* GesturePod reorg


* Update README.md
This commit is contained in:
Sachin Goyal 2020-09-15 06:23:04 +05:30 коммит произвёл GitHub
Родитель 886740b9d2
Коммит d85b7ab36d
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: 4AEE18F83AFDEB23
28 изменённых файлов: 11 добавлений и 9 удалений

Просмотреть файл

@ -52,9 +52,10 @@ the ICML '17 publications on [Bonsai](/docs/publications/Bonsai.pdf) and
the NeurIPS '18 publications on [EMI-RNN](/docs/publications/emi-rnn-nips18.pdf) and
[FastGRNN](/docs/publications/FastGRNN.pdf),
the PLDI '19 publication on [SeeDot compiler](/docs/publications/SeeDot.pdf),
the UIST '19 publication on [Gesturepod](/docs/publications/ICane-UIST19.pdf),
the UIST '19 publication on [Gesturepod](/docs/publications/GesturePod-UIST19.pdf),
the BuildSys '19 publication on [MSC-RNN](/docs/publications/MSCRNN.pdf),
and the NeurIPS '19 publication on [Shallow RNNs](/docs/publications/Sha-RNN.pdf).
the NeurIPS '19 publication on [Shallow RNNs](/docs/publications/Sha-RNN.pdf),
and the ICML '20 publication on [DROCC](/docs/publications/drocc.pdf).
Also checkout the [ELL](https://github.com/Microsoft/ELL) project which can

Просмотреть файл

@ -19,4 +19,4 @@ To learn more about GesturePod, refer our [UIST'19 publication](https://github.c
The benchmark dataset for Gesture recognition can be downloaded [here](https://www.microsoft.com/en-us/research/uploads/prod/2018/05/dataTR_v1.tar.gz) [MIT Open source license].
_If you are using the dataset please [cite](https://dl.acm.org/downformats.cfm?id=3347881&parent_id=3332165&expformat=bibtex) GesturePod._
_If you are using the dataset please [cite](https://dl.acm.org/doi/10.1145/3332165.3347881) GesturePod._

Просмотреть файл

@ -28,7 +28,7 @@ used as a basis for porting GesturePod to other platforms.
2. Clone the repo and navigate to this directory
```
git clone https://github.com/microsoft/EdgeML.git
cd EdgeML/Applications/GesturePod/onComputer
cd EdgeML/applications/GesturePod/onComputer
```
3. Compile and build the code
```

Просмотреть файл

@ -19,7 +19,7 @@ GesturePod *(on MKR1000)*
1. Clone the repo and navigate to this folder
```
git clone https://github.com/microsoft/EdgeML.git
cd Applications/GesturePod/onMKR1000
cd EdgeML/applications/GesturePod/onMKR1000
```
2. Refer to this [tutorial](https://microsoft.github.io/EdgeML/Projects/GesturePod/instructable.html) to build the Hardware and setup external dependencies - [Cortex M0+ Board support](https://www.hackster.io/charifmahmoudi/arduino-mkr1000-getting-started-08bb4a).

Просмотреть файл

@ -29,7 +29,7 @@ Accelorometer and gyroscope values from the MPU6050 sensor is collected.
Connect the GesturePod to computer over Serial COM Port.
1. Refer
[here](https://github.com/microsoft/EdgeML/blob/master/Applications/GesturePod/onMKR1000/README.md#quick-start)
[here](https://github.com/microsoft/EdgeML/blob/master/applications/GesturePod/onMKR1000/README.md#quick-start)
to set up the required dependencies for the MKR1000 platform.
2. Compile, Build and Upload
@ -87,9 +87,9 @@ This will generate a `train.csv` and `test.csv` files that should be used to gen
Using the TensorFlow / PyTorch / cpp implementation of the ProtoNN algorithm from the EdgeML repository, train a
model on the ```train.csv``` file generated above. Extract W, B, Z, and gamma
values from the trained ProtoNN model. Update these values in
```EdgeML/Applications/GesturePod/onMKR1000/src/data.h``` to deploy the model on
```EdgeML/applications/GesturePod/onMKR1000/src/data.h``` to deploy the model on
the GesturePod. Alternately, update
```EdgeML/Applications/GesturePod/onComputer/src/data.h``` to simulate inference
```EdgeML/applications/GesturePod/onComputer/src/data.h``` to simulate inference
of the new model on your computer.
Alternatively, to generate a `data.h`, you could:

Двоичные данные
docs/publications/drocc.pdf Executable file

Двоичный файл не отображается.

Просмотреть файл

@ -28,7 +28,8 @@ for these algorithms are in `edgeml_pytorch.trainer`.
4. [S-RNN](https://github.com/microsoft/EdgeML/blob/master/docs/publications/SRNN.pdf): `edgeml_pytorch.graph.rnn.SRNN2` implements a
2 layer SRNN network which can be instantied with a choice of RNN cell. The training
routine for SRNN is in `edgeml_pytorch.trainer.srnnTrainer`.
5. DROCC & DROCC-LF: `edgeml_pytorch.trainer.drocc_trainer` implements a DROCC meta-trainer for training any given model architecture
5. [DROCC & DROCC-LF](https://github.com/microsoft/EdgeML/blob/master/docs/publications/drocc.pdf): `edgeml_pytorch.trainer.drocc_trainer` implements
a DROCC meta-trainer for training any given model architecture
for one-class classification on the supplied dataset. `edgeml_pytorch.trainer.drocclf_trainer` implements the DROCC-LF varaint
for training models for one-class classification with limited negatives.