* add m4 model

* add rnnpool sparsity

* revert to previous+remove basenet

* scut training and testing

* augmentations and data file changes

* update readme and eval files

* evaluation code

* fix bugs

* remove lists

* data prep script

* merge face detection and m4

* eval arch options

* finetune

* readme changes

* readme update

* readme update

* newlines and slashes

* add dataset directory as environment variable

* rpool face c detect bug

* support for multigpu

* multigpu fixes

* remove subset option

* readme edit

* mkdir

* readme changes

* fix warning

* rnnpool device

* add arch

* trace generation

* Update eval.py

* Update prior_box.py

* Update multibox_loss.py

* Update train.py

* Update scut_test.py

* eval bug + newlines

* Remove stray newline

Co-authored-by: Harsha Vardhan Simhadri <harsha-simhadri@users.noreply.github.com>
Co-authored-by: ShikharJ <jaiswalshikhar87@gmail.com>
This commit is contained in:
Oindrila Saha 2021-01-05 01:03:37 +05:30 коммит произвёл GitHub
Родитель 5f0b6e8679
Коммит e4d5255510
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: 4AEE18F83AFDEB23
25 изменённых файлов: 3645 добавлений и 90 удалений

Просмотреть файл

@ -1,9 +1,10 @@
# Code for Face Detection experiments with RNNPool
# Code for Face Detection Experiments with RNNPool
Refer to README_M4.md for instructions related to the M4 model
## Requirements
1. Follow instructions to install requirements for EdgeML operators and the EdgeML operators [here](https://github.com/microsoft/EdgeML/blob/master/pytorch/README.md).
1. Follow instructions to install EdgeML operators and their pre-requisites [here](https://github.com/microsoft/EdgeML/blob/master/pytorch/README.md).
2. Install requirements for face detection model using
``` pip install -r requirements.txt ```
We have tested the installation and the code on Ubuntu 18.04 with Cuda 10.2 and CuDNN 7.6
We have tested the installation and the code on Ubuntu 18.04 with Python 3.6, Cuda 10.2 and CuDNN 7.6
## Dataset
1. Download WIDER face dataset images and annotations from http://shuoyang1213.me/WIDERFACE/ and place them all in a folder with name 'WIDER_FACE'. That is, download WIDER_train.zip, WIDER_test.zip, WIDER_val.zip, wider_face_split.zip and place it in WIDER_FACE folder, and unzip files using:
@ -18,12 +19,17 @@ cd ..
```
2. In `data/config.py` , set _C.HOME to the parent directory of the above folder, and set the _C.FACE.WIDER_DIR to the folder path.
That is, if the WIDER_FACE folder is created in /mnt folder, then _C.HOME='/mnt'
_C.FACE.WIDER_DIR='/mnt/WIDER_FACE'.
Similarly, change `data/config_qvga.py` to set _C.HOME and _C.FACE.WIDER_DIR.
2. Set environment variable DATA_HOME to the parent directory of the above folder
That is, if the WIDER_FACE folder is created in /mnt folder
``` export DATA_HOME='/mnt' ```
Note that for Windows '/' should be replaced by '\'.
For all following commands the environment variable IS_QVGA_MONO has to be set as 0 for using config.py (to use RGB 640x480 images) and as 1 for using config_qvga.py (to use monochrome 320x240 images) as the configuration file.
3. Run
``` python prepare_wider_data.py ```
``` IS_QVGA_MONO=1 python prepare_wider_data.py ```
# Usage
@ -64,15 +70,15 @@ There are two modes of testing the trained model -- the evaluation mode to gener
#### Evaluation Mode
Given a set of images in <your_image_folder>, `eval/py` generates bounding boxes around faces (where the confidence is higher than certain threshold) and write the images in <your_save_folder>. To evaluate the `rpool_face_best_state.pth` model (stored in ./weights), execute the following command:
Given a set of images in <your_image_folder>, `eval/py` generates bounding boxes around faces (where the confidence is higher than certain threshold) and write the images in <your_save_folder>. Specify if the model was trained in multigpu setting in --multigpu. To evaluate the `rpool_face_best_state.pth` model (stored in ./weights), execute the following command:
```shell
IS_QVGA_MONO=0 python eval.py --model_arch RPool_Face_Quant --model ./weights/RPool_Face_Quant_best_state.pth --image_folder <your_image_folder> --save_dir <your_save_folder>
IS_QVGA_MONO=0 python eval.py --model_arch RPool_Face_Quant --model ./weights/RPool_Face_Quant_best_state.pth --image_folder <your_image_folder> --save_dir <your_save_folder> --multigpu True
```
For QVGA:
```shell
IS_QVGA_MONO=1 python eval.py --model_arch RPool_Face_QVGA_monochrome --model ./weights/RPool_Face_QVGA_monochrome_best_state.pth --image_folder <your_image_folder> --save_dir <your_save_folder>
IS_QVGA_MONO=1 python eval.py --model_arch RPool_Face_QVGA_monochrome --model ./weights/RPool_Face_QVGA_monochrome_best_state.pth --image_folder <your_image_folder> --save_dir <your_save_folder> --multigpu True
```
This will save images in <your_save_folder> with bounding boxes around faces, where the confidence is high. Here is an example image with a single bounding box.
@ -86,15 +92,15 @@ If IS_QVGA_MONO=1 the evaluation code accepts an image of any size and resizes a
#### WIDER Set Test
In this mode, we test the generated model against the provided WIDER_FACE validation and test dataset.
For this, first run the following to generate predictions of the model and store output in the '--save_folder' folder.
For this, first run the following to generate predictions of the model and store output in the '--save_folder' folder. Specify if the model was trained in multigpu setting in --multigpu.
```shell
IS_QVGA_MONO=0 python wider_test.py --model_arch RPool_Face_Quant --model ./weights/RPool_Face_Quant_best_state.pth --save_folder rpool_face_quant_val --subset val
IS_QVGA_MONO=0 python wider_test.py --model_arch RPool_Face_Quant --model ./weights/RPool_Face_Quant_best_state.pth --save_folder rpool_face_quant_val --subset val --multigpu True
```
For QVGA:
```shell
IS_QVGA_MONO=1 python wider_test.py --model_arch RPool_Face_QVGA_monochrome --model ./weights/RPool_Face_QVGA_monochrome_best_state.pth --save_folder rpool_face_qvgamono_val --subset val
IS_QVGA_MONO=1 python wider_test.py --model_arch RPool_Face_QVGA_monochrome --model ./weights/RPool_Face_QVGA_monochrome_best_state.pth --save_folder rpool_face_qvgamono_val --subset val --multigpu True
```
The above command generates predictions for each image in the "validation" dataset. For each image, a separate prediction file is provided (image_name.txt file in appropriate folder). The first line of the prediction file contains the total number of boxes identified.
@ -104,8 +110,8 @@ If IS_QVGA_MONO=1 then testing is done by converting images to monochrome and QV
The architecture RPool_Face_QVGA_monochrome is for QVGA monochrome format while RPool_Face_C and RPool_Face_Quant are for VGA RGB format.
###### For calculating MAP scores:
Now using these boxes, we can compute the standard MAP score that is widely used in this literature (see [here](https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173) for more details) as follows:
###### For calculating mAP scores:
Now using these boxes, we can compute the standard mAP score that is widely used in this literature (see [here](https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173) for more details) as follows:
1. Download eval_tools.zip from http://shuoyang1213.me/WIDERFACE/support/eval_script/eval_tools.zip and unzip in a folder of same name in this directory.
@ -116,7 +122,7 @@ wget http://shuoyang1213.me/WIDERFACE/support/eval_script/eval_tools.zip
unzip eval_tools.zip
```
2. Set up scripts to use the Matlab '.mat' data files in eval_tools/ground_truth folder for MAP calculation: The following installs python files that provide the same functionality as the '.m' matlab scripts in eval_tools folder.
2. Set up scripts to use the Matlab '.mat' data files in eval_tools/ground_truth folder for mAP calculation: The following installs python files that provide the same functionality as the '.m' matlab scripts in eval_tools folder.
```
cd eval_tools
git clone https://github.com/wondervictor/WiderFace-Evaluation.git
@ -126,20 +132,20 @@ python3 setup.py build_ext --inplace
3. Run ```python3 evaluation.py -p <your_save_folder> -g <groud truth dir>``` in WiderFace-Evaluation folder
where `prediction_dir` is the '--save_folder' used for `wider_test.py` above and <groud truth dir> is the subfolder `eval_tools/ground_truth`. That is in, WiderFace-Evaluation directory, run:
where `-p` is the '--save_folder' used for `wider_test.py` above and <groud truth dir> is the subfolder `eval_tools/ground_truth`. That is in, WiderFace-Evaluation directory, run:
```shell
python3 evaluation.py -p <your_save_folder> -g ../ground_truth
python3 evaluation.py -p ../../rpool_face_qvgamono_val -g ../ground_truth
```
This script should output the MAP for the WIDER-easy, WIDER-medium, and WIDER-hard subsets of the dataset. Our best performance using RPool_Face_Quant model is: 0.80 (WIDER-easy), 0.78 (WIDER-medium), 0.53 (WIDER-hard).
This script should output the mAP for the WIDER-easy, WIDER-medium, and WIDER-hard subsets of the dataset. Our best performance using RPool_Face_Quant model is: 0.80 (WIDER-easy), 0.78 (WIDER-medium), 0.53 (WIDER-hard).
##### Dump RNNPool Input Output Traces and Weights
To save model weights and/or input output pairs for each patch through RNNPool in numpy format use the command below. Put images which you want to save traces for in <your_image_folder> . Specify output folder for saving model weights in numpy format in <your_save_model_numpy_folder>. Specify output folder for saving input output traces of RNNPool in numpy format in <your_save_traces_numpy_folder>. Note that input traces will be saved in a folder named 'inputs' and output traces in a folder named 'outputs' inside <your_save_traces_numpy_folder>.
For saving model weights and/or input output pairs for each patch through RNNPool in numpy format use the command below. Put images which you want to save traces for in <your_image_folder> . Specify output folder for saving model weights in numpy format in <your_save_model_numpy_folder>. Specify output folder for saving input output traces of RNNPool in numpy format in <your_save_traces_numpy_folder>. Note that input traces will be saved in a folder named 'inputs' and output traces in a folder named 'outputs' inside <your_save_traces_numpy_folder>.
```shell
python3 dump_model.py --model ./weights/RPool_Face_QVGA_monochrome_best_state.pth --model_arch RPool_Face_Quant --image_folder <your_image_folder> --save_model_npy_dir <your_save_model_numpy_folder> --save_traces_npy_dir <your_save_traces_numpy_folder>
python3 dump_model.py --model ./weights/RPool_Face_QVGA_monochrome_best_state.pth --model_arch RPool_Face_QVGA_monochrome --image_folder <your_image_folder> --save_model_npy_dir <your_save_model_numpy_folder> --save_traces_npy_dir <your_save_traces_numpy_folder>
```
If you wish to save only model weights, do not specify --save_traces_npy_dir. If you wish to save only traces do not specify --save_model_npy_dir.

Просмотреть файл

@ -0,0 +1,141 @@
# Code for Face Detection Experiments with RNNPool
## Requirements
1. Follow instructions to install EdgeML operators and their pre-requisites [here](https://github.com/microsoft/EdgeML/blob/master/pytorch/README.md).
2. Install requirements for face detection model using
``` pip install -r requirements.txt ```
We have tested the installation and the code on Ubuntu 18.04 with Python 3.6, Cuda 10.2 and CuDNN 7.6
## Dataset - WIDER Face
1. Download WIDER face dataset images and annotations from http://shuoyang1213.me/WIDERFACE/ and place them all in a folder with name 'WIDER_FACE'. That is, download WIDER_train.zip, WIDER_test.zip, WIDER_val.zip, wider_face_split.zip and place it in WIDER_FACE folder, and unzip files using:
```shell
cd WIDER_FACE
unzip WIDER_train.zip
unzip WIDER_test.zip
unzip WIDER_val.zip
unzip wider_face_split.zip
cd ..
```
2. Set environment variable DATA_HOME to the parent directory of the above folder
That is, if the WIDER_FACE folder is created in /mnt folder
``` export DATA_HOME='/mnt' ```
Note that for Windows '/' should be replaced by '\'.
3. Run
``` IS_QVGA_MONO=1 python prepare_wider_data.py ```
## Dataset - SCUT Head B
Download SCUT Head Part B dataset images and annotations from https://github.com/HCIILAB/SCUT-HEAD-Dataset-Release. Unzipping will create a folder by the name 'SCUT_HEAD_Part_B'. Place this folder in the same parent directory as the WIDER_FACE folder.
# Usage
## Training
```shell
IS_QVGA_MONO=1 python train.py --batch_size 128 --model_arch RPool_Face_M4 --cuda True --multigpu True --save_folder weights/ --epochs 300 --save_frequency 5000
```
This will save checkpoints after every '--save_frequency' number of iterations in a weight file with 'checkpoint.pth' at the end and weights for the best state in a file with 'best_state.pth' at the end. These will be saved in '--save_folder'. For resuming training from a checkpoint, use '--resume <checkpoint_name>.pth' with the above command. For example,
```shell
IS_QVGA_MONO=1 python train.py --batch_size 128 --model_arch RPool_Face_M4 --cuda True --multigpu True --save_folder weights/ --epochs 300 --save_frequency 5000 --resume <checkpoint_name>.pth
```
If IS_QVGA_MONO is 0 then training input images will be 640x640 and RGB.
If IS_QVGA_MONO is 1 then training input images will be 320x320 and converted to monochrome.
Input images for training models are cropped and reshaped to square to maintain consistency with [S3FD](https://arxiv.org/abs/1708.05237). However testing can be done on any size of images, thus we resize testing input image size to have area equal to VGA (640x480)/QVGA (320x240), so that aspect ratio is not changed.
The architecture RPool_Face_QVGA_monochrome and RPool_Face_M4 is for QVGA monochrome format while RPool_Face_C and RPool_Face_Quant are for VGA RGB format.
## Finetuning
To obtain a model better suited for conference room scenarios we finetune our model on the SCUT Head B dataset. Set --finetune as True and pass the model pretrained on WIDER_FACE in --resume as follows:
```shell
IS_QVGA_MONO=1 python train.py --batch_size 64 --model_arch RPool_Face_M4 --cuda True --multigpu True --save_folder weights/ --epochs 300 --save_frequency 5000 --resume ./weights/RPool_Face_M4_best_state.pth --finetune True
```
## Test
There are two modes of testing the trained model -- the evaluation mode to generate bounding boxes for a set of sample images, and the test mode to compute statistics like mAP scores.
#### Evaluation Mode
Given a set of images in <your_image_folder>, `eval/py` generates bounding boxes around faces (where the confidence is higher than certain threshold - 0.5 in this case) and write the images in <your_save_folder>. Specify if the model was trained in multigpu setting in --multigpu. To evaluate the `rpool_face_best_state.pth` model (stored in ./weights), execute the following command:
```shell
IS_QVGA_MONO=1 python eval.py --model_arch RPool_Face_M4 --model ./weights/RPool_Face_M4_best_state.pth --image_folder <your_image_folder> --save_dir <your_save_folder> --thresh 0.5 --multigpu True
```
This will save images in <your_save_folder> with bounding boxes around faces, where the confidence is high. It is recommended to use the model finetuned on SCUT Head for evaluation.
If IS_QVGA_MONO=0 the evaluation code accepts an image of any size and resizes it to 640x480x3 while preserving original image aspect ratio.
If IS_QVGA_MONO=1 the evaluation code accepts an image of any size and resizes and converts it to monochrome to make it 320x240x1 while preserving original image aspect ratio.
#### Saving Full Model Traces
Setting the flag --save_traces as True will save input output traces in two separate .npy files for each image in <your_image_folder>, given the architecture and trained model. Run:
```shell
IS_QVGA_MONO=1 python eval.py --model_arch RPool_Face_M4 --model ./weights/RPool_Face_M4_best_state.pth --image_folder <your_image_folder> --save_dir <your_save_folder> --thresh 0.5 --multigpu True --save_traces True
```
For generating traces on SCUT Head images, set <your_image_folder> as $DATA_HOME/SCUT_HEAD_Part_B/JPEGImages/
#### SCUT Head Validation Set Test
In this mode, we test the generated model against the provided SCUT Head Part B validation dataset. Use the SCUT Head finetuned model for this step.
For this, first run the following to generate predictions of the model and store output in the '--save_folder' folder. Specify if the model was trained in multigpu setting in --multigpu.
```shell
IS_QVGA_MONO=1 python scut_test.py --model_arch RPool_Face_M4 --model ./weights/RPool_Face_M4_best_state.pth --save_folder rpool_face_m4_val --multigpu True
```
The above command generates predictions for each image in the "validation" dataset. For each image, a separate prediction file is provided (image_name.txt file in appropriate folder). The first line of the prediction file contains the total number of boxes identified.
Then each line in the file corresponds to an identified box. For each box, five numbers are generated: length of the box, height of the box, x-axis offset, y-axis offset, confidence value for presence of a face in the box.
If IS_QVGA_MONO=1 then testing is done by converting images to monochrome and QVGA, else if IS_QVGA_MONO=0 then testing is done on VGA RGB images.
###### For calculating mAP scores:
Now using these boxes, we can compute the standard mAP score that is widely used in this literature (see [here](https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173) for more details).
In the current Face_Detection directory run:
```
git clone https://github.com/wondervictor/WiderFace-Evaluation.git
cd WiderFace-Evaluation
python3 setup.py build_ext --inplace
mv ../scut_evaluation.py ./
```
Run ```IS_QVGA_MONO=1 python3 scut_evaluation.py -p ../rpool_face_m4_val ``` in WiderFace-Evaluation folder.
where `-p` is the '--save_folder' used for `scut_test.py` above.
This script should output the mAP on SCUT Head Part B Validation set. Our best performance using RPool_Face_M4 model is: 0.61.
##### Dump RNNPool Input Output Traces and Weights
For saving model weights and/or input output pairs for each patch through RNNPool in numpy format use the command below. Put images which you want to save traces for in <your_image_folder> . Specify output folder for saving model weights in numpy format in <your_save_model_numpy_folder>. Specify output folder for saving input output traces of RNNPool in numpy format in <your_save_traces_numpy_folder>. Note that input traces will be saved in a folder named 'inputs' and output traces in a folder named 'outputs' inside <your_save_traces_numpy_folder>.
```shell
python3 dump_model.py --model ./weights/RPool_Face_M4_best_state.pth --model_arch RPool_Face_M4 --image_folder <your_image_folder> --save_model_npy_dir <your_save_model_numpy_folder> --save_traces_npy_dir <your_save_traces_numpy_folder>
```
If you wish to save only model weights, do not specify --save_traces_npy_dir. If you wish to save only traces do not specify --save_model_npy_dir.
Code has been built upon https://github.com/yxlijun/S3FD.pytorch

Просмотреть файл

@ -54,12 +54,8 @@ _C.NEG_POS_RATIOS = 3
_C.NUM_CLASSES = 2
_C.USE_NMS = True
# dataset config
_C.HOME = '/mnt/' ## change here ----------
# face config
_C.FACE = EasyDict()
_C.FACE.TRAIN_FILE = './data/face_train.txt'
_C.FACE.VAL_FILE = './data/face_val.txt'
_C.FACE.WIDER_DIR = '/mnt/WIDER_FACE' ## change here ---------
_C.FACE.OVERLAP_THRESH = [0.1, 0.35, 0.5]

Просмотреть файл

@ -53,12 +53,8 @@ _C.NEG_POS_RATIOS = 3
_C.NUM_CLASSES = 2
_C.USE_NMS = True
# dataset config
_C.HOME = '/mnt/'
# face config
_C.FACE = EasyDict()
_C.FACE.TRAIN_FILE = './data/face_train.txt'
_C.FACE.VAL_FILE = './data/face_val.txt'
_C.FACE.WIDER_DIR = '/mnt/WIDER_FACE'
_C.FACE.OVERLAP_THRESH = [0.1, 0.35, 0.5]

Разница между файлами не показана из-за своего большого размера Загрузить разницу

