HyperParams for Bonsai Algorithm')
parser.add_argument('-dir', '--data_dir', required=True,
help='Data directory containing train.npy and test.npy')
help='Data directory containing' +
'train.npy and test.npy')
parser.add_argument('-d', '--depth', type=checkIntNneg, default=2,
help='Depth of Bonsai Tree (default: 2 try: [0, 1, 3])')

Просмотреть файл