Просмотреть файл

@ -0,0 +1,405 @@
JPEGImages/PartB_00723.jpg 10 97 102 108 138 1 38 135 59 60 1 15 102 46 63 1 3 87 24 31 1 92 74 28 34 1 151 90 29 26 1 381 72 14 21 1 394 60 14 14 1 439 27 27 27 1 514 75 18 25 1
JPEGImages/PartB_01013.jpg 57 70 585 148 81 1 73 459 92 120 1 43 442 68 71 1 68 394 64 60 1 40 381 39 49 1 54 353 31 32 1 52 338 24 24 1 110 333 29 33 1 139 335 31 36 1 137 365 34 43 1 176 383 47 52 1 196 417 47 57 1 242 424 56 76 1 332 468 92 117 1 487 522 126 145 1 301 298 39 52 1 212 340 32 34 1 228 330 24 29 1 163 332 26 29 1 266 338 15 19 1 358 357 31 49 1 389 361 26 32 1 398 383 40 47 1 323 359 28 35 1 361 330 22 31 1 399 323 25 31 1 413 343 24 29 1 441 355 34 45 1 460 335 23 26 1 472 392 45 62 1 507 387 37 52 1 515 362 28 29 1 518 343 25 24 1 557 343 21 25 1 574 389 43 57 1 613 422 53 65 1 578 365 29 31 1 581 350 19 23 1 614 338 19 24 1 669 376 34 41 1 644 365 27 30 1 665 351 24 27 1 713 352 25 31 1 709 418 55 69 1 772 433 74 87 1 753 400 35 43 1 733 374 29 35 1 742 352 26 29 1 785 361 26 33 1 839 371 24 29 1 861 377 30 36 1 820 410 35 36 1 886 427 55 73 1 867 411 50 52 1 940 409 55 56 1 950 378 36 40 1 908 365 29 35 1
JPEGImages/PartB_02018.jpg 7 1 69 14 37 1 21 65 34 43 1 49 87 26 34 1 134 89 22 29 1 147 81 30 36 1 181 84 43 43 1 246 80 55 66 1
JPEGImages/PartB_02215.jpg 87 257 412 80 79 1 202 366 41 45 1 108 382 43 47 1 52 345 34 34 1 12 329 31 41 1 45 324 40 30 1 60 310 22 21 1 91 332 25 25 1 112 329 17 19 1 109 307 18 20 1 140 329 28 29 1 144 314 17 19 1 151 273 21 20 1 171 340 27 32 1 191 330 20 25 1 218 325 17 25 1 248 336 28 35 1 260 330 27 26 1 262 307 18 20 1 303 327 33 33 1 313 316 19 18 1 301 301 17 17 1 336 309 18 19 1 343 305 15 14 1 365 310 18 21 1 384 344 37 35 1 410 341 49 52 1 413 387 75 88 1 478 338 39 42 1 444 317 25 28 1 424 314 21 22 1 416 295 18 21 1 403 301 18 23 1 384 311 23 22 1 386 302 18 20 1 463 305 13 12 1 475 308 17 20 1 504 324 24 23 1 552 315 29 34 1 551 307 19 20 1 540 302 16 20 1 535 271 15 18 1 496 305 8 13 1 588 329 30 36 1 554 377 68 70 1 618 378 57 57 1 564 293 12 16 1 585 305 12 19 1 600 310 23 23 1 610 293 15 17 1 633 298 14 16 1 647 306 16 18 1 642 318 20 22 1 634 336 24 28 1 676 327 25 28 1 676 308 15 20 1 680 300 12 14 1 704 304 12 15 1 716 316 15 21 1 704 337 33 33 1 763 301 21 20 1 789 304 20 26 1 782 333 28 34 1 773 327 20 23 1 818 297 15 16 1 820 311 14 20 1 830 314 19 26 1 862 308 21 27 1 877 292 18 17 1 870 284 14 16 1 893 287 12 14 1 893 303 17 22 1 883 322 30 31 1 894 349 43 45 1 916 318 27 31 1 925 301 20 22 1 918 281 16 19 1 943 298 16 23 1 961 314 21 22 1 967 295 18 25 1 987 308 17 27 1 988 328 36 38 1 961 343 39 46 1 1003 307 21 25 1 1028 308 18 21 1 1051 300 20 25 1 1057 325 24 36 1
JPEGImages/PartB_01865.jpg 9 9 82 68 74 1 89 74 40 44 1 183 54 52 59 1 147 116 104 107 1 257 67 43 51 1 364 63 40 48 1 398 49 36 40 1 453 75 52 72 1 491 48 50 59 1
JPEGImages/PartB_00136.jpg 31 30 181 21 19 1 81 179 16 18 1 108 181 20 16 1 153 178 17 15 1 190 177 13 15 1 225 175 14 17 1 267 174 16 18 1 303 175 16 21 1 350 176 14 18 1 381 169 13 19 1 60 243 38 32 1 101 230 20 23 1 116 234 23 35 1 150 256 42 35 1 176 229 28 25 1 156 223 21 22 1 144 240 29 24 1 34 227 25 19 1 43 242 25 30 1 215 236 25 31 1 241 251 33 21 1 280 220 19 22 1 308 229 22 20 1 298 242 29 25 1 334 243 29 32 1 340 223 22 22 1 365 240 29 37 1 363 225 19 22 1 400 235 22 24 1 393 218 22 23 1 424 223 15 35 1
JPEGImages/PartB_00444.jpg 12 43 80 25 32 1 92 69 25 28 1 131 69 28 30 1 182 65 26 34 1 213 63 23 26 1 111 116 74 69 1 269 54 22 30 1 297 62 26 29 1 329 74 29 36 1 321 70 21 27 1 380 81 30 35 1 424 80 41 44 1
JPEGImages/PartB_02367.jpg 23 23 121 19 23 1 53 123 20 22 1 74 158 19 23 1 97 122 19 22 1 117 160 17 21 1 132 127 18 18 1 154 128 18 22 1 163 159 20 23 1 185 128 17 19 1 203 157 21 23 1 224 126 18 21 1 246 154 20 25 1 240 125 14 16 1 261 126 15 21 1 276 124 16 21 1 292 157 23 29 1 291 121 18 22 1 322 125 19 21 1 327 156 19 23 1 357 123 20 24 1 373 162 20 23 1 392 122 22 23 1 411 123 20 24 1
JPEGImages/PartB_02117.jpg 41 66 346 79 96 1 41 260 44 44 1 106 244 28 34 1 127 263 35 38 1 145 289 60 74 1 157 240 25 34 1 171 249 24 27 1 194 247 28 32 1 236 256 38 40 1 269 284 52 52 1 284 307 56 60 1 278 359 101 110 1 437 317 62 80 1 405 288 43 52 1 410 271 35 36 1 417 236 25 27 1 383 243 24 28 1 335 243 24 25 1 317 230 22 23 1 297 246 31 32 1 278 246 23 24 1 268 227 18 22 1 480 273 24 24 1 496 267 39 44 1 463 207 26 31 1 478 240 25 25 1 523 238 20 24 1 534 245 27 26 1 567 238 23 27 1 564 268 28 35 1 543 292 44 61 1 612 249 41 54 1 599 253 22 25 1 655 266 31 41 1 661 242 23 30 1 681 260 22 26 1 719 253 20 27 1 739 276 29 44 1 755 253 21 25 1 780 263 31 37 1 836 246 51 61 1
JPEGImages/PartB_00708.jpg 4 23 100 184 198 1 384 152 153 196 1 546 79 229 303 1 812 60 210 323 1
JPEGImages/PartB_00863.jpg 6 68 238 83 74 1 354 116 52 66 1 540 253 53 62 1 319 261 141 190 1 222 224 94 110 1 734 207 116 260 1
JPEGImages/PartB_01417.jpg 32 2 195 39 40 1 42 185 30 33 1 67 146 19 16 1 55 150 12 15 1 94 154 11 16 1 107 155 16 19 1 111 183 34 39 1 68 171 24 20 1 133 155 16 17 1 139 146 13 13 1 162 140 10 10 1 154 154 13 14 1 159 168 26 24 1 191 164 20 17 1 208 159 22 24 1 206 149 12 11 1 236 151 17 18 1 253 149 13 17 1 245 142 8 11 1 260 141 12 13 1 269 149 17 18 1 321 142 15 14 1 249 200 46 64 1 285 207 39 47 1 336 147 41 52 1 372 153 22 29 1 386 144 21 22 1 399 182 36 48 1 395 224 63 68 1 420 165 33 32 1 429 144 18 18 1 411 151 15 19 1
JPEGImages/PartB_02191.jpg 24 478 273 22 28 1 36 413 50 50 1 104 410 47 55 1 61 470 86 82 1 172 438 63 54 1 224 395 41 31 1 299 376 30 38 1 336 360 31 35 1 344 393 42 48 1 289 471 93 84 1 406 398 45 47 1 379 387 36 38 1 470 375 33 42 1 505 374 31 30 1 501 419 56 58 1 552 369 33 30 1 578 369 23 31 1 601 367 30 33 1 646 392 43 44 1 650 441 50 50 1 701 434 47 53 1 687 382 29 37 1 691 362 26 27 1 743 365 40 43 1
JPEGImages/PartB_01027.jpg 4 273 444 154 176 1 419 307 95 128 1 531 234 76 116 1 632 194 60 81 1
JPEGImages/PartB_00946.jpg 52 78 87 10 11 1 14 116 15 14 1 2 122 12 11 1 11 138 13 18 1 24 142 10 14 1 36 142 13 17 1 53 140 10 14 1 62 138 15 13 1 47 119 9 11 1 319 164 66 64 1 402 171 44 47 1 450 157 57 60 1 449 134 28 31 1 487 130 26 28 1 383 136 29 32 1 375 124 26 28 1 320 146 34 33 1 293 139 24 30 1 256 154 37 43 1 238 145 30 35 1 191 156 32 31 1 180 177 44 44 1 135 168 28 30 1 84 156 25 23 1 105 146 19 19 1 129 145 12 13 1 149 144 24 24 1 135 127 15 15 1 119 123 12 14 1 112 118 9 9 1 103 128 14 16 1 84 134 12 11 1 75 130 9 11 1 66 124 10 9 1 131 111 13 14 1 145 116 13 11 1 156 128 16 14 1 170 124 11 12 1 186 133 17 20 1 196 140 22 18 1 194 113 11 12 1 207 123 12 13 1 266 127 22 21 1 246 132 14 12 1 224 129 11 13 1 223 112 12 8 1 216 108 9 10 1 251 114 9 9 1 249 106 10 9 1 239 111 8 10 1 275 118 11 9 1 266 105 9 7 1
JPEGImages/PartB_00229.jpg 32 70 130 9 13 1 231 156 11 12 1 263 156 14 16 1 300 155 13 15 1 331 151 12 14 1 371 159 13 13 1 397 183 48 47 1 400 167 23 22 1 425 236 69 77 1 468 314 112 110 1 512 208 36 41 1 488 200 27 31 1 477 180 26 25 1 514 177 20 23 1 541 185 22 27 1 557 231 59 65 1 552 208 47 41 1 570 192 34 37 1 277 184 20 14 1 263 178 17 20 1 250 188 20 23 1 236 173 15 23 1 230 195 20 25 1 213 200 27 26 1 185 205 27 31 1 139 197 29 36 1 161 189 20 26 1 99 218 34 41 1 51 220 55 67 1 91 191 22 22 1 111 180 20 28 1 85 179 22 19 1
JPEGImages/PartB_01187.jpg 41 98 606 173 162 1 35 510 112 119 1 145 482 73 75 1 99 467 51 56 1 65 452 43 44 1 23 457 43 42 1 36 427 37 38 1 97 433 38 32 1 139 425 35 41 1 165 437 29 29 1 228 426 28 38 1 253 429 32 40 1 300 445 35 43 1 341 428 30 45 1 383 430 45 55 1 370 482 82 120 1 512 533 154 183 1 485 458 58 67 1 478 431 44 48 1 420 412 33 49 1 370 420 26 35 1 282 422 25 33 1 482 366 24 33 1 538 346 24 34 1 585 442 44 50 1 573 419 30 43 1 638 449 50 66 1 682 457 66 86 1 668 422 37 45 1 648 405 28 40 1 697 406 29 38 1 736 412 33 41 1 732 439 46 65 1 833 462 64 81 1 828 432 47 50 1 782 419 42 40 1 841 399 47 50 1 896 399 42 43 1 990 407 34 43 1 938 455 72 81 1 980 485 44 93 1
JPEGImages/PartB_00503.jpg 7 3 256 95 110 1 141 221 43 44 1 210 227 46 47 1 265 205 43 49 1 332 206 45 54 1 478 207 81 84 1 315 127 47 49 1
JPEGImages/PartB_01513.jpg 23 49 90 46 56 1 89 86 25 33 1 110 90 22 31 1 121 85 20 30 1 137 92 16 26 1 150 93 15 23 1 168 95 11 18 1 176 94 11 18 1 187 95 15 18 1 198 91 12 16 1 210 96 18 19 1 233 95 14 18 1 231 79 15 15 1 262 79 16 20 1 310 74 14 16 1 319 81 16 19 1 354 5 38 35 1 10 75 27 29 1 13 61 13 15 1 8 21 16 18 1 89 69 12 10 1 138 70 14 17 1 174 75 14 15 1
JPEGImages/PartB_00117.jpg 8 76 117 48 54 1 62 161 17 21 1 126 160 26 36 1 153 161 38 44 1 140 203 70 79 1 214 179 56 55 1 252 158 43 53 1 340 195 49 75 1
JPEGImages/PartB_02131.jpg 13 16 161 39 44 1 50 168 51 52 1 83 159 27 36 1 86 42 33 37 1 99 179 43 45 1 146 221 75 81 1 193 164 30 34 1 221 174 52 61 1 247 157 37 39 1 285 154 36 42 1 370 205 70 78 1 351 178 44 54 1 372 160 38 43 1
JPEGImages/PartB_01535.jpg 16 47 217 72 81 1 175 240 70 76 1 164 167 42 53 1 217 146 34 43 1 247 165 50 56 1 307 120 31 38 1 329 139 36 37 1 380 127 31 38 1 385 194 49 47 1 451 142 43 50 1 460 240 72 89 1 561 270 83 85 1 657 221 67 79 1 633 139 39 48 1 565 135 29 35 1 506 197 46 58 1
JPEGImages/PartB_02392.jpg 36 416 194 51 54 1 356 174 30 36 1 311 196 47 46 1 224 202 70 69 1 182 170 23 24 1 130 174 32 31 1 90 172 21 25 1 53 176 36 38 1 29 175 23 26 1 15 162 17 17 1 5 154 16 15 1 1 164 20 23 1 39 153 14 15 1 72 154 13 16 1 99 160 14 13 1 116 160 15 16 1 162 165 17 16 1 205 156 16 15 1 226 168 22 20 1 229 154 16 17 1 258 162 23 23 1 252 155 12 14 1 135 154 10 12 1 298 161 11 15 1 287 153 13 14 1 304 149 8 10 1 312 154 15 15 1 327 159 11 12 1 328 150 9 9 1 344 155 11 11 1 373 164 22 27 1 392 161 18 22 1 406 158 17 21 1 400 149 11 15 1 374 148 12 13 1 449 161 22 24 1
JPEGImages/PartB_01310.jpg 5 1 56 41 74 1 30 231 121 103 1 114 36 52 71 1 240 58 61 73 1 267 225 111 133 1
JPEGImages/PartB_01671.jpg 4 20 76 101 104 1 138 92 63 86 1 195 97 104 129 1 281 69 95 111 1
JPEGImages/PartB_02042.jpg 9 85 342 103 86 1 236 195 19 23 1 278 272 44 55 1 342 293 67 78 1 396 240 32 34 1 495 226 22 26 1 541 241 25 27 1 540 228 10 15 1 548 227 14 17 1
JPEGImages/PartB_01926.jpg 28 109 209 36 33 1 170 207 40 39 1 94 193 36 32 1 64 193 23 21 1 159 184 25 27 1 159 166 20 21 1 193 185 23 28 1 223 193 22 30 1 242 198 27 30 1 271 206 32 30 1 265 169 22 26 1 247 174 17 18 1 231 181 16 19 1 214 176 17 17 1 305 164 14 15 1 314 183 14 20 1 330 187 23 27 1 324 166 17 19 1 385 160 20 24 1 410 189 34 37 1 451 193 30 31 1 443 188 20 19 1 436 170 20 22 1 419 160 20 26 1 470 184 16 18 1 491 188 26 29 1 512 178 18 29 1 535 191 15 27 1
JPEGImages/PartB_00368.jpg 71 275 144 25 31 1 268 123 19 21 1 275 109 15 17 1 279 98 14 17 1 285 87 10 14 1 284 77 9 8 1 289 72 9 8 1 365 167 35 51 1 345 146 26 30 1 330 125 19 25 1 327 112 19 19 1 314 96 14 18 1 305 90 14 13 1 328 84 12 12 1 338 89 13 18 1 352 98 16 19 1 364 106 17 21 1 379 124 18 27 1 328 75 10 10 1 308 83 9 9 1 36 156 38 41 1 1 152 24 32 1 26 131 21 23 1 35 123 18 16 1 64 131 26 30 1 104 138 28 29 1 152 120 20 25 1 172 108 15 16 1 195 100 12 15 1 207 93 10 13 1 213 89 9 11 1 221 82 8 11 1 232 80 7 9 1 237 78 7 9 1 218 72 7 7 1 214 79 6 10 1 205 82 9 11 1 194 87 9 12 1 183 92 11 11 1 167 98 12 11 1 145 110 13 15 1 110 120 20 17 1 83 116 15 20 1 88 104 15 15 1 108 100 14 16 1 118 107 14 15 1 139 97 11 13 1 134 89 11 13 1 154 89 12 14 1 164 84 10 11 1 176 83 10 13 1 183 76 9 8 1 189 81 9 9 1 142 76 6 9 1 129 76 9 10 1 123 73 8 9 1 116 76 8 6 1 112 80 9 6 1 117 85 7 9 1 104 84 7 10 1 97 85 9 13 1 83 83 9 7 1 80 87 11 10 1 76 92 9 10 1 65 87 10 11 1 54 88 10 12 1 49 99 12 16 1 35 89 12 11 1 19 95 13 13 1 11 104 16 15 1 1 97 12 17 1
JPEGImages/PartB_00844.jpg 14 31 120 21 19 1 52 130 22 24 1 71 121 14 16 1 85 139 20 25 1 95 145 26 27 1 142 152 46 40 1 161 121 18 24 1 176 128 18 22 1 212 133 19 26 1 252 134 22 24 1 284 136 21 29 1 318 141 21 29 1 390 149 28 38 1 408 157 57 54 1
JPEGImages/PartB_00173.jpg 8 326 278 49 62 1 428 253 53 61 1 512 293 54 70 1 617 294 46 58 1 697 311 49 59 1 781 297 51 65 1 878 302 55 59 1 972 285 52 52 1
JPEGImages/PartB_01684.jpg 3 9 25 111 141 1 230 34 172 232 1 478 36 156 177 1
JPEGImages/PartB_01019.jpg 7 86 141 18 20 1 119 143 20 24 1 166 157 16 19 1 198 154 19 21 1 317 150 18 21 1 368 159 15 21 1 406 160 15 18 1
JPEGImages/PartB_01345.jpg 29 18 365 42 37 1 36 396 40 31 1 64 424 55 52 1 99 461 79 66 1 215 429 65 53 1 173 375 45 52 1 113 375 46 45 1 115 341 37 38 1 164 348 35 36 1 221 382 38 33 1 284 382 43 39 1 306 373 39 32 1 267 347 32 27 1 344 344 35 32 1 418 370 39 38 1 400 391 39 33 1 359 417 63 58 1 355 448 85 85 1 417 342 26 25 1 474 256 19 25 1 498 347 28 33 1 518 367 38 39 1 513 396 47 33 1 522 414 60 62 1 571 345 29 35 1 584 370 36 40 1 633 390 50 45 1 668 410 56 52 1 627 430 100 105 1
JPEGImages/PartB_00100.jpg 13 145 101 15 18 1 238 117 14 16 1 293 162 12 14 1 306 170 13 15 1 323 169 13 17 1 332 182 15 19 1 348 185 22 25 1 57 230 39 34 1 71 213 30 30 1 78 194 24 26 1 97 163 15 16 1 90 157 11 10 1 71 183 20 18 1
JPEGImages/PartB_00086.jpg 23 165 301 32 37 1 226 427 47 57 1 280 411 61 65 1 288 380 37 40 1 257 370 33 42 1 370 360 42 37 1 353 396 47 49 1 536 464 74 90 1 528 407 46 50 1 492 366 39 39 1 542 382 39 44 1 561 356 30 31 1 592 370 47 39 1 638 396 54 53 1 725 413 78 80 1 723 380 41 41 1 781 385 45 48 1 771 357 38 33 1 807 349 27 33 1 821 379 32 43 1 860 351 32 30 1 903 388 71 74 1 931 346 32 41 1
JPEGImages/PartB_01556.jpg 13 92 439 33 40 1 115 429 45 50 1 170 445 69 75 1 221 430 30 45 1 294 449 42 53 1 361 452 52 64 1 343 436 22 34 1 410 448 31 38 1 480 434 27 39 1 518 441 33 46 1 591 444 36 42 1 629 465 49 50 1 915 218 147 155 1
JPEGImages/PartB_02045.jpg 13 26 151 27 29 1 27 180 46 48 1 67 172 38 29 1 100 152 20 24 1 246 145 23 28 1 272 154 28 33 1 304 151 20 24 1 348 170 40 50 1 361 160 30 29 1 299 125 17 18 1 398 148 19 23 1 444 162 44 49 1 451 147 19 24 1
JPEGImages/PartB_01141.jpg 11 97 139 57 56 1 55 123 31 28 1 56 110 20 20 1 145 106 20 22 1 179 153 61 61 1 223 106 23 23 1 298 120 42 34 1 342 112 28 28 1 370 153 77 69 1 448 133 41 44 1 443 123 25 24 1
JPEGImages/PartB_02345.jpg 28 59 131 34 36 1 31 118 30 34 1 2 107 21 24 1 21 97 19 24 1 14 84 15 14 1 54 104 25 25 1 96 94 14 17 1 107 108 28 32 1 136 93 13 15 1 156 87 16 20 1 166 28 59 71 1 228 80 15 20 1 242 97 21 26 1 254 86 15 15 1 268 77 11 16 1 275 87 12 14 1 286 89 10 15 1 302 96 23 25 1 316 114 38 40 1 312 81 15 15 1 326 82 11 16 1 332 84 18 23 1 354 97 20 25 1 362 115 24 32 1 365 60 13 13 1 377 79 13 18 1 398 88 15 19 1 402 76 13 15 1
JPEGImages/PartB_02220.jpg 24 149 160 35 43 1 195 172 40 45 1 187 156 20 28 1 139 161 20 26 1 126 160 20 24 1 227 163 29 32 1 248 164 27 33 1 296 159 21 23 1 308 194 50 60 1 330 178 31 34 1 330 164 17 21 1 376 159 23 26 1 392 161 26 32 1 427 187 44 56 1 460 158 24 32 1 487 170 29 37 1 494 165 23 21 1 548 182 35 33 1 585 174 22 23 1 609 167 18 26 1 644 179 36 44 1 669 170 23 29 1 702 195 31 38 1 705 175 25 30 1
JPEGImages/PartB_02065.jpg 32 54 139 21 26 1 71 158 27 29 1 98 165 30 31 1 114 144 21 27 1 163 141 19 22 1 146 177 37 43 1 205 193 42 48 1 260 243 53 69 1 365 207 35 36 1 391 184 31 35 1 417 167 27 30 1 446 164 22 24 1 449 155 16 17 1 463 149 14 18 1 456 140 16 18 1 467 135 11 16 1 467 147 20 19 1 442 131 8 12 1 427 138 13 12 1 415 132 10 12 1 398 133 11 14 1 394 128 10 13 1 373 130 13 18 1 353 129 11 13 1 353 123 10 10 1 330 126 12 14 1 314 125 12 15 1 307 127 13 14 1 285 131 10 14 1 261 132 12 15 1 230 131 14 17 1 193 135 18 22 1
JPEGImages/PartB_01497.jpg 7 290 366 124 123 1 290 503 127 152 1 308 76 93 106 1 527 275 75 92 1 684 459 139 141 1 738 266 87 104 1 914 335 120 122 1
JPEGImages/PartB_01585.jpg 10 75 72 136 120 1 82 30 97 76 1 271 8 93 123 1 307 46 100 108 1 378 95 70 84 1 445 111 98 117 1 621 117 95 118 1 600 53 89 116 1 735 112 63 102 1 778 97 80 109 1
JPEGImages/PartB_00522.jpg 37 49 187 37 43 1 50 120 33 37 1 113 81 31 39 1 125 192 41 42 1 201 193 39 35 1 272 200 38 39 1 345 195 33 43 1 417 194 31 38 1 497 181 32 42 1 566 187 40 39 1 636 192 38 47 1 714 196 34 42 1 691 129 30 40 1 625 117 30 35 1 566 126 33 33 1 497 133 37 45 1 425 131 26 35 1 366 143 33 44 1 304 134 36 35 1 228 134 43 42 1 157 136 31 41 1 167 80 33 40 1 239 80 30 35 1 278 76 30 39 1 323 70 33 34 1 377 76 30 30 1 428 70 34 33 1 485 74 32 37 1 541 77 31 37 1 567 47 33 31 1 621 26 35 35 1 451 26 31 34 1 395 36 29 41 1 328 34 29 34 1 245 26 33 35 1 194 28 33 34 1 154 28 28 33 1
JPEGImages/PartB_01879.jpg 10 15 165 53 56 1 92 155 46 54 1 157 165 46 53 1 216 186 42 44 1 265 179 39 49 1 310 182 37 44 1 378 155 49 53 1 426 133 53 65 1 511 153 54 59 1 570 149 59 71 1
JPEGImages/PartB_01455.jpg 44 156 307 83 93 1 83 282 64 64 1 56 252 48 44 1 62 209 43 46 1 9 217 45 39 1 146 208 31 35 1 179 211 28 34 1 199 220 34 40 1 218 203 27 23 1 246 207 50 51 1 274 207 36 33 1 289 250 54 58 1 343 254 57 64 1 368 236 34 38 1 337 222 31 33 1 348 207 28 28 1 330 190 23 25 1 322 181 18 28 1 279 184 23 22 1 368 183 24 26 1 409 183 28 28 1 421 203 28 32 1 428 225 34 43 1 469 235 43 59 1 499 222 34 40 1 479 203 28 33 1 516 180 25 29 1 536 189 27 31 1 562 205 38 37 1 583 180 26 32 1 607 188 24 32 1 641 177 27 33 1 598 414 121 121 1 683 312 75 99 1 753 264 69 74 1 736 231 49 49 1 759 209 38 43 1 792 198 30 37 1 806 184 32 33 1 913 258 37 74 1 896 249 43 56 1 900 211 39 46 1 919 197 30 37 1 910 182 32 35 1
JPEGImages/PartB_01211.jpg 24 66 1083 168 161 1 103 994 102 103 1 259 1079 164 184 1 443 1060 125 141 1 414 1033 88 91 1 280 1476 297 252 1 761 1090 141 180 1 820 969 112 123 1 957 1088 152 154 1 1046 992 124 125 1 1012 1272 208 243 1 1323 683 113 155 1 1482 761 84 134 1 1323 972 97 116 1 1486 1045 134 136 1 1605 936 127 129 1 1600 1236 189 233 1 2059 1435 327 293 1 1873 1042 134 164 1 1886 949 142 123 1 2007 995 114 111 1 2127 1058 202 177 1 2314 1013 132 156 1 2321 965 86 100 1
JPEGImages/PartB_01042.jpg 14 1 224 30 39 1 56 220 28 24 1 93 214 21 22 1 134 251 28 26 1 92 237 25 30 1 202 234 34 37 1 224 229 20 27 1 229 217 16 27 1 243 216 17 30 1 308 153 23 23 1 433 217 26 30 1 472 231 34 36 1 456 233 23 33 1 533 204 45 55 1
JPEGImages/PartB_01035.jpg 7 11 372 105 137 1 114 441 56 67 1 187 358 46 72 1 396 448 51 60 1 529 424 72 77 1 593 464 150 141 1 837 386 106 136 1
JPEGImages/PartB_01937.jpg 12 24 280 36 43 1 2 288 31 67 1 87 285 61 71 1 126 282 35 50 1 220 290 34 46 1 263 280 34 42 1 335 285 48 50 1 352 274 22 27 1 561 318 97 105 1 656 306 123 144 1 841 214 42 45 1 867 440 156 175 1
JPEGImages/PartB_01795.jpg 6 267 101 46 57 1 315 120 34 42 1 326 65 64 79 1 376 99 34 47 1 397 71 95 94 1 489 75 50 79 1
JPEGImages/PartB_02021.jpg 17 2 191 38 46 1 41 188 30 32 1 54 206 48 58 1 85 192 24 24 1 101 186 36 42 1 103 175 25 25 1 130 189 29 35 1 140 180 25 24 1 163 178 22 25 1 156 120 15 21 1 159 206 84 86 1 200 178 40 43 1 290 186 36 42 1 298 175 25 26 1 334 220 66 63 1 351 196 25 22 1 380 194 19 31 1
JPEGImages/PartB_01724.jpg 20 87 67 40 40 1 273 142 19 20 1 287 140 21 23 1 304 152 24 26 1 324 168 24 30 1 352 178 32 33 1 383 199 37 38 1 364 134 17 19 1 395 135 18 21 1 407 147 16 26 1 417 148 24 30 1 428 126 16 18 1 447 129 18 25 1 472 167 30 30 1 469 229 55 56 1 514 193 36 41 1 499 138 24 25 1 539 150 25 25 1 580 158 19 29 1 580 137 20 22 1
JPEGImages/PartB_01813.jpg 4 92 228 59 52 1 176 247 65 53 1 246 88 27 34 1 355 226 45 58 1
JPEGImages/PartB_00694.jpg 3 35 230 147 168 1 319 237 201 233 1 683 117 287 355 1
JPEGImages/PartB_00041.jpg 18 539 450 68 72 1 293 636 112 120 1 148 761 189 205 1 161 641 125 134 1 11 645 100 102 1 1 731 79 117 1 720 689 157 163 1 861 702 207 218 1 828 613 113 112 1 1175 656 137 148 1 1266 675 111 166 1 1352 532 84 95 1 1100 657 107 131 1 1911 716 166 207 1 2071 689 120 134 1 1870 673 132 145 1 2387 723 156 172 1 2300 647 132 187 1
JPEGImages/PartB_01806.jpg 14 2 129 27 32 1 1 97 12 15 1 22 98 16 17 1 35 89 13 14 1 61 100 16 18 1 61 91 15 13 1 45 139 36 37 1 104 111 21 21 1 96 98 15 17 1 138 106 16 18 1 172 123 25 28 1 202 101 20 24 1 303 95 29 31 1 332 49 52 57 1
JPEGImages/PartB_00535.jpg 8 49 106 95 109 1 76 1 57 52 1 161 3 64 72 1 264 87 86 86 1 323 180 123 132 1 385 131 108 117 1 302 5 62 71 1 457 24 68 74 1
JPEGImages/PartB_02277.jpg 4 3 86 83 204 1 78 190 68 79 1 124 211 78 99 1 362 175 145 184 1
JPEGImages/PartB_00255.jpg 18 24 147 32 42 1 66 149 24 30 1 101 150 31 36 1 142 142 40 53 1 212 149 24 32 1 194 162 14 23 1 250 157 36 40 1 301 145 30 44 1 337 152 25 42 1 379 144 33 39 1 418 154 30 38 1 448 152 23 26 1 473 156 15 23 1 492 164 21 30 1 513 171 19 23 1 523 158 14 17 1 546 166 22 31 1 576 166 21 20 1
JPEGImages/PartB_00221.jpg 18 1761 1231 96 120 1 5145 1285 104 127 1 4026 1366 58 88 1 4745 2489 523 558 1 3661 2285 350 412 1 4026 1943 215 246 1 4076 1801 185 211 1 3518 1927 189 208 1 3257 2212 315 304 1 3203 1874 127 173 1 2699 2024 231 234 1 2641 1889 189 177 1 2391 1885 208 242 1 1249 3012 658 569 1 1295 2454 473 462 1 1311 2027 257 300 1 288 2039 203 223 1 314 1966 162 146 1
JPEGImages/PartB_01032.jpg 19 245 153 15 14 1 317 202 24 28 1 389 217 35 37 1 417 193 33 37 1 266 210 25 24 1 231 222 36 49 1 146 265 78 65 1 168 229 32 36 1 212 209 21 24 1 170 207 20 23 1 111 204 20 24 1 87 228 28 29 1 51 217 26 26 1 73 208 14 16 1 42 207 16 16 1 25 204 15 15 1 17 220 27 25 1 1 265 50 58 1 1 214 10 20 1
JPEGImages/PartB_01818.jpg 3 160 133 74 85 1 466 307 87 74 1 624 287 76 72 1
JPEGImages/PartB_01906.jpg 51 349 180 67 77 1 425 143 26 38 1 439 133 23 26 1 453 127 16 19 1 466 125 15 18 1 440 122 11 14 1 433 131 7 12 1 425 134 10 12 1 416 134 12 13 1 405 139 19 18 1 413 125 13 14 1 421 122 10 12 1 392 129 14 12 1 376 139 22 21 1 359 137 18 19 1 311 140 23 25 1 192 166 43 46 1 260 138 18 15 1 284 108 8 9 1 331 127 10 13 1 344 124 10 11 1 318 130 9 9 1 295 130 14 14 1 272 131 9 10 1 275 135 10 8 1 287 130 9 12 1 248 135 15 16 1 246 130 10 11 1 234 130 11 14 1 219 133 17 18 1 224 128 12 10 1 205 142 19 21 1 207 136 12 11 1 192 133 16 18 1 176 134 11 14 1 186 151 17 14 1 151 139 18 17 1 165 132 10 12 1 184 128 12 15 1 140 134 13 10 1 135 146 23 17 1 126 134 12 15 1 100 143 21 19 1 109 139 13 13 1 77 137 14 14 1 64 159 21 21 1 34 154 30 25 1 46 142 22 19 1 67 136 12 14 1 2 165 35 36 1 3 148 15 14 1
JPEGImages/PartB_00244.jpg 17 32 195 62 58 1 19 156 43 41 1 31 128 36 38 1 127 130 33 35 1 166 146 39 39 1 174 161 41 43 1 244 194 56 47 1 248 131 34 35 1 272 115 26 27 1 335 146 33 34 1 232 300 83 88 1 376 212 51 63 1 398 155 38 42 1 513 173 43 51 1 528 249 63 79 1 542 88 22 23 1 717 170 51 47 1
JPEGImages/PartB_00559.jpg 31 156 177 137 161 1 139 98 88 96 1 124 54 36 42 1 159 45 32 38 1 137 39 26 21 1 139 28 20 20 1 218 29 28 33 1 246 40 30 38 1 266 60 43 46 1 287 41 27 27 1 321 31 27 36 1 333 77 52 61 1 379 104 62 76 1 518 173 103 133 1 547 101 67 84 1 453 73 42 52 1 386 64 38 42 1 362 41 27 28 1 403 31 28 43 1 442 43 32 31 1 481 38 21 26 1 502 44 25 31 1 523 37 24 35 1 557 49 27 34 1 586 79 39 52 1 611 55 38 51 1 695 70 29 36 1 739 109 56 63 1 731 160 96 109 1 739 74 51 65 1 833 85 44 58 1
JPEGImages/PartB_01177.jpg 13 37 687 149 136 1 118 566 110 110 1 35 505 101 104 1 269 526 101 104 1 387 576 107 124 1 452 499 88 89 1 603 508 88 101 1 687 485 67 78 1 623 282 83 82 1 949 690 188 157 1 1068 616 117 150 1 1081 530 101 122 1 1105 494 101 105 1
JPEGImages/PartB_00670.jpg 6 97 189 78 107 1 161 1 75 89 1 187 205 168 206 1 462 191 154 196 1 634 38 101 118 1 533 157 76 90 1
JPEGImages/PartB_00713.jpg 24 49 449 66 68 1 75 417 52 48 1 103 374 43 51 1 203 355 30 29 1 228 390 47 41 1 187 414 64 70 1 260 427 61 69 1 279 438 84 82 1 284 361 32 29 1 338 385 44 45 1 348 424 42 53 1 393 412 58 63 1 393 385 36 39 1 430 391 41 40 1 439 462 87 104 1 505 394 53 63 1 556 496 109 104 1 579 360 38 48 1 618 384 36 38 1 672 387 40 41 1 713 384 31 43 1 730 364 33 38 1 740 395 51 57 1 688 291 24 25 1
JPEGImages/PartB_01014.jpg 11 16 179 257 207 1 42 5 73 67 1 131 117 87 84 1 250 108 118 127 1 384 110 173 183 1 510 71 117 115 1 365 26 85 84 1 756 13 135 162 1 852 110 252 282 1 1032 17 168 198 1 525 3 52 37 1
JPEGImages/PartB_01143.jpg 35 37 211 50 53 1 14 197 31 33 1 1 174 27 33 1 97 246 62 66 1 225 248 57 57 1 148 211 43 48 1 113 201 35 40 1 82 178 38 37 1 184 187 28 28 1 199 205 41 31 1 249 220 42 40 1 238 190 28 33 1 285 208 31 34 1 333 245 49 46 1 425 249 47 46 1 351 224 30 35 1 315 193 22 32 1 352 203 27 28 1 369 215 24 25 1 412 215 27 29 1 410 197 28 27 1 433 219 39 37 1 465 214 22 25 1 470 203 17 25 1 494 224 26 32 1 517 245 41 42 1 522 221 22 29 1 515 202 22 28 1 557 194 29 31 1 561 218 34 36 1 591 240 43 55 1 644 254 34 46 1 659 235 26 37 1 627 218 33 39 1 604 217 26 30 1
JPEGImages/PartB_00630.jpg 23 220 258 142 157 1 84 167 121 128 1 1 153 72 97 1 187 121 52 52 1 238 102 42 53 1 261 131 37 48 1 289 89 39 46 1 322 115 36 42 1 360 115 48 56 1 418 115 47 58 1 417 39 31 50 1 472 98 32 43 1 491 112 38 36 1 512 133 47 65 1 524 94 29 35 1 553 103 36 43 1 609 131 46 62 1 638 110 29 32 1 673 99 30 42 1 710 101 30 39 1 775 112 35 50 1 836 110 33 45 1 962 102 50 62 1
JPEGImages/PartB_01307.jpg 10 1148 1463 325 357 1 966 1935 336 378 1 195 1988 318 336 1 1627 1952 314 386 1 2016 1702 361 418 1 2398 2135 250 275 1 2795 1817 393 400 1 3391 1345 432 511 1 4152 1820 332 379 1 4534 924 432 490 1
JPEGImages/PartB_01630.jpg 29 338 164 19 18 1 332 157 15 18 1 320 158 11 12 1 293 155 13 14 1 282 149 9 9 1 252 151 13 13 1 244 168 32 33 1 206 151 12 11 1 228 142 7 8 1 194 140 8 8 1 171 141 11 11 1 163 134 6 6 1 130 113 8 11 1 143 137 12 11 1 138 131 9 8 1 122 131 13 16 1 92 157 31 37 1 95 143 21 21 1 86 128 11 13 1 64 127 11 13 1 33 124 11 12 1 48 127 13 13 1 52 119 8 9 1 77 123 7 10 1 101 127 7 6 1 26 118 8 9 1 14 121 9 9 1 12 117 8 9 1 161 163 25 26 1
JPEGImages/PartB_00001.jpg 9 45 113 26 23 1 30 106 20 24 1 142 152 101 125 1 192 101 37 35 1 276 142 51 63 1 323 138 58 65 1 296 103 23 23 1 412 124 53 52 1 601 105 28 30 1
JPEGImages/PartB_02039.jpg 11 5 47 24 24 1 31 61 23 23 1 74 57 19 21 1 113 79 28 34 1 120 52 20 23 1 162 56 24 24 1 194 79 28 34 1 204 55 17 24 1 243 52 21 27 1 281 59 23 25 1 326 42 24 25 1
JPEGImages/PartB_00975.jpg 9 260 163 121 146 1 408 167 120 166 1 264 349 178 159 1 602 349 131 177 1 592 155 121 195 1 750 187 127 155 1 855 326 134 179 1 1012 341 142 167 1 982 186 126 152 1
JPEGImages/PartB_01559.jpg 12 10 319 93 91 1 155 312 58 55 1 244 330 57 62 1 298 312 67 74 1 429 321 41 48 1 491 298 121 130 1 662 255 39 41 1 596 331 29 43 1 696 307 64 81 1 661 330 34 42 1 780 238 135 167 1 4 174 49 95 1
JPEGImages/PartB_01707.jpg 21 64 153 72 78 1 276 186 12 16 1 304 185 13 20 1 315 177 11 13 1 326 189 15 19 1 328 175 13 15 1 352 170 12 12 1 366 172 12 17 1 355 188 14 17 1 380 184 18 22 1 376 164 12 14 1 393 176 15 16 1 399 162 12 15 1 428 167 15 17 1 420 187 19 24 1 457 188 20 23 1 478 167 19 22 1 473 155 12 15 1 511 152 15 20 1 543 163 25 28 1 509 190 28 27 1
JPEGImages/PartB_01318.jpg 5 59 360 46 47 1 158 169 33 38 1 380 148 47 59 1 342 338 60 69 1 456 132 56 76 1
JPEGImages/PartB_02292.jpg 6 56 104 103 111 1 230 124 72 83 1 306 66 79 103 1 417 95 41 46 1 501 78 36 38 1 533 71 36 40 1
JPEGImages/PartB_01557.jpg 8 10 376 462 1112 1 310 451 578 847 1 539 194 720 959 1 1208 233 574 869 1 1359 94 472 619 1 1859 172 564 824 1 2245 11 414 430 1 2655 49 296 406 1
JPEGImages/PartB_00354.jpg 6 266 149 27 41 1 317 229 40 44 1 372 272 57 47 1 512 225 38 36 1 81 273 56 63 1 126 211 39 35 1
JPEGImages/PartB_00078.jpg 26 613 272 27 59 1 538 318 42 44 1 576 274 28 29 1 568 254 30 31 1 497 263 25 27 1 375 214 33 33 1 356 261 19 20 1 309 285 17 19 1 291 301 17 17 1 244 299 21 24 1 209 313 26 30 1 153 321 30 32 1 142 287 16 19 1 208 280 17 21 1 230 273 17 16 1 143 264 14 16 1 131 240 12 15 1 111 274 17 20 1 110 241 15 16 1 71 243 17 15 1 53 243 14 15 1 45 237 9 11 1 35 251 16 18 1 17 249 15 15 1 13 291 22 20 1 57 284 18 19 1
JPEGImages/PartB_02316.jpg 20 6 165 76 70 1 21 84 26 31 1 28 78 24 27 1 30 52 15 16 1 71 59 18 19 1 109 78 16 15 1 126 66 15 13 1 144 70 16 17 1 171 89 20 19 1 149 97 26 24 1 162 114 26 30 1 196 112 31 32 1 185 174 89 103 1 262 123 36 36 1 277 94 24 25 1 317 99 30 31 1 346 118 35 41 1 352 97 28 27 1 403 56 21 24 1 468 117 30 36 1
JPEGImages/PartB_01607.jpg 7 8 287 84 93 1 119 304 41 60 1 268 328 67 78 1 390 294 40 54 1 500 247 165 186 1 644 296 84 132 1 831 285 97 130 1
JPEGImages/PartB_01804.jpg 15 3 187 57 61 1 48 148 22 26 1 112 101 23 24 1 90 169 51 44 1 186 160 42 53 1 225 133 33 32 1 191 125 21 26 1 334 139 24 25 1 350 126 20 21 1 386 110 21 26 1 400 148 56 70 1 408 131 41 38 1 456 118 27 30 1 488 132 35 32 1 520 122 30 34 1
JPEGImages/PartB_01756.jpg 7 7 130 87 134 1 113 128 64 69 1 166 114 41 50 1 176 88 31 40 1 196 83 22 34 1 210 86 24 35 1 289 16 22 29 1
JPEGImages/PartB_00832.jpg 4 48 99 27 28 1 96 102 21 25 1 167 97 22 22 1 238 95 19 23 1
JPEGImages/PartB_00373.jpg 12 54 128 38 35 1 54 95 35 29 1 105 102 42 44 1 154 98 34 34 1 58 173 52 48 1 212 134 52 39 1 270 114 45 42 1 318 101 40 38 1 356 156 45 65 1 392 161 67 70 1 395 126 51 42 1 462 112 45 37 1
JPEGImages/PartB_01375.jpg 10 45 179 41 38 1 31 217 67 50 1 161 193 57 62 1 144 175 30 42 1 100 161 27 35 1 254 197 58 56 1 265 169 26 32 1 315 158 41 47 1 384 185 63 57 1 441 172 35 35 1
JPEGImages/PartB_00296.jpg 11 170 118 72 59 1 113 67 51 48 1 70 51 44 40 1 98 36 46 40 1 207 1 29 22 1 230 45 37 40 1 292 58 45 50 1 357 81 63 57 1 303 126 81 96 1 454 74 70 75 1 534 58 49 56 1
JPEGImages/PartB_01180.jpg 36 74 438 73 65 1 13 583 166 129 1 16 412 51 40 1 4 375 30 36 1 112 422 46 41 1 111 391 36 32 1 140 388 29 31 1 196 388 26 28 1 189 409 49 57 1 226 406 28 37 1 255 399 49 42 1 267 425 47 50 1 326 393 32 30 1 313 348 27 35 1 347 328 22 33 1 345 447 78 97 1 411 405 41 46 1 379 390 34 44 1 493 376 37 46 1 501 409 34 44 1 508 442 56 66 1 419 483 89 112 1 543 455 86 116 1 564 383 39 41 1 545 378 31 41 1 618 415 54 54 1 636 390 36 42 1 697 400 43 46 1 722 440 61 65 1 771 393 36 41 1 760 360 26 29 1 823 413 55 56 1 812 390 41 32 1 863 406 43 51 1 898 393 42 47 1 927 382 23 38 1
JPEGImages/PartB_01720.jpg 29 1 196 16 27 1 16 193 29 24 1 64 200 22 24 1 75 197 17 18 1 108 196 24 20 1 129 200 21 29 1 132 190 16 17 1 150 193 16 20 1 155 202 29 30 1 184 210 26 30 1 198 201 25 24 1 187 159 21 19 1 227 211 30 30 1 246 199 20 20 1 258 193 16 19 1 271 167 17 16 1 325 174 18 19 1 274 208 23 25 1 288 200 19 16 1 357 216 35 39 1 376 152 17 19 1 415 200 26 27 1 425 225 35 31 1 473 210 27 27 1 499 221 29 34 1 527 200 26 28 1 562 157 21 24 1 489 200 20 21 1 464 147 21 23 1
JPEGImages/PartB_02360.jpg 8 87 40 61 67 1 148 81 76 88 1 218 27 55 66 1 277 37 63 72 1 318 16 40 53 1 350 140 106 127 1 396 87 79 98 1 485 30 51 63 1
JPEGImages/PartB_01647.jpg 69 319 297 52 63 1 433 287 53 53 1 467 232 30 40 1 318 233 36 44 1 260 220 28 34 1 221 206 24 27 1 186 219 32 34 1 197 187 21 23 1 164 177 19 22 1 123 184 24 23 1 127 163 14 16 1 96 166 20 19 1 105 151 13 13 1 85 150 15 21 1 92 142 10 14 1 67 145 14 16 1 62 139 10 11 1 76 136 10 11 1 66 111 9 8 1 541 243 26 30 1 666 258 40 45 1 659 237 30 30 1 711 225 24 27 1 711 202 24 26 1 733 194 17 23 1 724 184 18 19 1 783 200 16 28 1 703 178 14 18 1 650 195 17 24 1 593 205 25 23 1 532 209 25 24 1 520 197 18 21 1 486 200 19 23 1 449 212 22 29 1 389 197 21 23 1 330 194 20 27 1 335 180 18 21 1 305 174 19 20 1 266 174 16 18 1 269 163 16 20 1 247 161 13 13 1 250 152 13 10 1 224 156 9 10 1 210 158 14 14 1 306 140 15 16 1 322 162 13 18 1 343 163 11 15 1 383 174 18 20 1 381 168 12 15 1 398 167 14 17 1 413 172 13 14 1 418 182 18 21 1 463 184 16 19 1 461 166 13 17 1 431 167 11 16 1 489 181 16 18 1 510 162 11 13 1 517 178 17 19 1 525 162 14 15 1 545 171 15 17 1 565 182 17 17 1 588 164 13 17 1 601 190 18 22 1 596 183 14 19 1 614 166 15 17 1 628 184 15 19 1 643 175 14 16 1 660 171 14 16 1 661 190 11 13 1
JPEGImages/PartB_01737.jpg 44 16 130 14 16 1 33 136 11 13 1 44 136 12 15 1 58 133 13 17 1 64 136 16 19 1 88 144 19 21 1 108 130 11 15 1 121 130 14 15 1 136 132 12 15 1 153 128 15 19 1 171 133 16 21 1 192 133 16 15 1 189 124 8 11 1 209 131 14 15 1 227 129 13 17 1 189 144 24 31 1 211 145 25 33 1 249 132 13 13 1 249 127 8 9 1 277 131 14 17 1 283 123 10 11 1 294 126 12 15 1 309 132 12 13 1 316 126 8 9 1 322 128 11 13 1 332 130 15 15 1 332 124 9 8 1 344 128 9 12 1 351 124 8 10 1 363 128 11 15 1 372 125 8 9 1 386 130 10 15 1 387 125 10 9 1 406 122 12 16 1 435 127 13 13 1 274 154 31 36 1 345 146 25 28 1 396 145 25 28 1 391 138 15 16 1 430 142 20 18 1 445 134 15 17 1 455 156 23 32 1 470 147 21 24 1 489 134 11 22 1
JPEGImages/PartB_00103.jpg 5 34 5 27 34 1 30 94 35 42 1 155 99 34 35 1 203 93 31 36 1 195 51 24 32 1
JPEGImages/PartB_00044.jpg 5 680 246 324 352 1 407 217 211 227 1 333 32 85 107 1 173 254 145 132 1 64 277 102 90 1
JPEGImages/PartB_00554.jpg 7 69 333 280 333 1 390 345 154 209 1 518 266 116 158 1 463 250 95 108 1 719 284 115 127 1 885 308 116 125 1 1166 279 271 365 1
JPEGImages/PartB_01973.jpg 6 41 55 60 61 1 145 46 38 39 1 186 28 40 46 1 242 46 31 37 1 278 18 32 36 1 345 24 50 51 1
JPEGImages/PartB_01353.jpg 14 79 2081 503 573 1 399 1784 427 447 1 1072 1681 370 426 1 1049 2001 837 770 1 1599 2041 540 513 1 1626 1731 456 440 1 1949 1627 340 467 1 2869 947 283 357 1 2896 1717 366 397 1 3066 1857 440 364 1 2996 2044 476 560 1 3918 1808 360 383 1 4079 1877 344 377 1 4379 1781 367 671 1
JPEGImages/PartB_01414.jpg 25 352 77 18 22 1 309 98 7 9 1 292 102 8 11 1 276 99 9 11 1 255 104 9 12 1 256 96 7 9 1 222 107 11 14 1 231 98 7 9 1 215 97 8 10 1 190 109 15 15 1 187 103 7 11 1 149 115 16 21 1 146 107 11 10 1 130 97 8 11 1 147 99 6 8 1 171 99 7 8 1 112 108 10 15 1 100 97 11 13 1 93 102 10 12 1 74 118 22 24 1 54 113 13 15 1 67 105 12 14 1 52 106 8 10 1 15 111 13 14 1 5 108 13 13 1
JPEGImages/PartB_00895.jpg 20 190 102 10 12 1 212 107 12 12 1 282 124 16 17 1 235 103 10 12 1 230 92 8 9 1 266 87 13 10 1 287 79 7 7 1 281 73 7 9 1 292 48 6 9 1 253 65 7 7 1 236 72 8 6 1 226 68 7 8 1 159 82 7 7 1 175 94 7 9 1 171 74 7 6 1 153 80 5 6 1 226 51 7 6 1 244 56 7 7 1 238 59 6 6 1 214 63 5 4 1
JPEGImages/PartB_02147.jpg 45 406 314 106 99 1 577 253 94 98 1 583 193 57 58 1 355 229 49 48 1 236 204 64 58 1 117 222 71 81 1 123 192 49 52 1 61 219 55 53 1 101 145 32 35 1 86 130 30 29 1 46 127 27 27 1 51 110 19 23 1 22 133 29 29 1 155 150 31 31 1 178 166 33 27 1 183 120 22 27 1 221 140 22 23 1 261 137 17 22 1 261 182 29 34 1 314 160 32 34 1 310 129 22 21 1 335 148 26 34 1 348 130 21 23 1 371 137 23 26 1 384 159 25 26 1 420 155 24 29 1 402 132 27 22 1 442 141 16 19 1 482 152 19 25 1 448 172 27 32 1 483 134 20 19 1 509 126 17 21 1 523 147 22 25 1 539 163 31 35 1 530 131 17 21 1 545 138 22 25 1 583 151 22 21 1 632 170 27 25 1 639 150 22 25 1 688 200 58 50 1 705 174 25 26 1 704 156 20 23 1 722 156 23 28 1 764 164 21 27 1 775 203 25 38 1
JPEGImages/PartB_01702.jpg 16 45 144 66 66 1 55 99 49 43 1 181 37 29 34 1 178 91 34 44 1 185 122 67 71 1 55 233 189 105 1 273 92 33 34 1 267 85 23 27 1 311 97 25 22 1 319 139 54 63 1 376 90 39 37 1 408 116 52 55 1 426 92 36 36 1 403 202 126 134 1 504 113 48 58 1 534 115 42 47 1
JPEGImages/PartB_01596.jpg 16 56 57 71 65 1 149 63 67 83 1 190 70 67 71 1 248 66 71 84 1 369 195 102 98 1 553 27 68 90 1 583 1 250 317 1 778 138 84 137 1 843 120 66 75 1 875 92 59 87 1 1027 11 194 266 1 1244 133 122 136 1 1259 56 85 77 1 1265 176 247 340 1 1424 80 84 95 1 1481 126 112 104 1
JPEGImages/PartB_01107.jpg 59 2 662 86 116 1 135 664 131 135 1 51 601 60 70 1 4 612 57 57 1 110 600 51 59 1 192 610 60 54 1 236 608 45 56 1 281 642 102 103 1 272 597 37 37 1 384 630 68 74 1 378 604 62 51 1 476 419 116 125 1 463 701 295 314 1 906 596 205 225 1 1078 610 95 142 1 859 356 154 163 1 862 515 33 43 1 850 490 41 42 1 794 500 38 38 1 794 533 37 37 1 795 582 64 82 1 689 578 77 110 1 683 533 34 40 1 1165 563 57 62 1 1089 571 50 51 1 1055 562 36 54 1 1103 504 43 47 1 1143 486 35 43 1 1184 516 37 51 1 1194 486 35 50 1 1235 463 34 47 1 1272 526 37 55 1 1218 508 40 62 1 1273 490 33 43 1 1315 473 39 54 1 1309 541 61 59 1 1309 586 64 91 1 1192 684 240 330 1 1222 632 100 119 1 1332 626 190 232 1 1374 541 103 129 1 1465 600 59 78 1 1515 544 92 126 1 1554 599 145 187 1 1655 562 102 149 1 1573 508 64 85 1 1424 496 33 49 1 1406 486 31 50 1 1454 482 42 50 1 1509 463 37 55 1 1750 714 250 339 1 1788 571 212 247 1 1746 548 48 74 1 1700 510 47 52 1 1752 496 47 62 1 1770 470 39 49 1 1851 471 58 63 1 1881 456 41 45 1 1962 463 38 51 1
JPEGImages/PartB_01356.jpg 48 79 353 105 111 1 146 325 66 70 1 239 352 92 93 1 328 309 59 66 1 397 334 78 82 1 409 303 49 54 1 636 324 55 78 1 681 306 35 39 1 666 293 27 30 1 702 285 31 36 1 718 282 19 25 1 602 278 22 28 1 580 293 31 34 1 538 291 29 32 1 512 277 21 29 1 492 289 30 32 1 468 283 25 31 1 440 294 29 27 1 434 276 21 27 1 405 270 18 23 1 390 275 21 27 1 369 272 18 21 1 355 294 33 35 1 347 282 25 26 1 336 275 25 23 1 316 264 16 18 1 312 282 19 23 1 276 269 16 24 1 289 272 13 19 1 245 293 42 45 1 275 303 30 42 1 263 275 12 21 1 240 282 18 20 1 242 269 12 16 1 196 266 13 21 1 182 290 29 33 1 174 266 16 26 1 154 268 15 19 1 151 292 25 37 1 118 294 46 50 1 111 267 20 27 1 47 290 45 49 1 62 272 26 28 1 87 278 22 30 1 100 274 16 19 1 48 272 19 19 1 2 273 26 33 1 13 265 20 17 1
JPEGImages/PartB_02240.jpg 13 37 192 36 38 1 96 137 15 21 1 87 183 25 32 1 107 200 45 53 1 146 184 24 31 1 178 185 28 38 1 245 217 40 50 1 250 184 34 36 1 258 127 18 23 1 361 167 17 25 1 373 184 25 34 1 408 169 24 24 1 2 264 82 100 1
JPEGImages/PartB_01974.jpg 4 89 1 39 33 1 127 20 50 61 1 165 22 101 119 1 246 74 102 126 1
JPEGImages/PartB_00787.jpg 6 1 66 35 55 1 121 47 50 69 1 117 18 60 58 1 229 5 128 145 1 384 2 93 183 1 208 26 82 119 1
JPEGImages/PartB_00149.jpg 12 3 284 38 51 1 74 270 42 43 1 126 212 23 27 1 169 220 22 20 1 124 283 44 44 1 214 212 21 25 1 253 212 21 25 1 296 210 23 23 1 344 206 21 25 1 471 282 53 49 1 490 259 30 36 1 548 271 32 41 1
JPEGImages/PartB_00454.jpg 13 46 318 31 39 1 129 282 26 27 1 114 240 26 26 1 173 233 15 16 1 186 222 13 16 1 235 240 26 21 1 258 227 20 19 1 218 328 40 34 1 118 447 48 53 1 298 441 59 71 1 262 285 23 25 1 295 251 21 23 1 335 240 21 23 1
JPEGImages/PartB_01884.jpg 5 8 157 48 55 1 123 132 39 51 1 219 138 37 39 1 300 137 25 28 1 358 190 63 76 1
JPEGImages/PartB_01475.jpg 5 58 175 71 80 1 153 95 40 53 1 208 86 42 49 1 243 157 66 69 1 333 59 53 62 1
JPEGImages/PartB_00061.jpg 5 44 148 88 107 1 143 45 116 147 1 234 510 143 169 1 419 360 172 225 1 482 130 68 83 1
JPEGImages/PartB_02263.jpg 12 1 77 39 65 1 45 78 33 40 1 81 103 26 28 1 124 89 36 40 1 154 111 21 29 1 184 108 27 30 1 203 124 23 22 1 217 117 15 18 1 260 115 23 25 1 297 108 23 26 1 347 118 17 23 1 444 96 52 55 1
JPEGImages/PartB_00177.jpg 16 312 726 79 95 1 462 671 104 123 1 580 710 93 107 1 716 692 114 111 1 932 683 89 118 1 994 635 79 109 1 1055 660 121 134 1 1282 746 121 128 1 1351 696 90 114 1 1473 777 134 141 1 1696 819 114 127 1 1976 678 140 159 1 2262 737 143 173 1 2366 646 105 150 1 2587 749 191 204 1 2771 669 150 164 1
JPEGImages/PartB_02028.jpg 20 21 68 12 12 1 91 59 10 12 1 96 66 13 14 1 105 62 50 57 1 158 89 63 79 1 154 71 22 28 1 168 64 24 25 1 148 56 14 15 1 200 55 32 36 1 225 58 13 16 1 240 62 15 18 1 259 62 15 20 1 274 60 16 16 1 289 59 18 21 1 270 106 50 58 1 351 151 60 62 1 310 42 34 41 1 358 68 18 22 1 340 69 19 16 1 396 43 38 42 1
JPEGImages/PartB_00003.jpg 10 361 140 36 45 1 512 328 76 74 1 361 372 93 74 1 252 300 59 61 1 163 291 49 49 1 86 346 97 98 1 122 277 42 51 1 95 258 37 42 1 1 299 46 63 1 84 238 22 27 1
JPEGImages/PartB_01931.jpg 12 16 110 22 26 1 47 124 42 47 1 61 110 17 22 1 74 108 15 22 1 83 113 25 32 1 93 102 25 28 1 144 121 46 56 1 185 105 28 38 1 171 99 22 32 1 231 149 55 62 1 311 100 37 44 1 329 114 45 47 1
JPEGImages/PartB_01636.jpg 18 158 272 34 40 1 175 248 17 18 1 111 243 21 23 1 97 242 12 12 1 158 236 10 12 1 167 221 10 11 1 190 239 8 10 1 202 240 8 10 1 227 248 12 12 1 237 244 10 13 1 257 240 11 12 1 272 237 11 13 1 297 237 11 13 1 310 237 11 11 1 333 248 13 11 1 347 239 14 13 1 364 247 11 12 1 390 242 12 10 1
JPEGImages/PartB_01954.jpg 9 9 253 66 61 1 197 232 36 37 1 186 222 34 35 1 343 218 24 27 1 443 213 30 37 1 476 215 36 48 1 504 235 33 44 1 524 233 45 59 1 586 260 79 82 1
JPEGImages/PartB_02232.jpg 9 64 304 86 90 1 2 327 83 115 1 153 232 69 65 1 372 102 42 57 1 423 167 29 33 1 508 160 31 34 1 537 168 34 37 1 602 162 31 35 1 635 169 36 37 1
JPEGImages/PartB_01411.jpg 15 13 286 60 65 1 30 267 48 54 1 84 312 62 66 1 192 261 47 46 1 231 312 119 88 1 303 285 70 68 1 357 286 73 73 1 398 268 38 43 1 423 292 63 55 1 466 284 40 53 1 431 251 45 47 1 408 161 51 53 1 499 263 49 60 1 537 262 44 56 1 577 263 23 54 1
JPEGImages/PartB_01451.jpg 47 135 372 219 249 1 371 542 315 296 1 876 289 141 161 1 1098 256 108 129 1 1179 233 91 105 1 1343 339 153 177 1 1405 298 117 134 1 1457 231 103 127 1 1378 170 53 65 1 1311 188 66 71 1 1220 201 82 87 1 1184 155 55 68 1 1104 157 65 79 1 996 201 73 87 1 876 211 89 93 1 878 132 53 64 1 956 145 55 65 1 1019 135 57 65 1 709 219 100 116 1 780 177 77 86 1 773 143 55 58 1 739 141 51 60 1 676 125 47 57 1 669 186 69 87 1 522 273 117 133 1 500 201 86 91 1 617 183 65 63 1 617 123 44 59 1 529 130 48 59 1 457 198 63 81 1 479 154 64 66 1 433 145 48 49 1 419 132 31 35 1 321 180 80 93 1 284 239 91 109 1 223 190 60 65 1 329 152 49 49 1 350 135 44 51 1 247 130 49 54 1 222 156 47 46 1 172 186 54 85 1 107 200 87 108 1 53 172 66 84 1 127 154 53 52 1 1 226 51 81 1 18 176 42 47 1 19 135 51 55 1
JPEGImages/PartB_00892.jpg 36 11 590 46 48 1 56 712 100 84 1 59 804 152 141 1 275 730 133 116 1 259 638 57 60 1 238 605 37 47 1 141 609 55 60 1 111 579 43 42 1 205 570 31 36 1 256 568 35 35 1 270 588 40 44 1 341 623 48 58 1 350 582 32 39 1 384 596 36 40 1 388 566 30 39 1 429 565 29 37 1 450 588 33 38 1 479 574 31 40 1 518 572 31 31 1 524 599 39 41 1 500 642 58 67 1 422 651 64 64 1 575 592 33 44 1 594 583 22 35 1 618 584 30 34 1 663 614 46 45 1 680 659 73 75 1 751 666 56 60 1 715 604 40 47 1 707 584 30 35 1 735 588 31 36 1 812 609 32 36 1 846 590 34 42 1 861 643 51 49 1 906 601 50 58 1 1135 462 76 77 1
JPEGImages/PartB_00088.jpg 20 4 354 43 38 1 119 475 90 94 1 188 425 84 68 1 314 398 63 55 1 365 380 39 38 1 408 375 36 35 1 405 353 27 30 1 677 356 35 40 1 711 377 50 50 1 739 411 53 52 1 724 458 85 64 1 869 477 107 87 1 909 568 131 136 1 927 382 40 47 1 888 369 36 41 1 860 359 30 33 1 1031 387 57 52 1 1022 347 40 40 1 1074 368 26 29 1 1139 373 43 42 1
JPEGImages/PartB_00850.jpg 13 65 55 55 68 1 129 24 44 49 1 77 1 40 31 1 169 110 87 107 1 232 54 65 69 1 199 1 44 28 1 279 29 35 46 1 311 2 34 35 1 387 23 35 55 1 352 118 70 98 1 417 63 56 62 1 424 5 34 34 1 538 23 47 51 1
JPEGImages/PartB_01928.jpg 35 433 135 22 22 1 320 198 15 18 1 294 187 13 13 1 285 182 13 16 1 241 198 16 19 1 213 204 26 27 1 218 194 19 19 1 241 185 10 13 1 256 185 10 12 1 215 183 8 9 1 197 190 15 14 1 181 195 17 24 1 172 187 16 16 1 169 177 12 12 1 163 225 29 28 1 131 196 23 25 1 145 190 12 16 1 149 182 11 12 1 147 178 10 11 1 136 177 11 11 1 125 185 11 13 1 115 174 12 16 1 108 170 10 12 1 93 168 9 12 1 98 186 16 15 1 69 207 23 28 1 65 181 24 24 1 85 178 14 16 1 84 172 10 11 1 45 177 20 19 1 46 168 12 16 1 27 170 12 13 1 20 181 16 18 1 13 171 11 13 1 1 197 25 28 1
JPEGImages/PartB_02336.jpg 10 2 155 17 28 1 47 156 24 27 1 64 183 26 34 1 55 272 37 39 1 2 361 42 70 1 127 382 105 116 1 129 182 22 21 1 141 192 24 26 1 187 203 26 26 1 448 206 37 46 1
JPEGImages/PartB_01418.jpg 16 1 186 35 43 1 46 204 55 62 1 48 173 29 27 1 62 159 22 23 1 123 83 16 17 1 91 190 32 38 1 118 172 25 29 1 128 159 27 26 1 253 155 21 22 1 277 169 24 31 1 308 176 32 38 1 332 170 22 27 1 313 155 20 24 1 362 205 48 53 1 395 178 32 37 1 411 150 26 27 1
JPEGImages/PartB_01314.jpg 23 317 55 24 23 1 332 70 34 40 1 380 121 42 35 1 406 151 41 44 1 251 164 61 73 1 251 228 66 62 1 250 121 30 25 1 231 98 24 23 1 251 79 21 23 1 266 68 18 21 1 201 72 19 17 1 155 116 31 33 1 179 98 38 30 1 125 167 41 38 1 34 218 66 53 1 40 155 47 37 1 65 125 34 29 1 94 95 28 27 1 102 85 20 14 1 121 69 23 22 1 87 69 20 20 1 58 77 26 26 1 2 97 26 28 1
JPEGImages/PartB_00577.jpg 7 264 656 478 497 1 664 156 228 211 1 1303 81 292 286 1 1839 165 350 463 1 2412 184 250 331 1 2992 45 275 353 1 3262 601 738 762 1
JPEGImages/PartB_01225.jpg 6 70 23 240 278 1 263 194 144 204 1 321 184 238 292 1 412 155 176 187 1 549 223 180 236 1 820 1 276 187 1
JPEGImages/PartB_02227.jpg 27 50 162 43 60 1 32 128 11 14 1 14 124 15 21 1 1 129 9 16 1 48 131 11 14 1 66 136 20 24 1 87 132 13 15 1 92 109 11 11 1 101 139 23 24 1 128 128 10 12 1 152 127 10 13 1 174 124 8 11 1 178 129 12 13 1 181 130 14 19 1 198 129 12 14 1 203 140 18 21 1 163 152 29 28 1 261 161 34 34 1 326 134 24 29 1 331 126 13 16 1 365 129 10 12 1 288 129 16 19 1 276 127 13 14 1 262 127 10 12 1 249 125 12 15 1 221 124 11 11 1 210 125 9 10 1
JPEGImages/PartB_00538.jpg 4 175 172 204 288 1 370 96 191 237 1 81 337 132 137 1 37 322 94 137 1
JPEGImages/PartB_01883.jpg 9 84 193 46 57 1 148 171 44 51 1 265 185 41 54 1 283 239 87 97 1 369 239 56 75 1 397 168 40 48 1 441 209 50 62 1 479 171 30 40 1 605 195 41 38 1
JPEGImages/PartB_00765.jpg 18 1 330 83 140 1 1 250 88 97 1 53 233 66 73 1 143 216 48 56 1 172 202 41 41 1 231 194 35 33 1 258 191 26 29 1 275 193 16 23 1 287 184 17 25 1 301 183 15 21 1 660 276 88 87 1 657 172 29 34 1 508 259 49 67 1 445 213 41 48 1 422 208 28 39 1 410 197 24 25 1 401 188 17 23 1 419 182 15 18 1
JPEGImages/PartB_00056.jpg 5 172 659 91 100 1 435 663 102 102 1 869 690 84 86 1 1476 735 172 174 1 1925 709 219 272 1
JPEGImages/PartB_00798.jpg 4 148 98 98 118 1 144 42 90 98 1 213 10 161 159 1 417 3 173 195 1
JPEGImages/PartB_00911.jpg 6 57 176 29 32 1 169 181 29 38 1 234 255 47 61 1 283 121 24 24 1 325 153 15 20 1 257 137 12 15 1
JPEGImages/PartB_00846.jpg 8 1 268 37 61 1 74 265 62 65 1 248 249 40 42 1 386 243 37 44 1 530 249 35 45 1 629 248 47 51 1 703 265 69 62 1 705 237 59 49 1
JPEGImages/PartB_02014.jpg 34 119 501 66 56 1 5 487 47 53 1 65 452 32 34 1 93 374 26 37 1 77 381 25 29 1 52 410 17 15 1 32 406 18 14 1 11 401 17 14 1 141 443 38 28 1 131 412 23 22 1 175 409 19 17 1 196 416 14 18 1 199 435 25 25 1 225 416 24 22 1 199 524 69 63 1 260 458 34 35 1 295 425 23 24 1 318 435 20 23 1 361 427 19 27 1 350 470 40 40 1 388 445 30 34 1 390 421 18 28 1 410 429 28 30 1 441 429 19 15 1 453 478 47 40 1 454 448 25 28 1 484 434 21 21 1 563 444 28 31 1 557 430 20 21 1 486 425 17 14 1 604 441 22 22 1 619 455 25 27 1 670 436 26 27 1 488 335 12 14 1
JPEGImages/PartB_01518.jpg 5 80 82 54 54 1 149 68 44 47 1 239 54 33 35 1 525 117 86 87 1 448 163 107 89 1
JPEGImages/PartB_01088.jpg 40 60 214 37 38 1 73 183 38 40 1 48 180 29 33 1 49 167 27 24 1 112 140 18 21 1 126 132 23 24 1 160 147 29 29 1 176 188 28 39 1 184 170 30 28 1 171 170 23 26 1 211 191 45 46 1 226 133 22 19 1 252 125 20 16 1 233 119 18 17 1 239 109 15 15 1 281 120 19 19 1 283 140 26 34 1 305 126 22 21 1 321 170 26 40 1 338 1 54 55 1 437 144 27 37 1 482 149 17 34 1 91 55 15 21 1 125 82 13 14 1 170 83 15 14 1 153 123 15 17 1 159 110 15 15 1 179 112 15 14 1 170 129 16 18 1 130 111 15 18 1 104 134 17 18 1 82 132 18 17 1 78 115 10 16 1 67 110 12 15 1 42 164 24 18 1 32 147 24 20 1 32 137 18 16 1 37 119 13 12 1 28 118 13 12 1 20 115 12 13 1
JPEGImages/PartB_00778.jpg 22 19 114 27 32 1 45 118 22 29 1 67 153 24 29 1 78 133 23 24 1 90 115 22 24 1 111 130 21 25 1 126 146 21 28 1 152 153 22 26 1 155 130 23 25 1 191 130 21 25 1 230 145 22 28 1 248 138 19 25 1 264 127 16 22 1 281 136 19 25 1 290 156 27 34 1 287 127 19 22 1 299 132 20 23 1 318 126 19 22 1 319 149 22 25 1 343 137 20 25 1 367 138 16 21 1 385 135 20 24 1
JPEGImages/PartB_00418.jpg 11 275 206 58 61 1 544 293 92 98 1 667 114 23 46 1 629 38 34 39 1 507 70 46 45 1 475 20 36 45 1 403 48 44 45 1 372 3 27 27 1 181 20 32 29 1 150 78 51 49 1 37 6 57 46 1
JPEGImages/PartB_00748.jpg 12 1 173 28 37 1 19 158 23 23 1 54 165 21 20 1 38 181 37 40 1 88 170 27 32 1 76 207 74 88 1 156 185 41 37 1 148 166 22 22 1 157 135 12 17 1 200 184 30 31 1 247 190 40 50 1 297 188 31 37 1
JPEGImages/PartB_02199.jpg 26 109 146 10 8 1 272 165 19 23 1 352 169 28 34 1 409 198 61 54 1 410 156 24 21 1 399 153 17 18 1 405 145 15 14 1 440 145 16 14 1 471 153 29 31 1 373 147 12 12 1 347 149 16 20 1 331 154 10 12 1 336 146 13 14 1 327 151 10 12 1 308 150 10 11 1 270 153 12 14 1 269 149 9 8 1 280 147 4 6 1 241 150 7 7 1 225 151 6 6 1 222 149 5 6 1 207 152 12 10 1 193 155 8 7 1 185 153 6 7 1 175 155 6 6 1 153 155 8 7 1
JPEGImages/PartB_00880.jpg 11 98 125 26 29 1 160 128 29 29 1 256 122 25 27 1 322 128 25 23 1 372 128 20 20 1 404 127 21 18 1 436 126 18 19 1 414 151 34 39 1 463 142 33 42 1 506 141 32 32 1 542 132 34 36 1
JPEGImages/PartB_01837.jpg 10 1 57 16 34 1 8 52 28 27 1 45 62 29 31 1 80 106 53 58 1 170 114 57 55 1 182 55 34 38 1 170 51 26 31 1 268 72 37 40 1 278 37 23 26 1 355 41 23 23 1
JPEGImages/PartB_01121.jpg 6 56 397 108 88 1 195 437 121 115 1 336 375 93 106 1 548 265 51 56 1 979 459 139 153 1 1042 408 81 94 1
JPEGImages/PartB_02352.jpg 7 128 139 21 21 1 183 126 27 24 1 201 115 27 27 1 242 128 29 36 1 269 110 37 36 1 331 115 48 54 1 436 103 61 66 1
JPEGImages/PartB_00298.jpg 26 1 132 46 74 1 36 122 40 48 1 56 109 25 29 1 72 104 21 24 1 138 69 14 18 1 121 90 41 53 1 103 121 67 81 1 195 96 38 47 1 277 121 52 67 1 290 104 36 42 1 282 90 32 36 1 247 88 22 24 1 233 107 22 29 1 166 102 16 19 1 162 88 16 16 1 172 80 15 18 1 184 93 17 21 1 329 91 17 25 1 356 81 26 34 1 384 84 20 29 1 372 101 40 47 1 428 123 58 71 1 410 83 8 11 1 428 77 9 12 1 467 81 42 52 1 545 90 45 85 1
JPEGImages/PartB_00294.jpg 22 1077 342 122 267 1 948 156 44 46 1 893 173 51 63 1 815 170 51 54 1 701 213 72 68 1 622 217 86 97 1 687 185 44 57 1 608 186 41 41 1 534 204 62 67 1 428 233 74 72 1 456 202 49 50 1 336 302 144 126 1 186 276 100 116 1 243 245 80 81 1 313 215 50 58 1 338 197 38 37 1 392 197 38 47 1 256 198 57 46 1 213 212 44 50 1 145 254 60 63 1 120 221 54 60 1 30 228 57 42 1
JPEGImages/PartB_01550.jpg 8 10 301 102 109 1 150 248 120 125 1 370 285 95 90 1 558 280 88 92 1 617 155 226 224 1 805 276 69 91 1 969 193 144 158 1 1123 116 77 264 1
JPEGImages/PartB_01993.jpg 11 164 127 126 147 1 49 165 100 115 1 362 222 70 75 1 388 211 47 54 1 422 254 42 49 1 477 207 70 67 1 652 247 37 46 1 706 246 52 39 1 752 251 36 38 1 767 230 31 32 1 629 265 32 37 1
JPEGImages/PartB_00920.jpg 13 3 407 34 84 1 44 431 52 69 1 89 403 72 74 1 165 412 68 61 1 158 219 67 61 1 289 382 63 71 1 382 387 53 71 1 497 381 52 65 1 565 385 53 63 1 673 399 58 67 1 761 372 73 74 1 977 218 153 178 1 1029 4 138 142 1
JPEGImages/PartB_02205.jpg 18 90 525 67 73 1 33 511 56 53 1 71 495 64 57 1 229 549 72 75 1 310 488 59 65 1 328 475 32 38 1 338 460 42 41 1 432 493 57 65 1 432 469 42 32 1 667 393 35 50 1 962 481 31 38 1 995 488 52 58 1 1049 446 33 32 1 1072 452 33 40 1 1125 488 53 60 1 1149 476 49 50 1 1142 529 82 93 1 1241 443 28 42 1
JPEGImages/PartB_01746.jpg 11 92 168 20 23 1 106 174 16 19 1 92 141 15 16 1 138 167 18 22 1 167 168 16 21 1 192 172 17 20 1 232 179 15 15 1 261 178 13 16 1 307 156 17 18 1 319 170 17 19 1 339 165 21 22 1
JPEGImages/PartB_01832.jpg 48 151 1029 141 180 1 344 1336 144 163 1 285 1346 93 144 1 195 1324 112 153 1 283 1468 185 192 1 385 1585 222 214 1 495 1714 324 337 1 346 2038 473 410 1 1419 1973 378 434 1 1078 1587 278 308 1 858 1536 222 237 1 727 1477 158 188 1 683 1390 122 144 1 605 1312 124 156 1 646 1241 105 107 1 795 1263 83 93 1 824 1307 86 105 1 890 1307 122 151 1 1073 1285 137 183 1 1314 1307 127 141 1 1485 1346 129 168 1 1456 1202 95 115 1 1595 1258 125 141 1 1614 1390 169 163 1 1751 1319 115 129 1 1795 1219 85 122 1 1992 1258 135 134 1 2005 1368 136 144 1 1944 1421 178 188 1 2388 1560 265 252 1 2336 1380 178 207 1 2358 1270 117 127 1 2356 1207 88 114 1 2200 1253 100 107 1 2168 1214 73 88 1 2112 1302 80 83 1 2488 1243 83 120 1 2456 1195 66 92 1 2546 1317 105 139 1 2588 1285 97 114 1 2678 1195 93 129 1 2744 1231 102 127 1 2844 1312 109 151 1 2883 1236 107 110 1 3034 1260 107 142 1 2946 1360 139 166 1 2873 1465 215 242 1 3071 1707 192 358 1
JPEGImages/PartB_01942.jpg 63 5 236 11 12 1 23 236 11 10 1 66 238 9 10 1 51 241 7 8 1 58 239 7 9 1 90 236 7 7 1 100 238 8 8 1 108 237 9 9 1 109 219 7 6 1 120 234 7 8 1 130 232 8 10 1 139 232 8 8 1 151 235 8 9 1 158 235 7 8 1 172 233 7 10 1 1 311 12 13 1 15 324 11 14 1 23 329 12 11 1 64 334 15 14 1 93 323 15 17 1 88 311 14 17 1 70 318 17 14 1 110 326 20 17 1 125 316 12 15 1 213 301 13 13 1 239 302 10 13 1 234 323 15 14 1 216 332 14 15 1 177 327 13 15 1 195 330 18 18 1 150 324 18 17 1 264 328 20 20 1 267 303 12 16 1 293 310 11 13 1 303 328 20 19 1 328 300 13 17 1 343 331 17 14 1 355 329 11 11 1 371 330 16 16 1 389 326 11 14 1 403 335 15 11 1 408 325 11 11 1 422 324 11 13 1 442 332 14 14 1 454 324 13 10 1 467 289 11 14 1 491 331 11 11 1 513 327 9 13 1 491 324 11 9 1 552 332 17 16 1 520 332 18 15 1 555 244 9 11 1 543 245 9 11 1 532 245 9 10 1 528 243 9 10 1 516 245 10 10 1 509 243 8 10 1 489 238 8 10 1 496 239 8 9 1 480 239 8 8 1 464 238 7 9 1 460 237 5 9 1 455 238 6 8 1
JPEGImages/PartB_00954.jpg 12 99 8 73 103 1 196 216 61 61 1 182 180 46 58 1 117 292 93 67 1 260 281 100 77 1 324 200 78 85 1 268 179 45 52 1 176 157 47 38 1 463 140 66 69 1 488 195 70 91 1 531 260 89 82 1 601 214 39 68 1
JPEGImages/PartB_01018.jpg 14 56 126 31 31 1 80 131 27 37 1 99 122 49 67 1 157 117 34 43 1 185 113 22 34 1 133 118 18 26 1 142 114 15 23 1 216 116 28 37 1 233 126 43 58 1 274 126 31 37 1 269 114 22 26 1 250 112 21 25 1 307 114 22 27 1 318 114 40 53 1
JPEGImages/PartB_00952.jpg 13 3 137 47 111 1 42 134 63 100 1 25 125 26 37 1 93 135 39 59 1 121 159 24 33 1 123 141 29 35 1 143 162 14 23 1 157 153 19 28 1 226 179 50 44 1 270 175 38 47 1 261 160 21 32 1 218 160 30 31 1 456 63 70 61 1
JPEGImages/PartB_00280.jpg 12 262 142 72 94 1 337 110 49 74 1 411 134 65 80 1 474 118 48 69 1 532 123 58 66 1 594 160 56 78 1 736 112 58 67 1 748 174 50 77 1 836 186 54 73 1 892 71 70 89 1 958 167 89 103 1 215 166 51 58 1
JPEGImages/PartB_02319.jpg 28 21 237 43 51 1 1 216 30 42 1 25 193 29 38 1 44 197 38 40 1 56 180 26 24 1 21 175 25 24 1 16 138 18 21 1 64 160 20 20 1 111 189 32 34 1 95 189 26 36 1 98 214 41 40 1 108 266 52 54 1 161 236 41 46 1 178 108 33 40 1 237 120 18 26 1 241 178 21 31 1 260 174 21 30 1 283 167 17 22 1 293 181 27 36 1 218 244 56 63 1 346 194 32 36 1 326 178 19 24 1 338 176 16 20 1 345 130 19 21 1 392 136 33 37 1 424 129 16 20 1 458 114 40 49 1 342 260 48 47 1
JPEGImages/PartB_00205.jpg 10 132 131 85 96 1 244 71 72 102 1 407 191 66 86 1 515 168 59 83 1 628 186 59 76 1 730 145 71 78 1 832 103 76 89 1 988 44 94 124 1 552 424 80 93 1 398 416 89 92 1
JPEGImages/PartB_02290.jpg 4 174 263 98 97 1 350 88 56 71 1 538 272 111 138 1 592 213 82 91 1
JPEGImages/PartB_02380.jpg 8 273 91 31 35 1 313 144 49 52 1 372 137 49 53 1 492 132 53 55 1 493 58 46 53 1 582 139 37 46 1 633 128 42 44 1 677 135 60 61 1
JPEGImages/PartB_01115.jpg 14 368 307 104 118 1 481 301 85 108 1 469 270 46 53 1 453 242 35 45 1 342 270 45 59 1 218 276 52 69 1 81 308 63 75 1 560 254 38 42 1 575 234 27 39 1 621 247 32 39 1 746 273 53 70 1 755 244 55 58 1 845 258 48 55 1 833 249 27 35 1
JPEGImages/PartB_00829.jpg 3 191 99 139 186 1 443 34 212 284 1 777 57 87 212 1
JPEGImages/PartB_00688.jpg 20 118 147 97 122 1 242 282 102 104 1 195 92 70 84 1 160 7 45 58 1 66 101 83 91 1 63 24 42 45 1 106 80 58 66 1 259 75 57 67 1 228 1 52 45 1 305 1 45 40 1 339 91 46 55 1 447 58 46 56 1 471 31 36 37 1 451 1 34 33 1 528 2 38 39 1 584 55 44 60 1 621 42 47 59 1 595 4 32 40 1 667 4 36 43 1 693 41 39 52 1
JPEGImages/PartB_01295.jpg 9 202 211 46 48 1 220 253 44 50 1 272 262 54 50 1 315 274 58 58 1 343 258 39 47 1 351 152 39 55 1 411 234 48 58 1 419 269 81 83 1 467 235 33 39 1
JPEGImages/PartB_00534.jpg 4 3 319 123 180 1 435 120 188 228 1 381 285 110 144 1 969 223 153 168 1
JPEGImages/PartB_02377.jpg 89 24 138 18 20 1 40 131 21 23 1 51 119 26 28 1 69 133 26 27 1 88 130 30 34 1 76 107 20 21 1 57 89 21 19 1 37 77 19 18 1 34 61 15 16 1 27 46 16 16 1 17 1 15 9 1 1 5 12 14 1 55 27 17 18 1 77 47 14 16 1 88 59 14 19 1 97 77 17 20 1 113 82 16 21 1 119 108 17 23 1 144 89 16 16 1 139 60 19 20 1 110 49 16 17 1 97 2 14 14 1 150 47 17 16 1 155 50 46 54 1 187 42 19 24 1 213 36 16 19 1 227 68 17 19 1 210 93 17 22 1 223 105 21 27 1 246 119 25 32 1 263 127 23 30 1 352 221 42 51 1 367 178 60 72 1 418 196 74 71 1 297 156 32 36 1 292 139 27 30 1 281 128 27 30 1 277 108 19 23 1 254 92 18 19 1 233 61 13 14 1 229 54 16 14 1 232 3 15 15 1 255 10 16 15 1 273 6 15 17 1 269 31 12 15 1 270 44 14 17 1 271 61 15 18 1 277 74 19 23 1 299 92 16 21 1 309 116 23 25 1 301 111 19 21 1 332 113 20 24 1 351 122 26 28 1 345 134 19 20 1 345 95 18 18 1 326 73 16 19 1 319 61 13 15 1 314 45 16 18 1 296 42 15 18 1 325 11 13 14 1 335 39 13 17 1 356 44 18 20 1 363 34 18 17 1 370 4 12 13 1 380 1 13 13 1 369 58 16 19 1 364 77 18 22 1 374 107 19 22 1 389 94 18 25 1 381 124 25 33 1 398 134 22 28 1 382 157 39 35 1 418 138 34 48 1 441 148 43 47 1 454 119 26 24 1 471 105 23 26 1 450 90 16 23 1 453 72 18 23 1 444 48 22 24 1 471 62 16 19 1 485 54 13 16 1 475 36 13 17 1 470 9 11 16 1 427 103 23 23 1 418 124 28 23 1 417 113 19 18 1 402 79 19 23 1 409 57 18 21 1 405 45 18 19 1
JPEGImages/PartB_01426.jpg 9 74 532 88 80 1 3 499 63 93 1 243 502 75 78 1 365 519 81 83 1 518 522 82 77 1 674 505 82 84 1 672 439 48 53 1 824 529 80 79 1 929 490 76 74 1
JPEGImages/PartB_01845.jpg 24 11 160 29 42 1 46 244 48 48 1 103 178 18 21 1 130 173 27 29 1 131 155 22 22 1 156 182 19 25 1 194 189 22 26 1 138 212 35 39 1 176 233 64 72 1 216 223 39 41 1 215 162 16 20 1 229 186 15 21 1 266 194 20 26 1 289 181 24 32 1 354 206 24 31 1 386 165 24 28 1 409 200 19 22 1 350 256 54 71 1 418 240 40 46 1 432 202 30 28 1 476 199 27 25 1 502 189 22 29 1 542 202 19 23 1 577 209 23 36 1
JPEGImages/PartB_00841.jpg 6 23 41 72 69 1 126 18 44 57 1 221 17 29 37 1 238 26 42 53 1 272 37 68 73 1 361 8 19 20 1
JPEGImages/PartB_02037.jpg 23 89 120 53 72 1 170 131 37 41 1 212 127 27 38 1 235 126 18 27 1 252 137 20 26 1 252 125 18 20 1 290 119 17 15 1 303 123 17 21 1 333 122 15 18 1 343 128 12 14 1 368 129 17 19 1 383 116 26 26 1 391 131 25 31 1 419 134 37 51 1 407 125 15 18 1 427 114 12 19 1 441 130 16 20 1 461 163 51 65 1 487 125 19 23 1 513 134 19 25 1 532 128 14 21 1 554 132 22 28 1 568 120 15 18 1
JPEGImages/PartB_00235.jpg 4 89 356 69 69 1 205 376 70 73 1 337 375 65 74 1 497 355 59 75 1
JPEGImages/PartB_00412.jpg 18 153 164 109 124 1 114 143 80 104 1 11 54 81 98 1 35 4 61 49 1 141 3 72 78 1 222 73 81 90 1 221 2 61 54 1 287 4 74 75 1 324 81 81 95 1 338 176 134 157 1 434 140 99 108 1 399 65 71 79 1 380 5 65 69 1 515 5 62 83 1 557 125 78 118 1 615 155 85 169 1 643 64 57 102 1 489 333 170 133 1
JPEGImages/PartB_02221.jpg 55 11 243 37 40 1 29 226 13 17 1 43 221 20 21 1 59 226 14 19 1 1 225 18 23 1 1 240 18 30 1 47 244 32 38 1 54 259 72 74 1 76 236 20 26 1 88 228 19 22 1 92 217 17 20 1 114 245 40 47 1 129 227 21 24 1 123 220 14 18 1 139 216 14 18 1 124 213 12 13 1 139 208 13 17 1 171 186 13 14 1 160 245 25 34 1 169 233 16 22 1 187 240 26 35 1 184 230 10 16 1 192 222 13 18 1 197 233 14 16 1 208 227 15 19 1 209 215 12 18 1 221 220 11 15 1 237 216 12 18 1 232 235 15 18 1 203 242 54 42 1 218 260 79 95 1 264 242 29 29 1 251 219 16 18 1 267 219 13 19 1 284 223 14 17 1 289 236 19 23 1 298 243 30 43 1 319 251 58 58 1 334 229 23 26 1 312 233 12 17 1 320 227 14 17 1 321 238 17 21 1 297 216 14 17 1 340 216 15 19 1 357 224 14 19 1 370 217 15 13 1 385 241 34 39 1 382 234 17 20 1 395 226 15 19 1 407 217 17 18 1 418 257 50 58 1 426 245 31 32 1 433 236 19 20 1 434 224 17 19 1 444 216 17 24 1
JPEGImages/PartB_02365.jpg 13 816 29 84 123 1 750 78 131 140 1 537 127 53 56 1 476 112 61 84 1 372 74 117 131 1 319 110 55 104 1 279 69 68 126 1 206 27 96 136 1 70 88 133 152 1 152 44 59 80 1 112 16 60 84 1 38 2 88 90 1 2 1 43 64 1
JPEGImages/PartB_01969.jpg 5 19 503 131 164 1 462 541 94 92 1 667 450 161 159 1 895 457 145 177 1 1139 491 109 136 1
JPEGImages/PartB_00581.jpg 4 1125 329 807 966 1 2280 512 845 993 1 3625 536 973 1159 1 4622 19 370 623 1
JPEGImages/PartB_02103.jpg 16 1 277 32 43 1 1 313 41 68 1 98 299 44 53 1 74 270 30 35 1 101 266 34 35 1 164 300 63 62 1 217 256 32 42 1 260 259 31 35 1 344 261 32 39 1 367 259 29 36 1 364 176 18 23 1 363 328 72 70 1 413 271 51 61 1 436 240 33 33 1 463 252 22 28 1 525 246 48 49 1
JPEGImages/PartB_01711.jpg 9 1 195 37 57 1 125 105 49 54 1 161 135 57 56 1 232 88 68 84 1 279 91 60 67 1 377 90 105 153 1 492 130 138 182 1 761 111 79 90 1 807 233 88 92 1
JPEGImages/PartB_01654.jpg 10 8 109 34 33 1 48 92 30 27 1 87 105 39 38 1 105 100 24 28 1 186 105 38 40 1 190 98 23 23 1 244 45 24 28 1 236 96 27 29 1 322 100 30 34 1 368 105 31 33 1
JPEGImages/PartB_01015.jpg 60 501 110 328 342 1 1004 599 138 167 1 1039 525 110 127 1 935 494 75 88 1 938 445 89 87 1 920 399 70 72 1 848 410 50 59 1 828 382 42 51 1 776 386 54 61 1 892 373 46 50 1 991 411 52 57 1 1034 423 71 87 1 1006 380 44 46 1 1038 364 37 50 1 1104 446 61 86 1 1210 459 98 121 1 1374 500 102 126 1 1365 586 111 179 1 1302 479 107 125 1 1333 438 76 73 1 1415 457 60 72 1 1381 401 47 53 1 1268 419 68 77 1 1288 384 37 41 1 1205 396 43 66 1 1229 371 36 42 1 1188 355 35 51 1 1173 405 41 41 1 1133 396 33 40 1 1146 380 31 30 1 1111 382 31 32 1 1101 355 30 29 1 174 660 164 181 1 6 664 96 216 1 130 474 110 136 1 201 553 157 145 1 293 428 121 113 1 66 425 91 93 1 1 447 71 123 1 146 365 49 68 1 213 400 62 65 1 281 389 48 61 1 320 376 51 52 1 370 407 67 97 1 443 393 48 59 1 379 359 48 61 1 407 349 43 48 1 483 344 39 41 1 344 348 48 47 1 286 341 57 52 1 245 359 43 42 1 225 322 41 33 1 201 347 35 36 1 151 334 35 37 1 131 315 43 36 1 104 350 44 40 1 79 332 35 49 1 12 340 47 51 1 14 305 39 41 1 81 396 53 49 1
JPEGImages/PartB_00116.jpg 14 134 397 91 84 1 300 417 54 56 1 304 350 50 48 1 440 543 113 122 1 536 440 62 79 1 546 393 46 57 1 543 358 38 43 1 628 374 69 64 1 653 324 48 58 1 685 430 65 79 1 738 527 116 129 1 780 266 37 34 1 1012 342 51 52 1 1118 337 50 55 1
JPEGImages/PartB_00917.jpg 36 5 358 58 71 1 3 325 48 51 1 54 251 32 33 1 23 210 27 31 1 80 209 23 26 1 127 207 22 23 1 112 231 32 35 1 182 242 22 24 1 184 206 21 22 1 226 229 21 27 1 235 201 18 24 1 274 228 26 28 1 320 228 23 22 1 363 261 23 21 1 305 258 23 23 1 275 266 28 33 1 231 277 34 37 1 167 280 35 41 1 136 395 72 79 1 267 412 75 96 1 380 374 60 59 1 265 348 55 59 1 215 332 45 44 1 352 293 36 32 1 388 278 28 34 1 410 258 21 24 1 420 247 25 25 1 437 268 24 33 1 473 272 27 27 1 504 268 25 25 1 530 253 22 30 1 660 228 22 32 1 729 324 39 41 1 839 292 28 31 1 900 371 64 73 1 932 337 44 55 1
JPEGImages/PartB_00950.jpg 39 38 127 47 48 1 97 105 37 36 1 63 56 23 25 1 87 66 17 21 1 41 43 13 15 1 5 45 18 24 1 4 22 13 16 1 124 54 14 16 1 153 63 15 16 1 173 60 16 18 1 206 60 11 14 1 194 81 16 18 1 222 81 16 16 1 238 74 12 11 1 259 76 12 17 1 281 79 11 13 1 142 154 48 52 1 276 195 51 70 1 240 136 17 21 1 299 134 22 27 1 332 138 27 32 1 353 178 35 39 1 411 228 73 76 1 500 208 41 52 1 556 151 36 35 1 433 131 22 25 1 475 73 25 27 1 446 89 16 18 1 404 89 12 17 1 395 76 13 12 1 373 77 10 11 1 366 91 11 11 1 352 87 14 15 1 335 79 11 11 1 325 72 13 18 1 311 78 10 11 1 308 91 16 20 1 299 102 12 18 1 283 98 16 18 1
JPEGImages/PartB_02329.jpg 8 135 50 56 65 1 219 50 46 62 1 269 84 46 65 1 310 87 37 56 1 352 76 58 65 1 411 63 43 56 1 445 97 49 52 1 505 85 49 66 1
JPEGImages/PartB_01976.jpg 3 25 219 20 28 1 107 197 16 19 1 327 189 25 28 1
JPEGImages/PartB_02099.jpg 7 86 285 41 37 1 195 264 27 33 1 122 331 80 69 1 256 297 40 44 1 327 275 24 27 1 392 213 18 21 1 562 276 30 30 1
JPEGImages/PartB_01046.jpg 3 227 198 183 211 1 497 176 188 243 1 625 147 313 377 1
JPEGImages/PartB_01998.jpg 10 50 1 115 110 1 8 60 35 32 1 28 52 22 26 1 215 75 31 36 1 227 68 24 27 1 246 76 26 28 1 290 92 20 23 1 281 77 20 20 1 311 94 20 24 1 358 65 92 119 1
JPEGImages/PartB_00342.jpg 25 45 1382 247 270 1 359 1335 208 231 1 192 818 239 270 1 53 771 195 206 1 3 860 114 219 1 564 782 223 278 1 731 1268 206 223 1 906 935 200 228 1 978 804 184 203 1 1148 804 155 170 1 1248 899 169 180 1 1187 1366 180 191 1 1434 1257 175 211 1 1431 788 156 214 1 1575 913 142 172 1 1737 1232 169 192 1 1948 1171 172 220 1 1717 782 128 178 1 1900 863 139 164 1 2067 804 131 184 1 2178 1141 172 194 1 2195 916 128 119 1 2387 1157 144 161 1 2484 854 119 145 1 2820 913 158 191 1
JPEGImages/PartB_01336.jpg 24 7 262 106 112 1 86 182 69 70 1 47 133 42 49 1 15 122 33 34 1 27 93 30 32 1 63 95 23 27 1 90 117 32 36 1 101 95 24 27 1 138 83 24 24 1 146 102 23 17 1 146 115 33 28 1 151 130 45 49 1 213 87 23 34 1 237 92 27 33 1 270 93 23 32 1 297 102 38 42 1 261 130 42 44 1 254 164 57 66 1 307 198 86 91 1 350 128 52 61 1 365 69 24 32 1 407 103 34 43 1 449 98 35 42 1 395 198 115 117 1
JPEGImages/PartB_01016.jpg 17 71 173 58 72 1 111 174 34 47 1 223 139 53 60 1 229 103 38 38 1 228 78 26 25 1 239 59 17 19 1 264 63 19 17 1 265 43 16 20 1 297 78 39 62 1 299 61 16 16 1 320 48 16 18 1 335 48 14 18 1 356 59 18 19 1 381 127 53 63 1 317 255 66 75 1 393 206 63 53 1 504 218 88 95 1
JPEGImages/PartB_02090.jpg 11 23 91 137 141 1 204 129 157 171 1 323 219 221 279 1 478 142 106 140 1 611 136 115 144 1 782 120 155 198 1 819 65 62 65 1 853 46 57 66 1 971 74 71 88 1 1089 67 75 77 1 1155 94 93 101 1
JPEGImages/PartB_01706.jpg 21 38 251 50 48 1 86 243 30 36 1 97 162 34 42 1 1 265 35 62 1 218 251 45 49 1 205 249 28 36 1 210 236 21 21 1 204 223 29 34 1 267 266 58 66 1 333 228 22 36 1 347 231 31 36 1 366 241 29 38 1 388 249 36 44 1 410 227 24 31 1 421 244 44 54 1 456 255 47 67 1 496 261 65 74 1 544 247 27 38 1 517 225 35 44 1 476 229 32 35 1 452 182 26 32 1
JPEGImages/PartB_02268.jpg 9 1 208 59 77 1 240 52 69 103 1 356 78 102 114 1 324 192 31 41 1 432 179 34 35 1 487 184 26 33 1 510 178 35 47 1 575 180 25 34 1 567 176 20 24 1
JPEGImages/PartB_02030.jpg 18 2 148 24 28 1 28 146 31 33 1 64 154 32 31 1 102 165 34 33 1 129 155 21 25 1 165 157 41 39 1 210 164 21 25 1 225 149 21 23 1 258 150 21 28 1 290 144 27 32 1 258 187 35 42 1 331 158 39 50 1 389 142 47 57 1 457 146 35 45 1 524 141 38 39 1 556 161 22 31 1 634 136 36 41 1 490 157 24 33 1
JPEGImages/PartB_00395.jpg 12 74 13 112 135 1 65 329 178 228 1 280 134 110 142 1 276 89 78 77 1 329 50 64 82 1 203 2 83 55 1 458 52 117 146 1 400 160 89 103 1 558 12 71 94 1 678 68 80 116 1 773 144 105 136 1 550 292 191 237 1
JPEGImages/PartB_01668.jpg 9 43 56 49 55 1 55 35 36 36 1 117 55 69 82 1 220 55 88 99 1 212 39 46 43 1 371 77 100 113 1 398 19 54 60 1 441 37 60 79 1 546 74 196 230 1
JPEGImages/PartB_01877.jpg 30 20 170 24 27 1 69 180 41 46 1 129 180 20 22 1 142 176 19 22 1 182 183 33 31 1 202 177 23 20 1 231 178 10 13 1 252 161 12 14 1 253 183 24 30 1 263 202 46 55 1 312 190 25 22 1 316 176 16 16 1 327 163 10 12 1 330 178 12 14 1 342 178 10 11 1 347 175 16 19 1 367 181 22 25 1 387 157 10 15 1 399 176 12 14 1 408 178 13 13 1 414 184 16 20 1 425 179 11 14 1 433 184 13 14 1 451 184 16 16 1 371 211 34 42 1 453 200 30 36 1 489 192 26 34 1 509 192 25 24 1 508 161 12 17 1 537 193 13 23 1
JPEGImages/PartB_02157.jpg 31 461 218 73 77 1 430 180 23 25 1 407 196 29 32 1 386 183 18 21 1 360 193 17 19 1 330 190 11 12 1 313 189 17 17 1 288 189 33 37 1 236 197 20 22 1 232 167 11 15 1 208 198 33 33 1 193 187 22 26 1 158 208 43 42 1 138 198 28 28 1 152 191 17 17 1 179 186 18 22 1 134 185 17 16 1 114 182 21 19 1 73 191 34 32 1 62 185 9 14 1 47 200 17 17 1 49 187 11 14 1 43 187 8 10 1 25 184 17 17 1 10 181 11 12 1 253 190 13 13 1 198 166 11 10 1 528 202 20 28 1 518 194 16 19 1 516 185 15 17 1 536 185 14 21 1
JPEGImages/PartB_00110.jpg 5 252 74 106 141 1 450 96 90 112 1 637 1 109 105 1 630 267 164 205 1 669 172 130 126 1
JPEGImages/PartB_01971.jpg 10 207 793 198 197 1 530 779 148 180 1 958 664 167 209 1 1345 761 169 214 1 1132 1030 287 347 1 1381 1222 447 551 1 1619 964 197 260 1 1823 753 140 209 1 1861 981 244 321 1 2170 730 160 187 1
JPEGImages/PartB_01482.jpg 24 32 104 36 37 1 25 78 21 25 1 14 77 18 21 1 7 73 13 16 1 22 71 13 11 1 98 63 14 18 1 112 74 18 19 1 111 65 13 15 1 128 69 13 15 1 144 66 12 12 1 147 79 21 27 1 161 69 15 19 1 170 64 12 12 1 176 68 12 18 1 185 76 18 20 1 194 66 13 16 1 204 85 23 28 1 208 71 14 16 1 216 61 13 13 1 233 76 18 21 1 235 65 13 15 1 249 66 12 14 1 269 75 24 28 1 272 64 13 14 1
JPEGImages/PartB_00054.jpg 50 1479 1324 34 32 1 2179 1395 73 70 1 2945 1326 64 66 1 3087 1524 97 90 1 2928 1675 161 129 1 2906 1558 117 122 1 2940 1473 73 85 1 2865 1507 78 88 1 2640 1595 134 131 1 2723 1524 78 93 1 2762 1495 68 70 1 2640 1504 78 100 1 2516 1533 71 74 1 2452 1487 88 98 1 2343 1463 68 73 1 2021 1690 188 161 1 1974 1577 105 132 1 2043 1558 124 107 1 2009 1502 70 73 1 1779 1470 88 71 1 1674 1551 103 100 1 1689 1507 66 61 1 1538 1541 83 76 1 1413 1629 130 136 1 1177 1692 178 183 1 1145 1595 132 107 1 1301 1480 90 100 1 1372 1463 73 88 1 1474 1473 64 68 1 1523 1463 51 56 1 1113 1475 78 73 1 1172 1451 61 61 1 974 1463 81 78 1 877 1519 85 71 1 626 1690 197 170 1 645 1582 122 108 1 750 1492 73 68 1 738 1451 61 61 1 640 1458 66 66 1 579 1485 78 73 1 411 1512 107 80 1 316 1602 127 115 1 404 1460 58 57 1 243 1519 83 73 1 150 1551 117 90 1 45 1602 129 115 1 77 1504 68 64 1 60 1470 53 56 1 228 1458 61 68 1 313 1453 54 66 1
JPEGImages/PartB_01987.jpg 17 29 141 42 47 1 117 116 47 55 1 160 103 31 37 1 227 87 24 29 1 249 97 26 41 1 267 73 20 28 1 290 99 21 27 1 282 126 48 62 1 310 84 20 29 1 329 46 19 27 1 361 84 24 33 1 341 94 33 44 1 398 119 60 88 1 428 96 28 33 1 445 126 30 38 1 410 37 21 28 1 518 24 27 29 1
JPEGImages/PartB_00610.jpg 23 20 99 60 71 1 71 81 53 56 1 139 126 46 52 1 161 239 62 73 1 193 100 53 62 1 160 63 41 50 1 241 71 42 45 1 264 126 47 54 1 299 93 44 54 1 340 53 35 57 1 376 78 38 46 1 405 97 52 54 1 457 85 29 50 1 491 99 43 53 1 524 69 35 45 1 530 107 55 64 1 583 80 38 50 1 605 104 47 55 1 632 62 43 51 1 657 94 43 58 1 723 103 44 56 1 462 230 58 76 1 335 231 50 68 1
JPEGImages/PartB_02386.jpg 8 45 106 30 39 1 96 111 34 33 1 183 104 35 43 1 267 110 30 37 1 305 122 31 36 1 364 119 35 35 1 433 115 29 37 1 512 132 28 36 1
JPEGImages/PartB_00755.jpg 4 49 33 50 52 1 58 16 31 32 1 178 45 27 34 1 251 1 90 63 1
JPEGImages/PartB_02209.jpg 14 62 138 39 37 1 129 124 21 25 1 94 127 19 18 1 114 109 15 20 1 151 113 22 23 1 145 103 13 12 1 163 68 9 10 1 190 103 14 16 1 223 109 16 14 1 195 114 15 16 1 264 107 13 17 1 53 112 9 11 1 77 106 13 14 1 12 110 12 13 1
JPEGImages/PartB_00317.jpg 53 402 166 21 22 1 144 252 27 28 1 93 282 30 29 1 88 259 27 26 1 22 299 38 35 1 45 282 28 28 1 21 255 30 32 1 122 327 52 54 1 206 392 98 88 1 348 501 163 148 1 415 340 81 110 1 467 320 46 58 1 496 270 35 32 1 507 247 26 28 1 459 249 21 25 1 435 285 33 32 1 408 298 34 35 1 433 270 23 28 1 393 263 25 26 1 350 286 31 35 1 288 314 38 46 1 321 328 30 37 1 236 310 51 60 1 235 287 36 35 1 304 282 30 29 1 318 255 34 31 1 555 254 24 23 1 566 266 36 23 1 574 285 30 26 1 578 313 40 46 1 602 324 57 57 1 665 357 94 82 1 824 444 176 209 1 923 343 77 107 1 791 315 55 56 1 740 337 53 57 1 832 310 33 38 1 789 279 38 41 1 768 270 32 34 1 706 314 41 47 1 665 321 44 43 1 643 296 29 28 1 635 278 29 25 1 632 250 27 29 1 618 251 19 19 1 720 237 25 26 1 730 259 27 24 1 709 271 30 28 1 720 296 33 30 1 865 236 29 32 1 926 255 31 37 1 932 244 25 25 1 979 237 21 31 1
JPEGImages/PartB_02337.jpg 28 16 168 26 22 1 26 195 28 27 1 58 218 33 29 1 50 246 44 38 1 78 168 22 21 1 113 179 23 27 1 166 201 28 27 1 192 231 35 34 1 129 335 70 78 1 313 292 57 61 1 209 155 18 15 1 246 115 18 19 1 243 168 17 19 1 246 153 16 17 1 287 159 18 16 1 297 179 25 21 1 323 148 17 17 1 355 144 16 14 1 375 150 17 19 1 407 155 15 16 1 355 173 24 21 1 381 199 29 33 1 442 189 29 30 1 438 161 23 21 1 468 155 21 21 1 524 228 38 39 1 543 172 26 26 1 569 159 23 21 1
JPEGImages/PartB_02121.jpg 26 13 248 44 53 1 60 259 51 55 1 84 295 59 67 1 102 234 29 40 1 95 202 25 30 1 79 190 18 24 1 125 188 20 25 1 183 186 15 21 1 192 188 21 28 1 211 198 22 29 1 225 203 24 29 1 213 239 37 44 1 313 250 46 46 1 320 223 33 39 1 288 159 15 17 1 340 188 18 22 1 349 201 29 31 1 370 194 22 31 1 397 208 24 30 1 407 187 21 21 1 356 273 56 58 1 422 230 43 44 1 488 244 44 52 1 480 219 31 34 1 485 197 20 24 1 445 193 23 24 1
JPEGImages/PartB_00543.jpg 29 17 100 28 31 1 1 94 15 34 1 64 106 36 39 1 85 131 71 54 1 68 88 15 17 1 83 84 14 20 1 108 89 23 22 1 127 85 15 20 1 148 97 22 23 1 157 80 16 20 1 178 85 16 21 1 189 80 11 13 1 202 99 23 28 1 221 87 16 19 1 214 82 11 13 1 245 77 13 21 1 251 75 12 16 1 255 99 32 36 1 282 95 19 22 1 290 90 14 15 1 288 83 12 10 1 291 77 11 14 1 327 75 13 15 1 341 79 12 15 1 344 88 11 19 1 354 91 22 30 1 375 79 12 16 1 394 87 16 17 1 451 32 36 37 1
JPEGImages/PartB_01565.jpg 6 31 461 170 184 1 94 394 143 162 1 177 389 132 153 1 687 59 84 132 1 772 340 136 131 1 1090 344 110 197 1
JPEGImages/PartB_00129.jpg 13 10 75 100 116 1 120 87 47 58 1 160 133 44 49 1 242 131 46 52 1 323 141 38 46 1 362 125 54 59 1 361 98 41 37 1 338 95 36 47 1 382 81 43 53 1 424 115 50 64 1 470 111 51 46 1 449 206 47 65 1 479 234 63 94 1
JPEGImages/PartB_01432.jpg 19 18 105 39 37 1 57 102 33 28 1 66 90 20 20 1 81 81 15 17 1 37 83 18 18 1 20 91 22 18 1 1 79 17 22 1 2 193 47 74 1 149 162 52 59 1 177 116 42 40 1 170 102 21 21 1 164 95 15 16 1 148 80 14 19 1 121 84 14 17 1 105 92 25 27 1 190 87 16 17 1 193 102 28 30 1 225 97 26 29 1 444 52 46 52 1
JPEGImages/PartB_02363.jpg 36 417 107 30 37 1 338 140 15 19 1 319 135 16 17 1 326 130 14 14 1 303 133 13 17 1 262 135 17 20 1 264 123 15 17 1 252 129 16 15 1 199 131 17 18 1 211 124 16 19 1 187 126 13 15 1 168 136 21 22 1 158 155 31 37 1 159 122 16 21 1 125 130 25 30 1 63 138 34 38 1 77 82 31 36 1 105 114 15 20 1 112 102 9 13 1 104 105 11 13 1 151 107 11 15 1 174 118 13 17 1 131 121 18 15 1 143 116 12 18 1 134 108 13 16 1 169 110 10 15 1 58 104 16 19 1 41 106 15 16 1 27 114 20 22 1 2 106 18 20 1 17 106 13 16 1 17 94 13 12 1 29 88 10 12 1 57 90 12 10 1 2 89 12 12 1 4 79 12 12 1
JPEGImages/PartB_01479.jpg 11 17 1729 190 222 1 231 1760 303 291 1 1019 1773 220 270 1 1036 1695 176 187 1 1385 1648 237 237 1 1785 1324 166 227 1 2117 1712 214 258 1 2339 1792 222 246 1 2592 1668 198 249 1 2810 1712 204 256 1 2983 1687 190 217 1
JPEGImages/PartB_01168.jpg 9 2 295 40 48 1 50 296 46 35 1 167 280 36 34 1 219 285 35 32 1 274 293 37 40 1 353 270 32 34 1 398 284 29 28 1 531 287 38 33 1 1115 219 38 45 1
JPEGImages/PartB_00277.jpg 11 76 93 32 29 1 120 87 27 32 1 150 83 26 24 1 175 79 32 29 1 212 72 40 36 1 257 61 28 36 1 285 67 23 35 1 306 70 19 28 1 364 69 34 46 1 396 84 23 27 1 350 59 26 33 1
JPEGImages/PartB_01604.jpg 9 50 534 95 113 1 197 523 39 44 1 229 551 51 48 1 277 544 92 87 1 326 447 30 35 1 413 541 38 41 1 499 541 51 52 1 505 523 41 38 1 606 540 49 55 1
JPEGImages/PartB_01571.jpg 4 312 1 298 308 1 597 144 126 151 1 710 151 89 129 1 894 104 140 183 1
JPEGImages/PartB_01416.jpg 9 8 84 74 76 1 92 68 35 50 1 151 124 99 88 1 180 52 56 63 1 257 68 47 54 1 360 61 44 48 1 402 49 34 41 1 447 77 57 69 1 491 51 45 60 1
JPEGImages/PartB_00301.jpg 11 403 333 46 50 1 315 355 41 49 1 236 361 48 52 1 237 341 46 43 1 147 339 45 47 1 180 335 27 35 1 198 364 19 27 1 217 366 24 32 1 91 341 58 67 1 33 321 44 73 1 1 225 37 172 1
JPEGImages/PartB_01239.jpg 8 65 347 136 181 1 143 208 126 134 1 355 168 66 81 1 422 211 94 114 1 481 272 136 182 1 578 177 60 82 1 691 245 94 100 1 865 267 157 182 1
JPEGImages/PartB_01745.jpg 4 36 1 78 67 1 265 1 42 37 1 279 13 84 114 1 420 1 48 45 1
JPEGImages/PartB_02056.jpg 26 136 200 11 12 1 122 265 25 26 1 149 252 19 17 1 121 251 14 13 1 100 257 18 15 1 80 253 13 13 1 92 287 27 30 1 48 299 34 31 1 64 273 21 21 1 50 257 16 13 1 44 253 15 14 1 9 263 15 15 1 4 284 31 27 1 314 249 15 18 1 326 264 16 17 1 336 268 28 23 1 358 250 14 15 1 376 247 17 19 1 377 279 27 30 1 406 249 18 19 1 418 246 16 18 1 453 243 15 14 1 449 283 26 25 1 471 267 22 21 1 488 254 12 16 1 488 245 12 12 1
JPEGImages/PartB_00510.jpg 6 16 67 16 15 1 56 54 14 15 1 117 81 16 21 1 184 92 25 26 1 247 126 20 25 1 263 110 15 21 1
JPEGImages/PartB_00329.jpg 5 20 12 42 99 1 93 44 71 88 1 207 33 56 74 1 284 40 50 72 1 347 41 44 95 1
JPEGImages/PartB_01393.jpg 29 1 167 39 50 1 2 212 56 88 1 80 181 47 42 1 96 152 28 33 1 49 145 24 23 1 16 149 32 31 1 70 134 18 18 1 96 126 20 20 1 105 136 17 14 1 124 129 13 17 1 125 153 20 22 1 145 147 21 29 1 160 148 18 22 1 146 136 17 18 1 168 137 14 18 1 183 145 16 18 1 214 103 23 32 1 279 132 15 17 1 287 140 14 16 1 287 156 28 40 1 299 146 13 13 1 306 135 15 17 1 328 146 18 20 1 334 159 23 24 1 360 163 34 39 1 348 142 14 18 1 366 145 15 18 1 382 140 17 24 1 356 201 42 49 1
JPEGImages/PartB_00985.jpg 5 27 147 151 129 1 266 200 81 94 1 622 83 78 84 1 665 193 78 90 1 878 66 171 131 1
JPEGImages/PartB_01563.jpg 11 132 171 94 83 1 312 139 46 55 1 328 177 61 70 1 423 195 90 85 1 579 32 50 61 1 517 238 135 162 1 724 194 96 103 1 984 154 57 71 1 1077 173 90 102 1 1010 257 134 148 1 659 534 268 245 1
JPEGImages/PartB_01502.jpg 10 34 114 19 25 1 57 123 22 22 1 103 102 17 19 1 134 110 17 19 1 158 124 28 32 1 167 96 15 19 1 193 96 18 21 1 245 137 33 43 1 239 107 27 30 1 290 62 43 48 1
JPEGImages/PartB_01689.jpg 12 129 174 38 50 1 149 246 60 75 1 131 247 40 48 1 264 247 41 63 1 293 243 26 37 1 322 246 33 33 1 365 249 34 48 1 389 243 37 59 1 416 234 63 81 1 493 243 44 42 1 546 243 24 38 1 560 252 46 52 1
JPEGImages/PartB_01934.jpg 12 513 81 33 37 1 268 140 19 21 1 220 142 24 26 1 203 139 15 22 1 165 151 24 22 1 163 138 17 17 1 115 141 22 23 1 59 142 17 13 1 43 198 89 84 1 1 161 23 46 1 27 147 21 19 1 3 139 14 21 1
JPEGImages/PartB_02085.jpg 9 275 387 117 137 1 495 478 58 75 1 546 480 56 74 1 634 517 53 61 1 743 495 54 64 1 794 361 96 119 1 902 431 88 106 1 1078 449 63 80 1 1138 414 125 142 1
JPEGImages/PartB_02154.jpg 98 1 381 30 45 1 85 367 20 24 1 80 343 25 26 1 116 361 21 27 1 140 352 20 25 1 147 370 26 31 1 171 379 44 40 1 184 353 20 25 1 212 347 21 23 1 224 339 21 32 1 246 341 18 26 1 267 353 15 19 1 277 336 19 24 1 280 361 26 31 1 259 371 29 30 1 252 403 46 46 1 333 371 31 30 1 314 345 19 24 1 309 346 11 16 1 340 340 16 22 1 359 362 22 28 1 384 374 34 35 1 408 358 22 31 1 433 371 31 38 1 419 397 49 55 1 387 339 18 25 1 377 335 15 20 1 401 328 17 19 1 442 354 26 25 1 474 364 25 37 1 514 372 30 40 1 511 350 23 26 1 519 329 23 28 1 505 324 15 24 1 499 306 16 18 1 475 317 19 21 1 474 347 21 29 1 462 339 17 21 1 447 325 16 21 1 543 348 22 28 1 561 335 16 24 1 545 321 15 18 1 571 317 14 21 1 582 353 29 26 1 586 369 32 38 1 625 359 26 35 1 606 329 24 33 1 653 337 20 25 1 682 360 32 38 1 685 345 22 23 1 695 321 15 20 1 675 328 13 14 1 671 336 15 17 1 736 350 24 30 1 750 346 22 23 1 744 334 13 18 1 737 324 14 15 1 779 322 14 20 1 784 331 19 25 1 798 348 18 21 1 814 326 16 22 1 832 332 19 27 1 826 321 16 23 1 864 315 20 22 1 872 329 22 24 1 907 328 18 25 1 940 318 15 21 1 744 400 44 58 1 818 373 41 52 1 891 369 29 43 1 916 366 37 53 1 944 353 32 33 1 892 422 52 57 1 965 438 64 56 1 995 389 44 49 1 976 374 30 41 1 990 359 29 31 1 1016 332 23 30 1 1032 324 25 29 1 1035 347 33 36 1 1073 329 20 31 1 1094 331 19 27 1 1102 315 16 20 1 1104 285 16 23 1 1162 278 19 25 1 1153 285 16 21 1 1146 332 25 29 1 1106 352 34 38 1 1080 379 28 49 1 1105 426 67 81 1 1168 379 48 53 1 1181 350 31 35 1 1189 331 27 33 1 1212 326 21 27 1 1205 303 21 25 1 1233 288 23 24 1 1272 276 19 27 1 1221 347 85 92 1
JPEGImages/PartB_00372.jpg 13 53 203 102 121 1 203 108 74 83 1 379 251 103 136 1 492 113 60 80 1 484 8 52 67 1 589 39 50 55 1 655 36 42 66 1 377 30 56 59 1 341 71 66 76 1 324 26 48 54 1 158 43 58 50 1 130 8 45 48 1 42 11 46 51 1
JPEGImages/PartB_01610.jpg 22 2281 819 227 239 1 1888 1136 112 134 1 1822 1158 92 146 1 1724 1180 156 173 1 1271 1290 217 241 1 1000 1304 180 237 1 773 1307 261 297 1 1073 1099 100 139 1 1149 1182 119 137 1 1268 1153 122 129 1 1410 1160 104 127 1 841 1099 117 144 1 729 1102 127 154 1 585 1156 156 207 1 666 1090 90 105 1 544 1117 114 117 1 427 1112 139 131 1 327 1226 168 215 1 95 1253 222 254 1 53 1121 174 171 1 110 1065 134 110 1 256 1068 112 105 1
JPEGImages/PartB_00062.jpg 18 23 131 35 30 1 1 129 22 30 1 52 127 40 33 1 121 183 60 52 1 160 147 39 37 1 208 132 38 33 1 257 127 28 28 1 256 159 59 48 1 319 133 27 30 1 325 123 22 20 1 388 120 24 22 1 419 136 50 50 1 430 112 33 37 1 491 116 40 39 1 546 147 44 35 1 526 133 26 32 1 589 186 51 72 1 589 107 31 22 1
JPEGImages/PartB_00213.jpg 24 91 180 32 38 1 124 158 29 33 1 155 174 26 30 1 192 162 27 34 1 243 174 29 36 1 299 196 32 35 1 357 163 28 40 1 426 90 27 33 1 453 75 26 35 1 481 77 33 37 1 399 81 27 32 1 392 61 26 29 1 365 72 30 38 1 340 65 25 27 1 312 75 27 33 1 287 62 29 33 1 263 80 32 33 1 235 64 26 31 1 207 79 27 31 1 179 86 24 24 1 150 96 26 27 1 133 85 19 25 1 110 90 25 31 1 57 91 29 33 1
JPEGImages/PartB_02370.jpg 13 105 349 119 130 1 57 336 106 114 1 197 354 79 109 1 269 461 58 68 1 386 467 61 67 1 413 379 99 103 1 463 367 108 120 1 554 157 92 114 1 627 339 160 174 1 760 341 75 102 1 819 372 80 105 1 877 329 149 162 1 1049 325 151 174 1
JPEGImages/PartB_00357.jpg 5 24 70 78 116 1 197 85 78 103 1 316 93 65 86 1 430 106 62 85 1 515 100 84 105 1
JPEGImages/PartB_01697.jpg 21 124 146 45 55 1 92 116 35 35 1 49 100 30 31 1 30 82 26 29 1 16 69 19 18 1 58 75 18 18 1 67 79 17 19 1 112 80 22 23 1 181 112 27 30 1 251 124 36 40 1 208 73 17 20 1 202 64 15 15 1 178 71 14 17 1 153 62 12 14 1 290 56 11 15 1 331 60 12 15 1 317 84 19 24 1 383 102 20 30 1 432 89 24 30 1 373 71 12 18 1 450 66 18 20 1
JPEGImages/PartB_01259.jpg 37 188 365 57 64 1 35 322 45 49 1 43 304 36 27 1 86 295 21 23 1 114 299 22 27 1 100 318 26 36 1 111 276 19 22 1 150 271 21 21 1 146 299 19 22 1 169 300 26 29 1 199 291 20 19 1 197 275 15 18 1 225 301 17 24 1 239 315 20 32 1 241 290 18 22 1 243 265 13 22 1 261 296 21 30 1 284 288 20 24 1 310 294 24 22 1 301 313 22 29 1 346 289 22 31 1 359 311 20 26 1 374 286 21 25 1 383 238 16 21 1 417 313 21 25 1 398 303 19 23 1 410 275 20 21 1 441 291 25 23 1 451 274 21 21 1 467 308 18 26 1 492 288 22 20 1 486 272 18 19 1 521 278 20 26 1 541 291 20 26 1 524 310 22 28 1 570 315 30 28 1 611 315 27 23 1
JPEGImages/PartB_02373.jpg 29 33 311 67 58 1 12 303 44 43 1 15 285 44 40 1 1 282 29 28 1 101 272 28 33 1 117 264 40 43 1 169 306 59 60 1 178 286 40 38 1 181 269 32 32 1 191 257 25 27 1 253 257 31 39 1 260 277 50 54 1 241 318 59 56 1 264 212 22 19 1 310 198 31 36 1 312 259 31 37 1 337 271 33 35 1 366 282 51 50 1 370 252 29 31 1 362 350 86 60 1 430 272 45 55 1 404 251 22 29 1 432 254 26 28 1 468 251 24 29 1 495 250 22 28 1 470 307 97 100 1 505 274 64 64 1 558 272 46 64 1 522 206 21 25 1
JPEGImages/PartB_00754.jpg 4 36 202 204 232 1 287 212 128 145 1 393 180 80 109 1 688 1 237 226 1
JPEGImages/PartB_00710.jpg 9 84 29 125 114 1 177 29 71 119 1 215 28 49 54 1 346 16 37 43 1 366 27 46 45 1 467 25 66 63 1 595 62 84 99 1 669 47 116 122 1 795 41 65 71 1
JPEGImages/PartB_00980.jpg 6 518 895 166 217 1 1001 921 164 171 1 1470 577 278 298 1 2384 556 239 275 1 2726 1158 156 193 1 2689 1034 176 165 1
JPEGImages/PartB_01383.jpg 13 240 388 71 73 1 300 412 86 102 1 454 400 57 82 1 507 411 85 93 1 632 372 69 72 1 682 403 75 83 1 646 454 114 118 1 817 369 83 69 1 942 266 62 54 1 890 430 92 101 1 1087 410 93 112 1 1190 528 172 161 1 1509 436 172 150 1
JPEGImages/PartB_01460.jpg 35 69 323 116 125 1 2 345 51 58 1 29 277 26 28 1 45 267 22 30 1 9 284 22 23 1 18 271 19 18 1 65 275 21 22 1 79 284 24 25 1 94 276 19 22 1 133 282 22 21 1 144 297 37 37 1 163 279 29 29 1 190 291 41 39 1 253 302 38 42 1 226 352 50 46 1 305 323 49 58 1 290 300 25 27 1 299 288 22 31 1 340 313 32 44 1 339 288 33 36 1 394 305 28 30 1 396 330 55 61 1 392 400 95 80 1 460 338 75 91 1 449 298 32 40 1 394 293 25 24 1 474 284 24 32 1 501 297 54 59 1 546 307 62 81 1 542 288 26 23 1 598 292 23 28 1 617 251 22 25 1 629 306 28 38 1 649 296 22 30 1 669 295 22 31 1
JPEGImages/PartB_00814.jpg 8 98 274 200 221 1 330 380 129 104 1 1 346 77 164 1 14 310 82 89 1 434 54 318 428 1 781 293 146 168 1 1021 268 179 186 1 1294 63 331 467 1
JPEGImages/PartB_00740.jpg 12 53 292 107 107 1 201 310 59 72 1 391 1 175 139 1 586 328 29 45 1 644 334 31 46 1 680 341 33 46 1 846 225 141 180 1 1000 360 35 53 1 1012 345 34 39 1 1074 326 55 77 1 1148 313 87 109 1 1232 322 67 89 1
JPEGImages/PartB_00381.jpg 111 1252 184 23 25 1 852 709 151 188 1 126 998 248 201 1 313 573 133 152 1 14 501 112 104 1 2 447 60 79 1 9 376 63 56 1 1 410 41 56 1 99 382 68 58 1 65 342 39 38 1 204 420 78 70 1 191 382 74 66 1 135 350 52 43 1 193 329 53 49 1 265 497 134 107 1 282 442 79 78 1 286 393 58 52 1 292 368 48 38 1 254 362 46 46 1 279 331 47 35 1 355 324 52 49 1 393 358 49 56 1 419 327 35 41 1 440 398 59 68 1 488 403 59 61 1 472 461 80 79 1 563 492 94 92 1 704 522 106 103 1 538 616 146 163 1 891 590 113 132 1 1151 635 104 129 1 1104 534 92 100 1 946 499 71 88 1 1302 584 102 106 1 1341 469 59 76 1 1452 534 72 77 1 1421 466 51 66 1 1517 513 56 67 1 1572 485 61 66 1 1636 466 50 58 1 1582 434 43 50 1 1669 445 50 50 1 1705 437 40 45 1 1772 390 25 45 1 1742 432 34 36 1 1644 345 35 38 1 1572 383 40 48 1 1544 347 35 38 1 1523 361 29 36 1 1489 334 30 28 1 1491 377 32 42 1 1462 387 31 38 1 1521 414 37 43 1 1486 443 53 50 1 1410 392 36 46 1 1378 405 41 36 1 1371 378 33 36 1 1404 329 27 29 1 1334 427 52 55 1 1314 401 36 50 1 1310 368 26 41 1 1302 351 36 32 1 1275 318 32 29 1 1231 394 46 44 1 1257 452 57 59 1 1176 461 64 68 1 1156 424 38 50 1 1135 409 35 33 1 1171 387 38 40 1 1212 335 27 38 1 1223 314 24 24 1 1249 321 27 31 1 1177 298 31 28 1 1144 338 28 30 1 1129 321 26 26 1 1092 367 28 37 1 1087 334 27 30 1 1072 299 28 30 1 1039 392 37 44 1 1045 377 34 31 1 1025 343 31 28 1 1014 309 24 31 1 975 304 25 32 1 934 337 29 29 1 968 352 24 30 1 909 357 41 31 1 924 414 53 49 1 918 443 53 63 1 777 429 73 74 1 1100 476 71 71 1 647 422 68 83 1 725 395 56 62 1 763 389 35 57 1 799 367 31 36 1 815 353 42 44 1 863 338 28 28 1 847 320 30 30 1 818 316 29 31 1 794 327 25 30 1 772 350 32 39 1 751 330 28 36 1 718 334 32 32 1 691 347 34 35 1 692 321 26 30 1 577 362 49 56 1 644 359 40 46 1 640 320 47 44 1 513 340 53 49 1 494 331 40 36 1 467 347 50 45 1 594 334 41 43 1
JPEGImages/PartB_01919.jpg 39 26 109 10 13 1 42 119 11 12 1 56 122 10 11 1 137 125 9 12 1 171 124 11 14 1 193 130 8 10 1 237 174 53 56 1 213 146 36 38 1 206 127 19 25 1 226 128 12 18 1 244 132 9 13 1 260 139 18 19 1 272 148 25 25 1 311 159 34 36 1 341 152 29 30 1 377 147 23 36 1 364 133 21 21 1 346 138 15 17 1 327 129 15 15 1 311 142 21 19 1 316 134 13 11 1 306 130 11 12 1 295 130 15 14 1 287 136 13 14 1 280 129 14 14 1 388 120 11 16 1 383 131 9 15 1 253 131 15 17 1 1 155 23 40 1 14 142 22 22 1 29 128 29 32 1 65 150 22 23 1 60 137 18 18 1 68 126 15 21 1 85 124 17 22 1 103 128 17 17 1 120 127 13 13 1 17 131 12 17 1 1 138 13 20 1
JPEGImages/PartB_00174.jpg 13 166 872 83 82 1 345 871 83 88 1 546 859 96 89 1 712 877 93 99 1 857 866 95 106 1 1029 943 116 108 1 1180 912 98 108 1 1298 911 77 80 1 1394 894 118 132 1 1549 903 106 119 1 1702 889 101 113 1 1828 903 89 86 1 1269 808 74 94 1
JPEGImages/PartB_01965.jpg 8 1 92 39 52 1 69 91 48 58 1 115 78 34 35 1 185 58 75 98 1 288 81 22 32 1 309 61 45 64 1 354 57 25 38 1 386 57 14 47 1
JPEGImages/PartB_00695.jpg 4 57 74 49 55 1 118 56 63 65 1 180 57 71 89 1 214 32 127 124 1
JPEGImages/PartB_02364.jpg 13 170 255 55 56 1 204 241 37 41 1 232 198 48 59 1 272 219 48 56 1 346 195 66 79 1 375 175 51 57 1 428 170 71 82 1 497 194 60 76 1 574 179 58 61 1 601 111 97 114 1 747 188 65 75 1 830 207 60 71 1 987 169 73 84 1
JPEGImages/PartB_02256.jpg 35 20 111 25 26 1 57 155 28 30 1 61 121 21 23 1 94 129 21 23 1 88 157 23 27 1 126 162 19 22 1 113 126 16 19 1 132 124 19 27 1 153 123 17 19 1 166 154 21 26 1 177 124 18 22 1 188 114 20 21 1 205 122 19 21 1 218 155 22 24 1 236 133 16 22 1 231 120 16 18 1 251 161 21 27 1 253 128 20 23 1 267 118 15 18 1 283 117 14 19 1 286 125 18 23 1 296 160 22 26 1 304 111 15 24 1 317 122 19 19 1 328 159 22 25 1 338 117 22 25 1 329 108 15 18 1 356 111 14 19 1 366 117 20 26 1 377 109 19 24 1 370 158 24 31 1 399 106 19 23 1 409 107 23 27 1 430 97 29 30 1 491 111 27 34 1
JPEGImages/PartB_00323.jpg 7 89 176 102 81 1 233 348 137 135 1 358 270 103 108 1 305 138 65 85 1 753 103 81 90 1 756 312 112 110 1 878 386 122 149 1
JPEGImages/PartB_00931.jpg 20 39 220 65 52 1 41 157 43 38 1 63 123 40 30 1 3 96 26 30 1 59 75 32 29 1 85 65 22 22 1 121 68 30 25 1 94 93 33 33 1 121 167 51 37 1 149 117 43 35 1 201 66 22 24 1 258 65 26 21 1 232 92 25 27 1 249 120 33 29 1 259 163 52 69 1 250 229 71 57 1 403 152 41 48 1 381 115 47 43 1 328 71 35 35 1 316 54 29 28 1
JPEGImages/PartB_01058.jpg 19 1 129 32 39 1 7 124 21 17 1 88 104 20 18 1 111 84 12 14 1 111 118 14 15 1 121 115 12 13 1 131 123 22 16 1 142 117 12 13 1 177 115 16 18 1 197 105 42 39 1 295 140 30 23 1 246 138 25 27 1 286 121 15 14 1 302 125 13 14 1 319 124 15 16 1 327 127 18 19 1 340 140 21 20 1 383 137 15 19 1 383 123 15 17 1
JPEGImages/PartB_00275.jpg 19 1 316 43 81 1 72 263 53 54 1 32 210 36 39 1 136 233 29 37 1 155 251 45 47 1 175 230 30 28 1 254 249 41 44 1 315 247 33 38 1 346 226 35 33 1 362 300 69 80 1 427 274 49 54 1 489 282 41 42 1 434 238 29 35 1 471 238 28 34 1 584 264 44 45 1 611 253 30 35 1 652 256 31 28 1 684 249 20 28 1 726 256 25 27 1
JPEGImages/PartB_02328.jpg 15 8 3 126 139 1 193 167 71 88 1 280 141 55 80 1 348 160 39 55 1 355 138 29 35 1 381 159 27 42 1 383 151 23 28 1 396 139 19 24 1 410 155 20 25 1 421 139 16 22 1 365 261 99 111 1 404 207 66 77 1 435 178 56 61 1 520 135 27 31 1 506 142 20 26 1
JPEGImages/PartB_01709.jpg 7 129 133 83 87 1 155 104 42 47 1 243 81 25 31 1 290 99 36 36 1 352 133 43 56 1 437 119 31 44 1 534 97 28 33 1
JPEGImages/PartB_01103.jpg 19 4704 1552 480 965 1 4476 1206 553 611 1 4008 1181 418 514 1 3301 1185 753 750 1 2890 2099 1164 1357 1 1554 1749 1268 1246 1 2390 1370 529 722 1 2697 1170 461 565 1 2062 1224 371 418 1 1697 1163 418 450 1 1179 1399 629 739 1 772 1352 440 529 1 322 1445 604 736 1 215 1288 414 443 1 233 735 236 250 1 601 745 236 257 1 690 1206 357 336 1 497 1106 307 343 1 258 1110 279 292 1
JPEGImages/PartB_01847.jpg 32 1 117 30 30 1 1 96 18 22 1 32 96 23 26 1 69 106 26 23 1 64 122 25 23 1 78 144 35 36 1 105 161 42 41 1 87 84 16 22 1 98 91 16 18 1 116 89 18 17 1 133 93 18 21 1 150 128 30 31 1 186 95 20 21 1 176 86 15 15 1 170 84 11 14 1 197 90 13 13 1 210 91 15 19 1 253 103 20 23 1 217 131 30 36 1 168 202 55 63 1 298 196 49 65 1 276 134 29 32 1 277 115 26 23 1 293 97 20 20 1 331 119 25 26 1 334 101 20 22 1 328 140 33 41 1 361 126 28 28 1 366 106 22 22 1 354 178 51 55 1 404 103 26 25 1 433 110 17 22 1
JPEGImages/PartB_01597.jpg 8 8 271 134 156 1 210 152 121 117 1 366 360 170 249 1 573 234 139 172 1 662 134 96 136 1 845 245 150 155 1 1028 416 189 250 1 1068 177 129 156 1
JPEGImages/PartB_01386.jpg 6 22 100 85 95 1 98 136 51 67 1 416 192 26 30 1 445 184 36 38 1 525 192 35 35 1 557 187 61 58 1
JPEGImages/PartB_00731.jpg 5 57 53 66 84 1 94 79 86 99 1 181 89 93 95 1 354 5 79 90 1 460 53 86 102 1
JPEGImages/PartB_01366.jpg 10 11 204 77 82 1 84 147 52 54 1 108 105 29 32 1 124 94 23 24 1 162 23 39 50 1 233 137 45 48 1 264 180 62 78 1 5 106 31 30 1 31 99 24 27 1 61 87 21 25 1
JPEGImages/PartB_02396.jpg 14 1 39 38 56 1 45 111 63 80 1 92 78 27 26 1 123 66 20 26 1 248 21 36 54 1 271 117 55 67 1 211 178 82 73 1 220 52 42 46 1 304 38 49 45 1 367 59 38 43 1 385 46 30 37 1 430 44 32 44 1 445 1 123 112 1 551 17 41 51 1
JPEGImages/PartB_01277.jpg 39 25 204 60 49 1 5 233 77 106 1 23 184 45 37 1 24 161 38 32 1 77 191 53 61 1 97 176 46 43 1 73 166 37 38 1 142 168 28 33 1 162 183 40 35 1 177 210 59 60 1 187 175 27 31 1 209 162 24 28 1 222 166 30 29 1 237 187 41 42 1 248 162 27 27 1 278 172 31 37 1 304 168 22 24 1 290 163 22 24 1 324 157 30 33 1 332 183 32 30 1 331 196 42 43 1 287 217 58 69 1 171 270 106 117 1 407 293 138 107 1 412 238 69 66 1 394 206 57 55 1 406 186 36 34 1 390 181 25 33 1 390 166 23 26 1 435 161 30 26 1 464 176 41 44 1 457 177 29 34 1 492 168 26 30 1 513 195 48 56 1 519 175 28 32 1 544 174 29 29 1 567 188 43 48 1 618 172 36 48 1 567 125 25 22 1
JPEGImages/PartB_02347.jpg 7 1 95 37 41 1 4 141 62 60 1 10 175 83 88 1 158 1 54 82 1 167 111 60 73 1 226 134 58 75 1 245 30 61 78 1
JPEGImages/PartB_02355.jpg 9 24 91 57 71 1 103 67 50 62 1 115 107 63 79 1 190 63 51 71 1 242 88 65 83 1 292 62 39 51 1 334 75 54 62 1 410 56 38 46 1 455 55 62 69 1
JPEGImages/PartB_00545.jpg 5 87 197 168 166 1 292 330 111 115 1 645 101 109 153 1 751 251 120 138 1 917 177 165 182 1
JPEGImages/PartB_01999.jpg 57 1 224 43 42 1 41 228 33 30 1 43 201 25 21 1 18 196 23 20 1 1 188 13 20 1 28 185 17 15 1 24 177 16 14 1 43 167 13 13 1 64 182 19 24 1 66 197 26 26 1 76 230 47 39 1 137 220 43 39 1 119 207 30 30 1 104 212 20 23 1 91 194 21 26 1 123 187 20 18 1 117 181 16 18 1 79 161 14 16 1 105 162 16 18 1 127 164 12 15 1 146 181 17 17 1 136 175 15 14 1 154 165 15 19 1 151 161 11 14 1 214 129 23 28 1 193 129 24 22 1 166 182 26 23 1 171 172 20 19 1 189 195 26 28 1 191 219 28 23 1 226 212 38 37 1 224 194 29 30 1 251 155 16 18 1 238 144 17 20 1 241 172 19 26 1 275 208 36 43 1 318 201 32 35 1 323 237 44 33 1 308 179 25 33 1 277 162 20 27 1 275 154 14 17 1 265 146 13 18 1 277 115 12 14 1 288 150 17 23 1 303 156 13 21 1 318 154 17 21 1 337 174 29 34 1 365 170 24 35 1 368 198 35 37 1 407 207 42 47 1 398 157 18 22 1 432 162 18 28 1 367 140 21 23 1 353 145 18 20 1 342 135 15 20 1 384 138 11 17 1 384 130 9 12 1
JPEGImages/PartB_01509.jpg 24 228 141 45 49 1 369 149 37 37 1 444 147 36 38 1 487 140 26 25 1 514 141 29 33 1 445 128 24 25 1 427 134 16 22 1 395 130 15 19 1 383 131 11 13 1 369 139 16 17 1 351 137 13 16 1 336 133 17 18 1 313 130 15 15 1 285 128 10 14 1 273 123 13 17 1 248 128 13 16 1 227 131 12 14 1 218 133 10 14 1 205 133 15 14 1 187 137 12 13 1 178 128 14 16 1 162 130 16 18 1 127 136 43 54 1 76 139 40 43 1
JPEGImages/PartB_01208.jpg 9 226 462 175 199 1 241 397 120 125 1 466 213 132 143 1 384 599 228 198 1 584 500 164 209 1 748 480 136 191 1 815 405 108 137 1 711 374 107 141 1 1083 512 117 190 1
JPEGImages/PartB_01337.jpg 38 116 224 48 61 1 179 194 28 27 1 114 166 20 25 1 96 175 17 14 1 83 170 13 13 1 69 167 11 12 1 43 175 21 25 1 29 170 13 13 1 250 212 43 53 1 262 182 17 17 1 253 179 14 16 1 252 175 10 10 1 247 171 10 10 1 218 170 10 11 1 225 168 13 11 1 208 179 16 12 1 184 173 12 13 1 191 168 10 12 1 177 153 10 12 1 155 170 9 11 1 142 165 10 10 1 289 178 12 15 1 334 190 19 26 1 352 184 14 18 1 361 178 11 15 1 370 174 11 14 1 391 172 12 15 1 394 183 21 27 1 428 182 12 16 1 440 188 24 28 1 451 179 10 12 1 350 172 9 10 1 335 172 6 10 1 470 209 36 40 1 486 192 24 26 1 505 186 18 24 1 530 181 18 19 1 532 197 22 39 1
JPEGImages/PartB_01500.jpg 41 23 286 56 51 1 20 258 36 41 1 105 239 30 37 1 131 264 38 48 1 149 243 38 44 1 206 264 49 52 1 168 320 61 67 1 204 234 24 35 1 259 235 26 35 1 277 250 32 40 1 295 312 73 65 1 331 270 50 50 1 360 256 29 40 1 381 239 27 34 1 351 228 23 28 1 310 228 27 33 1 363 214 25 28 1 415 232 25 31 1 447 232 20 30 1 456 241 25 34 1 467 252 32 39 1 455 284 46 60 1 556 262 43 48 1 582 235 34 36 1 603 227 23 27 1 523 229 27 33 1 648 234 31 37 1 664 248 34 44 1 718 242 29 33 1 785 224 26 38 1 456 428 108 120 1 619 329 80 96 1 759 284 56 77 1 788 274 48 54 1 751 438 166 150 1 865 353 89 89 1 870 242 47 56 1 922 227 34 47 1 955 288 28 64 1 953 256 31 46 1 961 223 23 33 1
JPEGImages/PartB_01030.jpg 42 41 205 118 150 1 6 273 57 76 1 158 294 45 63 1 193 301 48 63 1 247 289 44 59 1 310 291 48 68 1 290 302 37 38 1 346 297 29 40 1 394 318 38 43 1 385 307 29 35 1 432 314 33 42 1 464 312 33 41 1 492 300 25 34 1 513 294 32 47 1 545 304 35 43 1 570 281 34 39 1 586 308 32 40 1 607 316 33 43 1 574 342 47 55 1 634 310 30 42 1 656 324 25 35 1 667 292 42 47 1 647 294 26 31 1 669 342 49 55 1 712 309 40 50 1 758 336 50 58 1 738 294 28 37 1 764 294 28 41 1 788 280 36 54 1 817 308 28 36 1 847 305 39 51 1 837 279 34 36 1 890 328 48 65 1 890 291 43 50 1 923 282 29 56 1 983 244 62 81 1 1080 261 70 83 1 1030 289 32 47 1 978 296 32 45 1 466 415 55 64 1 959 553 86 98 1 1092 571 104 118 1
JPEGImages/PartB_02270.jpg 34 120 146 39 46 1 234 148 47 45 1 224 129 39 36 1 220 80 32 40 1 263 58 27 36 1 312 116 45 48 1 322 81 35 46 1 402 142 60 61 1 410 113 44 37 1 405 82 42 43 1 463 89 38 53 1 368 46 27 33 1 387 28 31 34 1 422 7 25 30 1 483 28 18 25 1 342 1 20 18 1 373 1 22 17 1 297 9 22 24 1 264 20 21 24 1 245 16 17 23 1 240 5 16 17 1 210 17 21 21 1 218 39 26 28 1 183 19 26 31 1 187 5 22 23 1 137 7 20 21 1 135 23 21 25 1 125 51 24 29 1 74 32 38 42 1 36 60 37 43 1 53 42 27 34 1 91 4 17 21 1 8 42 24 26 1 21 16 19 24 1
JPEGImages/PartB_00532.jpg 8 1 116 32 98 1 80 126 59 81 1 212 145 66 76 1 301 59 38 52 1 329 24 47 65 1 388 58 64 78 1 456 42 64 75 1 455 97 145 227 1
JPEGImages/PartB_01210.jpg 13 512 234 53 71 1 403 439 62 65 1 500 454 70 79 1 553 441 53 64 1 603 470 94 110 1 672 430 71 72 1 724 415 54 65 1 783 498 116 136 1 842 459 81 87 1 913 417 77 76 1 1 596 81 64 1 1 539 70 72 1 1 493 60 56 1
JPEGImages/PartB_01619.jpg 5 105 199 133 160 1 319 204 72 99 1 525 171 88 118 1 623 152 227 282 1 862 44 212 251 1
JPEGImages/PartB_02340.jpg 10 139 124 39 42 1 156 164 48 50 1 159 101 22 27 1 233 171 41 43 1 268 160 48 50 1 279 93 32 34 1 325 126 51 63 1 367 169 59 63 1 329 76 34 44 1 362 90 21 29 1
JPEGImages/PartB_00293.jpg 12 288 118 21 29 1 316 199 30 29 1 413 244 30 49 1 245 197 34 38 1 225 188 26 28 1 175 222 43 43 1 177 193 34 34 1 146 178 30 29 1 71 235 57 57 1 1 230 43 53 1 23 184 30 30 1 71 180 28 27 1
JPEGImages/PartB_00603.jpg 29 75 71 27 35 1 44 94 33 38 1 38 151 63 59 1 3 198 54 80 1 1 256 53 135 1 150 182 95 107 1 96 140 47 43 1 103 187 59 62 1 176 146 38 41 1 206 117 35 34 1 210 93 28 38 1 253 142 50 48 1 269 182 64 68 1 335 159 46 60 1 374 177 41 47 1 385 233 136 152 1 483 222 81 93 1 511 148 52 72 1 677 191 47 58 1 677 169 43 47 1 722 168 81 85 1 629 44 39 41 1 863 180 49 61 1 830 240 95 85 1 845 305 178 204 1 1005 195 76 94 1 981 177 50 73 1 1081 157 54 61 1 1165 171 68 73 1
JPEGImages/PartB_00052.jpg 5 994 1336 269 355 1 973 2212 542 582 1 2229 2301 579 645 1 3139 2157 466 583 1 3780 2467 604 641 1
JPEGImages/PartB_02385.jpg 14 29 104 25 31 1 49 93 25 28 1 73 92 26 27 1 85 106 25 30 1 114 107 28 30 1 163 91 22 28 1 198 106 24 26 1 230 91 23 29 1 250 115 21 26 1 278 96 24 28 1 307 120 24 29 1 331 116 24 28 1 314 85 24 31 1 373 87 30 33 1
JPEGImages/PartB_01830.jpg 37 2 154 32 38 1 5 123 21 23 1 54 123 20 21 1 70 113 16 22 1 96 135 26 24 1 63 175 47 44 1 111 117 21 23 1 117 104 17 19 1 148 115 17 16 1 159 108 13 16 1 139 142 26 31 1 153 132 23 24 1 204 140 28 25 1 189 121 18 19 1 191 109 16 14 1 212 107 12 14 1 219 113 15 18 1 240 119 19 20 1 233 106 11 14 1 237 103 15 15 1 267 107 12 16 1 276 111 12 13 1 276 119 18 18 1 284 140 25 28 1 224 162 36 37 1 297 128 17 17 1 300 110 15 17 1 325 115 13 16 1 333 120 14 19 1 340 113 14 18 1 354 137 21 26 1 373 126 21 23 1 365 114 19 21 1 390 115 16 16 1 419 120 15 19 1 439 119 14 19 1 445 46 26 31 1
JPEGImages/PartB_01723.jpg 16 87 71 27 25 1 128 105 21 18 1 119 101 14 17 1 160 103 25 24 1 185 103 14 12 1 211 97 13 14 1 203 105 20 23 1 242 104 33 33 1 225 100 14 17 1 296 103 12 15 1 301 114 15 18 1 351 113 18 17 1 347 103 11 15 1 373 116 39 42 1 398 100 17 20 1 429 116 31 31 1
JPEGImages/PartB_02255.jpg 19 346 222 60 54 1 188 356 65 71 1 248 376 60 68 1 256 475 115 125 1 134 436 107 108 1 46 392 84 90 1 8 434 74 88 1 336 376 72 80 1 392 438 106 97 1 489 406 78 93 1 567 499 126 139 1 644 459 101 100 1 622 369 65 72 1 724 381 69 67 1 736 337 65 72 1 912 371 67 80 1 901 350 62 68 1 941 523 167 149 1 1013 178 144 152 1
JPEGImages/PartB_00580.jpg 8 64 122 55 70 1 167 161 48 64 1 250 145 53 63 1 336 182 52 66 1 424 132 47 55 1 502 147 50 59 1 587 108 45 64 1 660 143 50 69 1
JPEGImages/PartB_01419.jpg 22 10 177 28 27 1 25 171 20 24 1 64 172 22 23 1 74 184 30 27 1 95 172 14 20 1 115 176 18 23 1 121 169 13 12 1 139 181 25 25 1 152 166 17 16 1 160 175 17 18 1 177 175 18 18 1 190 172 13 12 1 212 166 10 13 1 218 177 13 15 1 307 181 26 29 1 338 180 19 16 1 348 185 24 24 1 366 195 28 33 1 381 187 15 16 1 396 182 22 24 1 412 193 23 24 1 429 186 23 21 1
JPEGImages/PartB_01621.jpg 5 235 229 125 165 1 231 166 119 111 1 508 128 105 140 1 692 196 140 165 1 890 218 192 236 1
JPEGImages/PartB_00646.jpg 8 24 278 88 101 1 3 396 102 196 1 46 209 60 50 1 168 223 112 123 1 307 189 122 123 1 544 211 121 138 1 611 283 163 190 1 655 33 144 179 1
JPEGImages/PartB_00721.jpg 5 1 34 104 200 1 129 15 158 159 1 339 11 122 150 1 434 10 177 209 1 636 5 100 130 1
JPEGImages/PartB_02228.jpg 53 124 251 73 48 1 65 198 39 34 1 53 163 25 26 1 38 152 16 20 1 1 140 10 11 1 17 134 12 12 1 30 142 10 12 1 37 143 11 13 1 47 136 10 11 1 50 140 12 15 1 62 144 11 12 1 79 147 12 16 1 95 152 18 21 1 117 163 25 25 1 120 139 10 10 1 130 137 10 12 1 145 138 11 13 1 159 142 12 15 1 165 136 11 11 1 156 117 9 11 1 177 134 10 8 1 179 141 7 12 1 184 140 13 14 1 192 147 13 14 1 200 140 9 9 1 214 132 11 12 1 219 137 10 11 1 226 141 13 15 1 230 149 13 14 1 213 153 20 21 1 180 200 36 43 1 240 209 58 62 1 275 171 25 28 1 266 157 19 20 1 253 141 16 19 1 239 138 15 13 1 243 135 10 11 1 252 131 13 14 1 267 138 7 9 1 273 139 9 13 1 277 144 14 15 1 295 141 11 14 1 305 157 19 21 1 320 146 18 15 1 315 140 11 11 1 329 136 12 13 1 347 146 13 13 1 332 143 13 14 1 360 159 23 27 1 371 143 13 11 1 384 148 21 26 1 403 144 15 15 1 421 137 16 15 1
JPEGImages/PartB_00585.jpg 8 86 59 40 54 1 3 18 25 32 1 162 89 62 84 1 210 94 45 74 1 252 1 19 16 1 317 1 32 23 1 327 64 36 43 1 317 119 83 118 1
JPEGImages/PartB_00413.jpg 5 617 179 86 95 1 725 259 169 187 1 986 277 132 154 1 1133 274 86 103 1 6 186 177 273 1
JPEGImages/PartB_00904.jpg 4 1 130 27 33 1 192 137 35 38 1 307 121 36 38 1 419 130 31 38 1
JPEGImages/PartB_00237.jpg 7 37 102 27 30 1 88 64 44 42 1 197 96 28 29 1 267 99 28 33 1 327 53 45 37 1 404 97 33 34 1 137 106 23 29 1
JPEGImages/PartB_00888.jpg 8 29 281 105 149 1 126 246 86 95 1 325 243 102 104 1 465 317 159 222 1 524 87 85 96 1 747 226 91 110 1 895 316 101 129 1 1144 284 132 192 1
JPEGImages/PartB_01072.jpg 45 33 161 35 36 1 62 133 23 22 1 1 101 8 16 1 94 137 24 36 1 94 117 19 21 1 91 101 20 18 1 118 105 16 17 1 123 142 34 43 1 155 137 24 30 1 140 125 17 19 1 164 120 20 19 1 162 100 18 20 1 192 116 18 23 1 204 120 19 24 1 219 121 20 22 1 213 100 15 18 1 232 76 17 18 1 207 149 26 34 1 226 143 21 27 1 259 142 25 29 1 278 148 30 36 1 288 123 18 23 1 269 114 18 23 1 252 114 19 24 1 263 81 17 21 1 285 81 14 18 1 302 85 13 19 1 311 117 18 22 1 304 105 18 21 1 334 86 14 16 1 345 113 18 21 1 325 129 17 26 1 340 141 21 30 1 366 151 31 36 1 357 91 17 18 1 348 76 13 16 1 375 67 17 20 1 387 88 17 21 1 370 115 16 25 1 385 122 17 24 1 409 135 23 31 1 434 159 30 36 1 459 141 22 25 1 443 116 23 28 1 499 158 36 39 1
JPEGImages/PartB_00030.jpg 32 926 526 68 69 1 807 302 32 32 1 639 317 28 31 1 541 338 29 31 1 528 496 89 93 1 645 452 70 74 1 758 417 44 47 1 819 434 38 31 1 841 424 31 25 1 862 401 35 30 1 720 396 28 34 1 672 394 34 41 1 603 403 45 41 1 521 419 49 44 1 420 448 51 52 1 309 567 100 98 1 35 483 83 75 1 283 488 56 58 1 220 441 52 47 1 323 426 44 45 1 397 406 36 39 1 489 393 33 37 1 543 387 31 30 1 454 384 32 31 1 384 388 27 28 1 297 396 46 35 1 268 322 32 39 1 203 383 27 28 1 104 423 48 46 1 87 387 41 41 1 22 398 28 33 1 1 428 19 34 1
JPEGImages/PartB_00053.jpg 162 128 935 177 173 1 435 985 147 141 1 278 867 136 132 1 146 778 116 118 1 7 849 89 118 1 107 733 100 91 1 44 687 88 105 1 1 617 63 95 1 23 508 34 32 1 32 526 41 48 1 87 535 36 41 1 116 549 53 45 1 157 571 64 57 1 262 624 68 59 1 378 628 70 71 1 485 660 68 68 1 553 687 77 71 1 637 694 50 64 1 703 742 77 81 1 805 749 75 72 1 1021 835 98 107 1 1162 810 114 114 1 1260 831 100 86 1 1464 862 77 107 1 1553 899 86 88 1 1644 874 91 107 1 1516 828 66 64 1 1603 819 50 75 1 1691 840 55 59 1 1398 790 78 63 1 1266 749 69 70 1 1187 724 64 70 1 1119 717 70 50 1 1085 781 56 72 1 953 796 79 73 1 964 726 57 55 1 905 724 55 50 1 2126 933 102 111 1 2307 899 89 93 1 2269 903 54 78 1 2448 915 75 79 1 2528 906 52 70 1 2564 867 41 66 1 2605 926 68 73 1 2757 951 59 64 1 2698 915 53 63 1 2921 921 45 57 1 2980 915 41 54 1 3016 901 37 43 1 3046 935 45 46 1 3076 894 43 37 1 3148 931 52 54 1 196 533 34 34 1 112 515 52 38 1 230 567 57 52 1 323 581 55 50 1 435 592 36 50 1 394 571 43 55 1 453 565 36 43 1 537 567 39 48 1 621 606 50 47 1 580 599 43 38 1 776 665 56 54 1 735 624 36 38 1 889 658 43 38 1 916 640 46 50 1 941 633 37 36 1 869 615 45 41 1 821 646 48 46 1 764 578 48 37 1 1808 901 77 89 1 1959 914 76 86 1 2087 921 53 75 1 2227 851 66 69 1 2187 893 55 69 1 2158 849 62 58 1 2069 850 57 65 1 2027 849 46 61 1 1960 848 66 61 1 1887 846 53 67 1 1840 853 64 73 1 1819 815 57 51 1 1885 809 52 47 1 1968 804 41 43 1 2023 793 49 55 1 2099 831 42 55 1 2253 812 43 53 1 2315 822 51 60 1 2342 787 36 39 1 2438 843 47 55 1 2392 836 35 49 1 2486 829 36 45 1 2527 797 31 38 1 2562 816 35 45 1 2790 922 41 52 1 2809 896 42 45 1 2844 887 47 52 1 2756 856 44 47 1 2647 862 49 57 1 2093 783 43 38 1 2287 777 38 32 1 2256 779 33 32 1 2626 839 37 39 1 2687 859 29 41 1 2405 884 52 59 1 1430 720 57 64 1 1474 785 46 52 1 1539 799 65 69 1 1584 764 61 58 1 1562 735 59 57 1 1710 797 54 51 1 1754 761 35 49 1 1799 776 39 39 1 1841 770 36 44 1 1888 771 43 40 1 1892 740 36 33 1 1937 726 29 38 1 1907 710 23 31 1 1883 718 20 34 1 2037 730 28 22 1 2087 752 27 34 1 1830 741 32 38 1 1820 707 29 37 1 1774 743 26 30 1 1677 775 52 54 1 1653 724 47 40 1 1680 694 29 33 1 1646 687 25 26 1 1536 739 37 48 1 1511 707 32 38 1 1547 687 22 34 1 1575 680 25 28 1 1604 695 24 31 1 1481 619 28 31 1 1442 693 33 32 1 1474 708 32 32 1 1368 681 30 36 1 1397 691 40 42 1 1376 739 39 50 1 1327 740 44 55 1 1333 706 36 38 1 1301 680 29 34 1 1321 665 29 29 1 1347 655 19 33 1 1243 702 43 55 1 1217 676 38 36 1 1267 661 38 38 1 1190 632 32 25 1 1169 690 39 51 1 1159 657 38 43 1 1100 682 45 33 1 1138 647 26 37 1 1138 618 33 37 1 1722 725 27 33 1 1770 703 24 30 1 722 694 62 64 1 675 674 51 63 1 696 638 41 44 1 714 596 30 35 1 658 579 42 43 1 2148 773 32 40 1 2189 769 32 39 1
JPEGImages/PartB_00355.jpg 23 28 182 58 67 1 1 234 47 49 1 64 240 37 44 1 92 242 44 47 1 123 237 26 42 1 140 255 21 30 1 150 256 21 38 1 199 261 27 32 1 220 257 32 40 1 249 263 27 28 1 290 262 21 28 1 303 258 25 36 1 340 257 30 35 1 367 256 27 29 1 382 227 40 45 1 475 243 52 54 1 637 254 23 36 1 660 266 23 31 1 689 222 31 38 1 727 245 43 47 1 783 204 42 58 1 804 189 62 70 1 893 187 58 85 1
JPEGImages/PartB_00004.jpg 8 159 209 177 251 1 305 173 132 213 1 405 152 142 168 1 546 167 117 143 1 878 65 139 138 1 881 213 109 146 1 944 147 162 208 1 1075 110 125 277 1
JPEGImages/PartB_01548.jpg 10 5 116 26 37 1 13 97 26 29 1 39 105 27 40 1 39 85 19 20 1 63 90 22 19 1 70 105 22 29 1 87 114 27 30 1 92 90 19 24 1 154 94 23 19 1 277 70 37 43 1
JPEGImages/PartB_01690.jpg 68 111 191 82 83 1 38 176 51 59 1 16 148 38 43 1 6 135 29 31 1 4 113 18 20 1 21 115 18 21 1 34 119 23 22 1 45 113 20 24 1 58 131 22 25 1 68 117 19 19 1 82 112 15 16 1 103 123 18 20 1 104 115 15 18 1 94 138 28 31 1 122 140 31 34 1 141 128 25 25 1 139 121 18 18 1 172 128 22 28 1 166 112 15 19 1 177 111 12 14 1 188 122 16 20 1 195 116 14 16 1 203 110 12 14 1 219 117 14 18 1 237 120 16 18 1 205 135 32 36 1 186 159 42 46 1 286 170 70 75 1 304 147 35 39 1 290 134 24 35 1 261 118 18 18 1 234 112 11 11 1 244 109 13 13 1 271 109 10 11 1 300 116 16 20 1 294 125 14 15 1 307 112 12 17 1 316 112 8 11 1 369 141 31 45 1 411 156 56 67 1 362 251 137 117 1 499 124 21 28 1 541 118 12 16 1 527 108 15 13 1 518 112 12 12 1 468 125 25 26 1 480 115 14 17 1 489 109 11 15 1 471 109 13 17 1 460 112 12 16 1 446 121 17 23 1 425 131 26 26 1 405 121 22 23 1 423 113 15 19 1 435 113 13 14 1 426 109 11 10 1 433 104 11 9 1 409 107 12 14 1 400 112 11 12 1 388 117 14 18 1 375 115 12 15 1 357 122 18 23 1 335 125 15 20 1 341 110 14 20 1 329 102 12 15 1 363 108 12 13 1 377 108 11 10 1 388 106 11 14 1
JPEGImages/PartB_02247.jpg 30 1 513 112 131 1 3 444 77 62 1 12 417 55 52 1 76 479 89 107 1 146 404 62 82 1 116 391 57 68 1 183 429 74 85 1 218 480 101 105 1 313 393 60 58 1 370 401 62 77 1 419 477 82 81 1 446 443 73 72 1 454 388 52 56 1 502 388 44 55 1 394 558 120 130 1 584 256 108 121 1 698 363 51 58 1 732 367 32 48 1 764 391 49 67 1 803 377 46 48 1 823 415 65 92 1 854 401 72 78 1 936 364 48 49 1 997 329 49 50 1 1036 401 73 88 1 1052 381 60 54 1 1075 355 42 50 1 1108 406 69 74 1 1041 514 153 182 1 1079 468 117 104 1
JPEGImages/PartB_00504.jpg 16 60 100 25 27 1 61 195 64 71 1 89 176 24 28 1 111 176 18 27 1 19 174 18 21 1 47 192 33 38 1 199 133 16 21 1 180 185 25 31 1 212 181 34 38 1 244 163 20 23 1 241 148 18 19 1 265 114 15 18 1 279 126 19 19 1 315 129 20 22 1 320 150 17 27 1 298 174 24 31 1
JPEGImages/PartB_00014.jpg 11 2 512 65 150 1 103 569 103 96 1 215 495 181 175 1 341 510 95 154 1 474 580 178 176 1 460 539 98 105 1 573 538 130 144 1 758 552 101 124 1 813 580 130 126 1 1019 576 105 118 1 777 430 59 68 1
JPEGImages/PartB_01491.jpg 6 170 43 25 30 1 89 151 45 42 1 178 133 42 38 1 265 113 31 31 1 288 110 23 27 1 339 110 46 38 1
JPEGImages/PartB_01243.jpg 7 3 227 245 338 1 84 116 138 153 1 329 121 81 100 1 443 118 121 138 1 603 119 71 109 1 813 205 207 280 1 865 152 110 149 1
JPEGImages/PartB_01011.jpg 56 12 637 54 59 1 59 614 43 53 1 102 645 34 50 1 140 605 46 48 1 168 640 40 46 1 203 650 35 42 1 216 676 43 54 1 241 658 34 43 1 249 633 37 38 1 288 598 38 44 1 304 674 41 50 1 297 654 29 38 1 330 646 36 41 1 358 654 36 41 1 399 673 44 50 1 404 639 32 46 1 374 635 32 33 1 440 626 34 40 1 443 667 38 41 1 497 673 39 48 1 481 644 30 37 1 509 631 25 40 1 534 614 31 34 1 526 654 45 46 1 574 667 46 50 1 561 626 38 40 1 595 614 37 45 1 615 662 33 41 1 652 662 34 48 1 649 627 39 39 1 626 628 26 35 1 686 648 46 52 1 707 628 31 38 1 735 642 33 49 1 738 617 33 34 1 767 639 41 47 1 791 672 38 50 1 816 639 36 41 1 865 637 32 35 1 865 662 34 43 1 907 654 28 47 1 852 621 28 38 1 953 658 44 51 1 986 669 30 43 1 984 631 34 40 1 1016 657 31 53 1 1036 655 49 53 1 1076 653 32 46 1 1093 641 42 48 1 1143 650 37 49 1 1182 645 39 47 1 1213 668 49 50 1 779 777 45 53 1 876 777 46 59 1 971 772 51 56 1 1086 782 63 66 1
JPEGImages/PartB_01203.jpg 22 1467 1364 173 211 1 1937 1833 142 181 1 2133 1752 146 166 1 2329 1779 131 158 1 2060 1972 242 265 1 2436 2002 254 250 1 2536 1883 200 219 1 2763 1841 189 234 1 2933 1752 165 208 1 2994 1841 196 219 1 3090 1729 112 150 1 3325 1756 131 146 1 3275 1945 242 269 1 3425 1841 192 254 1 3556 1822 204 203 1 3521 1729 139 143 1 3790 1810 196 219 1 3783 1749 127 161 1 4167 1214 269 265 1 4440 1845 281 319 1 4760 1875 269 243 1 4067 1918 227 250 1
JPEGImages/PartB_00069.jpg 34 25 89 26 23 1 165 74 33 28 1 229 72 28 30 1 12 299 51 40 1 1 342 46 60 1 18 395 60 53 1 122 327 57 52 1 127 273 42 38 1 121 244 38 34 1 123 215 30 26 1 54 225 32 35 1 77 214 29 30 1 158 202 27 29 1 179 242 41 38 1 217 198 28 31 1 254 263 35 33 1 257 235 28 31 1 226 297 43 45 1 344 326 55 64 1 345 286 44 39 1 342 248 33 37 1 297 210 22 32 1 324 162 35 25 1 371 169 28 28 1 378 234 25 30 1 461 249 41 36 1 419 174 30 27 1 498 167 31 34 1 393 222 26 32 1 533 278 39 38 1 466 280 49 51 1 553 184 39 37 1 562 61 38 42 1 553 374 47 72 1
JPEGImages/PartB_02267.jpg 7 11 57 39 41 1 52 60 43 57 1 57 35 41 44 1 153 122 60 71 1 166 5 45 62 1 220 3 55 75 1 257 7 76 84 1
JPEGImages/PartB_01653.jpg 9 1 283 74 80 1 96 276 50 49 1 89 258 32 30 1 192 233 25 28 1 222 243 58 63 1 241 227 32 31 1 304 210 36 45 1 383 204 39 43 1 407 210 50 58 1
JPEGImages/PartB_01586.jpg 4 1954 399 188 227 1 467 1426 230 270 1 1527 1435 277 327 1 2286 1549 354 291 1
JPEGImages/PartB_01718.jpg 5 8 240 69 60 1 56 206 59 61 1 193 207 51 60 1 319 217 61 64 1 313 82 39 47 1
JPEGImages/PartB_01327.jpg 17 268 128 90 103 1 299 482 127 121 1 477 421 101 111 1 591 423 98 92 1 695 421 87 86 1 781 414 86 83 1 842 399 74 79 1 909 374 76 76 1 996 332 65 67 1 1031 325 50 57 1 480 648 209 229 1 690 613 200 193 1 866 531 174 163 1 873 459 152 123 1 971 429 113 106 1 1044 417 78 107 1 1156 405 122 102 1
JPEGImages/PartB_02224.jpg 89 5 273 11 12 1 15 268 9 13 1 9 264 7 7 1 26 278 14 14 1 26 268 10 11 1 29 265 10 8 1 44 264 9 10 1 39 273 11 12 1 25 304 29 23 1 64 273 13 12 1 64 266 9 8 1 70 261 8 10 1 86 268 11 13 1 86 265 8 9 1 104 265 11 11 1 110 272 12 9 1 118 262 11 11 1 125 266 11 10 1 142 266 9 8 1 116 276 16 16 1 127 285 19 20 1 124 303 24 22 1 105 315 41 42 1 97 293 25 25 1 93 282 18 16 1 151 282 16 14 1 157 272 13 12 1 171 275 9 10 1 169 282 15 18 1 171 297 26 26 1 193 284 16 22 1 211 284 16 17 1 227 282 15 17 1 211 274 12 11 1 213 266 11 9 1 222 270 12 10 1 234 271 10 13 1 238 268 9 9 1 190 276 12 9 1 193 272 11 9 1 247 299 28 32 1 257 294 20 23 1 262 281 16 16 1 268 274 12 13 1 286 265 10 8 1 291 271 10 10 1 299 276 13 16 1 304 280 14 19 1 311 289 22 21 1 330 272 13 13 1 312 270 6 8 1 343 267 8 7 1 365 266 12 8 1 362 285 24 24 1 347 319 49 55 1 416 291 32 37 1 405 280 21 18 1 396 278 13 19 1 377 275 12 13 1 356 272 10 11 1 377 266 10 11 1 400 265 12 11 1 404 270 9 10 1 411 271 11 10 1 434 273 14 12 1 432 282 14 17 1 449 271 13 16 1 444 266 9 9 1 462 264 9 10 1 467 265 7 8 1 484 273 14 16 1 484 282 24 28 1 497 247 11 14 1 512 275 11 11 1 520 266 10 12 1 515 262 7 8 1 534 275 13 10 1 540 285 33 40 1 526 283 14 18 1 569 299 29 26 1 582 282 15 13 1 557 267 14 15 1 573 268 12 13 1 588 272 11 13 1 542 264 9 10 1 531 261 10 14 1 555 263 8 7 1 277 228 6 6 1 314 229 6 7 1
JPEGImages/PartB_00000.jpg 26 19 193 24 29 1 72 206 28 28 1 95 219 34 34 1 134 212 40 39 1 134 192 18 20 1 183 187 17 18 1 207 218 57 74 1 262 202 20 25 1 277 213 30 27 1 271 191 16 17 1 323 208 26 33 1 327 201 22 28 1 307 261 92 88 1 370 208 22 25 1 376 200 15 19 1 406 192 16 21 1 419 209 20 30 1 428 204 18 23 1 449 197 15 20 1 477 211 18 22 1 484 203 16 20 1 498 207 21 22 1 520 213 16 21 1 550 225 50 51 1 563 207 23 26 1 532 290 68 115 1
JPEGImages/PartB_01679.jpg 5 97 186 63 73 1 79 178 48 43 1 203 188 42 48 1 247 105 33 36 1 341 169 43 41 1
JPEGImages/PartB_00551.jpg 7 2 233 190 239 1 73 148 189 238 1 228 221 160 208 1 316 117 163 191 1 511 128 197 252 1 758 173 140 215 1 978 157 209 295 1
JPEGImages/PartB_02173.jpg 22 5 339 75 100 1 48 252 33 45 1 87 239 29 30 1 116 249 39 40 1 162 259 33 40 1 171 234 23 26 1 192 228 19 22 1 203 210 16 17 1 211 239 18 18 1 220 235 21 27 1 231 245 30 34 1 212 277 59 74 1 266 265 35 44 1 271 240 27 26 1 294 251 33 37 1 323 238 19 27 1 356 248 40 48 1 317 284 60 65 1 254 245 19 20 1 540 236 23 26 1 555 244 29 29 1 581 233 19 27 1
JPEGImages/PartB_00258.jpg 13 104 199 18 25 1 150 203 15 17 1 183 194 16 19 1 212 193 17 22 1 247 196 18 23 1 282 200 16 20 1 311 202 16 18 1 338 198 18 25 1 367 199 17 20 1 397 199 17 20 1 431 202 20 22 1 458 205 18 22 1 490 200 17 19 1
JPEGImages/PartB_00861.jpg 6 139 205 144 162 1 291 176 92 102 1 415 159 125 143 1 553 234 163 185 1 718 159 133 140 1 888 213 148 167 1
JPEGImages/PartB_01880.jpg 6 92 199 97 95 1 122 285 48 55 1 202 222 49 68 1 241 210 66 83 1 317 236 79 99 1 443 271 100 108 1
JPEGImages/PartB_01476.jpg 17 8 153 47 53 1 64 135 51 53 1 145 130 38 44 1 187 135 37 39 1 188 161 90 103 1 283 156 70 81 1 292 132 37 39 1 261 115 23 32 1 229 131 35 40 1 218 115 28 31 1 308 115 32 33 1 341 121 22 30 1 390 107 35 37 1 390 142 62 67 1 399 178 121 125 1 522 155 77 93 1 522 132 37 42 1
JPEGImages/PartB_01056.jpg 11 317 94 15 17 1 355 156 19 19 1 421 150 20 20 1 468 149 23 26 1 525 152 24 29 1 301 142 20 18 1 235 149 21 21 1 196 158 22 18 1 172 158 18 17 1 146 144 17 15 1 45 150 19 19 1
JPEGImages/PartB_00636.jpg 8 676 401 179 207 1 1637 804 244 234 1 2318 783 187 230 1 2000 864 302 335 1 1511 1018 282 327 1 504 1104 377 369 1 320 1045 254 314 1 1460 1532 544 669 1
JPEGImages/PartB_00817.jpg 9 1 91 81 142 1 91 93 80 117 1 97 46 69 62 1 186 54 52 73 1 217 146 70 87 1 294 163 56 92 1 392 98 45 64 1 390 170 61 80 1 438 119 42 66 1
JPEGImages/PartB_00851.jpg 5 51 2 476 300 1 813 4 516 508 1 945 476 312 430 1 1733 160 422 508 1 1983 134 686 782 1
JPEGImages/PartB_01612.jpg 32 44 311 46 45 1 54 345 56 57 1 94 321 32 33 1 113 332 73 80 1 160 304 46 48 1 183 337 39 42 1 209 351 48 49 1 219 304 38 39 1 262 295 32 35 1 263 388 63 70 1 330 317 43 52 1 360 310 34 42 1 360 340 29 32 1 358 366 60 54 1 298 515 132 144 1 439 361 37 32 1 426 328 37 34 1 532 345 38 32 1 531 329 27 29 1 594 338 33 35 1 617 328 31 31 1 519 415 85 100 1 640 399 53 62 1 670 380 47 51 1 681 316 46 42 1 735 343 41 42 1 765 345 29 33 1 797 246 31 34 1 804 478 99 99 1 841 412 63 59 1 826 382 52 53 1 843 361 38 39 1
JPEGImages/PartB_01258.jpg 13 147 330 82 97 1 138 266 41 63 1 4 285 61 64 1 212 252 58 77 1 377 441 124 144 1 406 312 64 93 1 438 252 42 56 1 570 261 51 64 1 623 320 87 131 1 708 263 38 57 1 732 263 58 76 1 865 259 52 76 1 1102 326 91 107 1
JPEGImages/PartB_02327.jpg 17 152 218 64 68 1 213 193 42 46 1 265 124 27 35 1 330 181 46 44 1 335 238 80 90 1 330 159 36 34 1 413 165 27 33 1 427 178 34 39 1 463 156 17 25 1 501 161 22 27 1 489 189 47 49 1 544 177 36 41 1 532 172 24 24 1 575 174 24 28 1 559 166 15 20 1 16 202 49 53 1 3 301 95 99 1
JPEGImages/PartB_02401.jpg 78 22 217 41 42 1 18 198 25 26 1 26 185 20 21 1 16 181 13 14 1 7 182 12 12 1 66 187 15 17 1 81 199 21 23 1 126 210 30 31 1 142 229 52 55 1 249 206 40 40 1 206 195 26 30 1 179 191 22 18 1 133 189 22 22 1 109 184 19 19 1 98 179 14 16 1 89 175 12 15 1 115 164 11 13 1 144 176 11 14 1 164 182 12 13 1 151 193 12 16 1 125 178 10 13 1 114 175 9 11 1 138 173 9 11 1 154 175 9 11 1 161 174 9 9 1 172 171 8 11 1 185 174 9 14 1 192 179 10 14 1 195 176 9 8 1 209 181 13 15 1 223 192 18 19 1 244 193 22 24 1 290 198 20 23 1 278 184 12 14 1 265 182 15 17 1 264 174 11 10 1 245 177 12 13 1 237 184 10 11 1 228 179 12 15 1 219 172 11 12 1 279 174 8 11 1 286 174 9 10 1 297 179 13 16 1 323 186 17 19 1 333 195 20 24 1 336 218 35 38 1 317 177 8 9 1 329 176 8 8 1 335 178 8 10 1 341 182 11 13 1 344 176 10 11 1 355 182 12 14 1 357 175 8 11 1 372 179 10 13 1 373 187 18 19 1 393 208 27 27 1 440 197 28 28 1 476 194 15 18 1 491 187 13 14 1 498 178 9 13 1 506 181 10 12 1 519 178 14 15 1 530 182 10 12 1 542 179 9 13 1 552 180 11 13 1 565 181 11 12 1 432 188 12 15 1 408 179 13 18 1 391 184 12 18 1 389 174 10 12 1 401 178 9 12 1 371 173 7 9 1 417 174 10 13 1 428 179 8 7 1 437 175 8 12 1 447 176 9 11 1 462 184 9 13 1 469 179 10 13 1
JPEGImages/PartB_01443.jpg 46 172 714 40 49 1 139 830 96 89 1 260 713 26 38 1 328 699 34 41 1 367 783 42 38 1 305 820 50 52 1 321 876 70 76 1 430 860 53 53 1 410 798 35 39 1 430 728 32 34 1 506 698 26 37 1 578 726 41 28 1 533 778 40 37 1 496 800 35 39 1 547 845 50 58 1 584 833 39 37 1 563 809 37 40 1 649 784 34 44 1 371 1002 94 92 1 597 972 58 72 1 688 910 64 74 1 708 823 37 50 1 741 834 50 50 1 755 796 37 44 1 825 802 36 35 1 815 703 27 37 1 868 875 42 59 1 920 899 52 64 1 965 855 47 50 1 942 824 40 46 1 915 720 27 30 1 960 699 31 31 1 1023 696 38 35 1 1071 720 26 32 1 1068 762 37 41 1 1107 772 24 32 1 1123 784 26 34 1 1121 821 41 47 1 1123 879 45 51 1 1092 934 83 94 1 1199 924 59 73 1 1281 837 38 47 1 1293 804 33 38 1 1357 833 47 46 1 1346 805 38 45 1 1477 841 70 73 1
JPEGImages/PartB_01136.jpg 5 237 1580 508 503 1 1687 508 428 503 1 2979 1647 352 539 1 3162 1702 778 947 1 3765 1341 219 532 1
JPEGImages/PartB_00416.jpg 4 243 125 37 44 1 256 250 49 51 1 126 244 51 56 1 1 253 49 58 1
JPEGImages/PartB_00999.jpg 5 84 205 138 123 1 380 295 54 58 1 565 103 238 263 1 994 235 94 122 1 1147 285 51 88 1
JPEGImages/PartB_01080.jpg 7 39 58 124 138 1 130 47 51 68 1 177 92 25 40 1 195 85 34 44 1 384 82 42 43 1 469 61 52 70 1 535 30 78 86 1
JPEGImages/PartB_00249.jpg 8 50 245 42 44 1 89 215 65 65 1 188 249 32 46 1 237 209 54 60 1 300 232 35 45 1 376 231 24 27 1 429 239 42 53 1 502 206 50 39 1
JPEGImages/PartB_00339.jpg 23 88 145 56 60 1 133 119 29 36 1 163 128 38 45 1 199 189 71 84 1 230 139 46 56 1 271 107 23 32 1 291 96 21 27 1 302 88 22 28 1 337 102 24 27 1 332 131 31 36 1 394 114 23 28 1 420 117 28 35 1 244 90 21 26 1 227 101 27 31 1 216 93 17 22 1 192 92 21 24 1 150 54 15 18 1 88 103 26 29 1 71 98 26 27 1 54 77 17 15 1 31 92 20 21 1 1 107 26 35 1 2 217 48 103 1
JPEGImages/PartB_00405.jpg 17 88 219 77 63 1 150 208 51 52 1 25 247 63 66 1 284 237 75 72 1 373 193 78 89 1 387 129 46 51 1 487 138 44 51 1 541 208 51 47 1 511 185 39 50 1 589 219 67 80 1 588 177 66 60 1 628 119 53 60 1 702 155 52 53 1 781 193 53 63 1 843 203 78 88 1 1114 97 69 97 1 776 158 41 47 1
JPEGImages/PartB_01062.jpg 13 27 199 29 28 1 39 172 21 23 1 91 143 26 25 1 168 158 22 25 1 171 195 27 30 1 194 131 20 22 1 239 157 26 25 1 294 138 22 23 1 335 177 23 25 1 308 204 31 29 1 385 141 32 31 1 490 200 35 36 1 510 152 25 32 1
JPEGImages/PartB_01852.jpg 27 7 260 39 47 1 55 251 54 52 1 166 237 51 55 1 193 267 89 100 1 250 229 40 42 1 267 185 29 32 1 301 236 30 39 1 322 235 23 27 1 308 223 20 23 1 329 219 18 22 1 367 221 17 24 1 370 244 64 75 1 429 245 48 65 1 393 229 29 31 1 412 214 20 22 1 423 218 37 31 1 450 210 16 22 1 457 228 23 30 1 478 221 36 43 1 505 221 36 39 1 535 215 27 37 1 549 205 21 29 1 560 217 17 25 1 567 203 24 35 1 616 216 31 41 1 651 216 49 78 1 568 248 50 56 1
JPEGImages/PartB_02070.jpg 8 1 323 86 92 1 81 249 64 71 1 207 264 76 87 1 316 223 66 81 1 453 41 55 73 1 478 241 84 100 1 554 227 63 81 1 404 317 99 105 1
JPEGImages/PartB_00194.jpg 46 128 164 31 36 1 144 139 23 25 1 162 132 21 21 1 155 115 14 18 1 118 105 11 15 1 108 123 18 17 1 100 109 14 15 1 92 120 18 24 1 60 124 24 23 1 59 110 15 16 1 13 114 18 18 1 16 98 12 15 1 1 86 12 15 1 12 79 11 10 1 24 89 11 10 1 52 71 10 11 1 68 98 13 15 1 52 100 13 15 1 87 74 7 10 1 81 83 11 12 1 128 88 9 12 1 135 77 8 12 1 157 86 10 12 1 147 95 10 14 1 164 78 8 8 1 175 83 8 9 1 179 96 10 12 1 189 103 11 12 1 200 103 10 11 1 199 85 9 12 1 201 79 10 9 1 186 83 9 9 1 221 91 10 11 1 236 90 10 11 1 250 101 9 11 1 250 94 8 10 1 269 100 11 11 1 281 116 10 13 1 284 107 10 11 1 301 109 9 13 1 353 96 20 23 1 251 172 30 33 1 269 203 31 45 1 262 119 11 12 1 239 111 11 13 1 1 156 30 40 1
JPEGImages/PartB_01637.jpg 16 125 54 55 65 1 94 74 33 39 1 88 56 24 29 1 111 61 23 28 1 180 66 35 39 1 211 108 68 90 1 254 58 39 50 1 293 70 34 42 1 357 73 26 37 1 380 72 33 45 1 421 72 19 26 1 446 67 16 22 1 450 83 17 20 1 369 113 58 77 1 479 89 49 66 1 548 98 32 41 1
JPEGImages/PartB_00632.jpg 8 122 285 125 99 1 223 229 72 62 1 245 141 17 21 1 269 151 22 23 1 313 198 50 55 1 414 295 115 111 1 442 218 87 77 1 543 236 93 79 1
JPEGImages/PartB_01703.jpg 33 64 251 27 24 1 70 269 29 30 1 94 290 54 52 1 185 259 28 26 1 174 254 22 27 1 217 276 34 35 1 257 285 38 40 1 300 299 49 52 1 282 250 22 27 1 298 258 22 25 1 326 251 24 29 1 365 252 19 27 1 380 222 19 22 1 384 253 19 24 1 398 264 30 34 1 436 252 21 27 1 463 264 28 37 1 466 248 15 21 1 487 253 22 27 1 513 238 24 28 1 505 271 42 47 1 524 263 26 36 1 557 250 18 24 1 576 264 28 36 1 585 250 19 24 1 598 244 18 21 1 626 280 31 34 1 623 265 19 24 1 632 251 16 19 1 647 242 13 17 1 668 258 28 33 1 682 246 15 24 1 698 260 19 27 1
JPEGImages/PartB_00771.jpg 8 75 488 227 232 1 246 471 144 158 1 416 412 101 108 1 696 120 72 95 1 747 399 93 127 1 905 559 173 213 1 916 475 147 137 1 1113 362 85 127 1
JPEGImages/PartB_01910.jpg 11 26 178 34 34 1 8 168 26 29 1 1 155 13 19 1 50 150 15 17 1 83 147 13 17 1 77 172 38 41 1 156 187 50 42 1 141 149 22 24 1 151 119 13 15 1 198 155 26 31 1 257 153 26 33 1
JPEGImages/PartB_00233.jpg 18 1 350 36 46 1 79 321 37 46 1 114 330 35 40 1 111 416 52 51 1 191 351 34 48 1 218 356 26 39 1 270 334 30 41 1 278 387 35 45 1 317 360 34 37 1 392 411 37 46 1 402 312 30 40 1 434 330 29 35 1 475 407 38 41 1 516 312 34 42 1 553 304 29 37 1 623 344 41 47 1 676 345 36 39 1 739 323 39 39 1
JPEGImages/PartB_01157.jpg 33 945 1473 379 373 1 902 1136 269 267 1 573 1056 217 231 1 471 591 188 182 1 800 793 73 100 1 743 777 75 98 1 432 885 60 86 1 398 858 85 80 1 390 818 83 61 1 894 826 98 130 1 983 875 113 120 1 1181 797 68 90 1 1126 754 78 100 1 1288 781 67 110 1 1361 832 106 106 1 1338 948 141 151 1 1547 963 189 185 1 1706 1069 206 220 1 2155 1120 302 285 1 2469 989 121 217 1 2473 863 106 132 1 2243 834 104 114 1 2157 793 77 94 1 2151 679 61 71 1 1988 756 59 82 1 1775 814 92 95 1 1800 883 143 135 1 1671 763 94 110 1 1734 760 51 62 1 1845 740 65 72 1 1883 695 55 65 1 1516 754 67 92 1 1430 754 58 74 1
JPEGImages/PartB_01462.jpg 56 22 525 70 56 1 123 370 37 32 1 248 415 46 40 1 265 378 41 41 1 440 441 50 46 1 324 320 26 24 1 346 326 24 24 1 395 338 26 30 1 388 332 19 17 1 419 317 17 19 1 443 309 19 23 1 455 319 24 20 1 455 342 30 29 1 500 302 23 26 1 462 259 18 19 1 521 297 24 26 1 546 318 20 22 1 558 333 26 30 1 570 325 26 23 1 562 297 18 21 1 577 306 23 17 1 605 291 16 22 1 621 309 20 29 1 594 360 27 25 1 643 360 34 37 1 719 358 40 40 1 700 344 23 31 1 660 309 25 24 1 635 281 15 19 1 689 290 17 19 1 698 277 20 18 1 709 296 23 23 1 718 315 23 23 1 732 303 19 22 1 732 278 19 21 1 759 276 22 20 1 766 305 19 23 1 786 319 32 25 1 756 334 26 38 1 782 356 36 30 1 846 316 25 27 1 818 290 21 24 1 798 287 17 22 1 855 277 24 27 1 895 275 22 26 1 908 295 19 20 1 935 321 30 26 1 976 319 28 31 1 941 308 20 25 1 876 308 24 27 1 794 393 47 49 1 744 498 76 73 1 973 522 84 92 1 997 420 60 61 1 1114 367 46 42 1 1165 439 35 58 1
JPEGImages/PartB_02262.jpg 9 14 318 96 85 1 59 258 78 78 1 194 297 81 92 1 248 257 60 55 1 303 241 62 60 1 391 229 58 63 1 404 279 84 89 1 485 219 53 66 1 442 99 30 31 1
JPEGImages/PartB_01439.jpg 5 55 234 34 33 1 74 255 40 43 1 104 302 52 61 1 252 264 45 55 1 291 159 40 43 1
JPEGImages/PartB_00447.jpg 8 61 47 128 136 1 187 159 30 29 1 258 151 33 33 1 250 110 19 29 1 308 135 60 73 1 358 119 109 86 1 457 140 46 56 1 498 133 38 52 1
JPEGImages/PartB_00094.jpg 9 1 168 19 55 1 26 196 46 45 1 66 163 33 40 1 100 163 49 51 1 198 102 58 59 1 238 193 51 58 1 279 177 46 57 1 331 197 61 62 1 382 188 51 62 1
JPEGImages/PartB_01627.jpg 4 565 337 277 313 1 1131 577 165 198 1 1602 685 471 540 1 1590 1206 708 703 1
JPEGImages/PartB_01363.jpg 24 77 406 87 86 1 152 406 69 79 1 139 372 53 54 1 170 346 36 40 1 83 370 54 43 1 54 345 43 50 1 65 331 36 33 1 214 349 45 56 1 253 354 33 43 1 235 326 36 37 1 307 371 59 76 1 344 373 45 61 1 309 328 32 40 1 390 359 40 44 1 393 330 35 32 1 432 302 115 144 1 414 552 140 174 1 616 183 114 142 1 811 326 33 41 1 559 376 47 61 1 609 384 34 56 1 591 349 44 47 1 630 325 26 39 1 560 322 29 42 1
JPEGImages/PartB_00607.jpg 22 1 480 88 129 1 208 395 76 79 1 312 165 65 68 1 214 562 124 127 1 311 465 86 98 1 330 411 95 109 1 561 215 60 47 1 549 499 112 136 1 549 444 92 107 1 750 442 105 122 1 835 228 65 70 1 873 473 98 149 1 980 424 114 115 1 990 557 148 189 1 1233 618 203 248 1 1158 463 100 129 1 1247 427 83 94 1 1276 373 55 67 1 1356 440 94 125 1 1408 415 88 94 1 1401 376 76 82 1 1541 410 59 100 1
JPEGImages/PartB_02382.jpg 16 15 133 43 43 1 47 102 37 41 1 96 65 27 31 1 150 57 18 20 1 171 121 38 44 1 183 111 30 35 1 189 90 31 35 1 243 82 23 28 1 233 138 57 67 1 266 185 97 85 1 278 83 17 20 1 298 77 15 19 1 311 87 16 20 1 327 80 23 26 1 330 97 24 23 1 364 97 36 37 1
JPEGImages/PartB_00469.jpg 5 138 128 64 84 1 195 119 57 60 1 359 70 39 51 1 391 112 48 62 1 454 139 65 76 1
JPEGImages/PartB_01635.jpg 13 21 248 56 58 1 9 223 37 36 1 55 208 32 33 1 98 220 39 47 1 120 206 31 33 1 280 209 24 31 1 303 215 32 37 1 344 214 26 27 1 364 164 21 25 1 373 215 30 32 1 358 240 54 62 1 472 241 57 57 1 479 226 24 23 1
JPEGImages/PartB_01456.jpg 31 942 1290 137 161 1 167 1829 224 225 1 636 2260 682 706 1 1042 1857 367 424 1 1018 1775 237 197 1 1136 1714 185 209 1 1403 1666 121 154 1 1467 1748 148 178 1 1576 1796 209 230 1 1761 1908 303 337 1 2223 2278 425 512 1 2458 1929 321 340 1 2297 1711 191 194 1 2051 1845 179 169 1 1927 1796 155 118 1 1752 1657 157 148 1 2109 1620 149 176 1 2479 1675 130 133 1 2767 1684 178 191 1 2679 1820 200 194 1 3185 1878 282 315 1 3661 1902 366 473 1 3464 1790 257 300 1 3500 1720 167 146 1 3445 1648 134 124 1 3233 1817 179 167 1 3112 1739 161 145 1 3158 1663 130 130 1 3685 1642 151 154 1 3791 1702 167 164 1 3909 1596 123 182 1
JPEGImages/PartB_01504.jpg 18 29 1083 208 214 1 211 1134 143 167 1 268 1071 104 134 1 354 1077 137 153 1 568 977 310 369 1 860 1071 102 141 1 1007 1071 228 251 1 1095 681 126 167 1 1360 1038 100 143 1 1415 1081 169 202 1 1515 1040 82 84 1 1427 1028 59 98 1 1619 1109 143 172 1 1717 1048 100 131 1 1786 1014 92 132 1 1927 1012 66 83 1 2052 561 308 367 1 1933 1001 388 498 1
JPEGImages/PartB_00549.jpg 6 140 4 153 175 1 340 74 76 104 1 317 93 46 59 1 393 59 52 76 1 439 85 27 49 1 461 78 24 44 1
JPEGImages/PartB_01823.jpg 7 7 238 75 68 1 11 221 56 46 1 124 230 65 58 1 100 371 104 79 1 311 269 85 85 1 366 223 65 65 1 415 123 32 41 1
JPEGImages/PartB_01641.jpg 21 29 138 21 22 1 46 146 24 22 1 78 150 22 25 1 98 156 27 26 1 155 148 19 20 1 175 147 20 22 1 202 138 13 15 1 218 148 19 20 1 215 166 37 39 1 264 148 16 18 1 277 147 17 21 1 307 136 18 21 1 379 112 22 23 1 281 170 42 47 1 338 158 25 32 1 388 159 32 35 1 415 147 24 23 1 447 155 24 28 1 466 174 38 46 1 502 185 70 72 1 526 154 36 38 1
JPEGImages/PartB_01808.jpg 13 43 206 64 54 1 41 249 30 35 1 62 156 42 42 1 117 184 73 77 1 119 164 34 38 1 139 146 44 45 1 176 124 59 57 1 225 88 53 60 1 264 72 62 67 1 223 179 86 85 1 380 192 30 29 1 443 114 112 127 1 427 183 23 33 1
JPEGImages/PartB_00099.jpg 39 361 80 103 104 1 355 50 48 41 1 288 59 62 65 1 265 74 33 48 1 155 89 34 41 1 165 56 30 32 1 200 56 20 25 1 219 65 33 41 1 262 51 25 32 1 242 52 23 24 1 297 31 15 14 1 289 20 13 14 1 141 21 13 13 1 135 4 13 12 1 158 2 9 11 1 164 13 10 17 1 175 27 12 16 1 142 57 17 23 1 153 36 15 13 1 201 28 14 15 1 219 23 11 13 1 238 28 12 14 1 273 11 12 12 1 275 1 12 7 1 259 3 10 15 1 240 9 11 12 1 247 3 9 9 1 236 1 9 9 1 223 5 11 13 1 204 15 9 13 1 200 12 8 11 1 185 2 10 10 1 176 11 8 11 1 166 1 10 7 1 215 1 11 10 1 196 42 18 18 1 227 38 12 15 1 249 41 14 15 1 252 33 17 14 1
JPEGImages/PartB_01376.jpg 7 1 77 23 33 1 11 56 20 21 1 33 78 39 34 1 83 65 25 29 1 96 60 17 22 1 199 63 28 26 1 230 22 51 60 1
JPEGImages/PartB_01084.jpg 51 175 102 9 11 1 358 97 11 16 1 209 182 47 57 1 282 209 91 115 1 470 174 62 96 1 396 154 39 36 1 446 143 34 34 1 495 127 28 30 1 477 124 17 22 1 450 126 18 18 1 432 121 19 21 1 422 137 21 22 1 402 133 18 21 1 410 125 14 13 1 388 121 16 19 1 360 122 14 13 1 336 138 19 25 1 352 136 16 19 1 333 132 14 14 1 339 124 10 11 1 324 123 10 13 1 307 154 37 44 1 287 153 26 32 1 266 137 17 20 1 277 133 14 11 1 259 127 11 12 1 267 122 8 12 1 300 123 8 11 1 218 134 19 26 1 241 130 11 11 1 208 131 12 12 1 201 127 11 9 1 177 134 15 17 1 151 142 23 22 1 154 131 15 17 1 131 133 13 15 1 142 131 11 12 1 124 139 15 21 1 120 156 26 31 1 116 131 12 13 1 107 134 14 18 1 97 138 10 15 1 65 139 24 27 1 77 132 14 14 1 54 141 20 16 1 37 140 17 16 1 43 129 14 15 1 2 176 42 58 1 11 164 29 22 1 19 145 17 18 1 9 137 15 15 1
JPEGImages/PartB_00977.jpg 6 194 163 36 41 1 102 291 94 92 1 193 261 58 61 1 379 290 84 97 1 346 264 63 64 1 570 281 30 92 1
JPEGImages/PartB_01517.jpg 25 1 91 20 19 1 39 92 21 18 1 71 91 19 16 1 65 79 13 12 1 93 80 12 14 1 104 92 18 19 1 121 86 11 12 1 118 77 11 10 1 124 74 9 10 1 138 72 9 12 1 146 79 10 12 1 142 90 17 19 1 172 83 15 16 1 168 79 9 11 1 156 74 8 9 1 158 52 7 8 1 173 68 9 10 1 183 81 11 12 1 181 75 7 8 1 187 70 8 8 1 196 74 7 10 1 178 58 7 7 1 245 76 8 11 1 248 73 7 6 1 285 99 18 18 1
JPEGImages/PartB_00995.jpg 34 90 344 66 85 1 165 366 51 57 1 148 344 35 38 1 177 332 25 34 1 148 331 20 20 1 169 328 18 23 1 205 328 20 23 1 247 329 20 24 1 280 335 24 32 1 265 361 49 51 1 299 344 68 85 1 307 322 20 23 1 326 332 15 22 1 343 329 14 20 1 350 327 14 17 1 361 343 24 32 1 390 331 17 23 1 405 324 14 20 1 422 326 18 26 1 435 347 31 37 1 448 360 50 67 1 456 330 21 24 1 475 321 12 26 1 490 332 22 29 1 507 353 35 54 1 536 331 32 34 1 531 326 17 23 1 597 327 22 34 1 633 337 53 61 1 726 326 29 34 1 797 323 37 44 1 817 360 47 56 1 890 345 38 50 1 912 340 32 48 1
JPEGImages/PartB_02171.jpg 34 274 251 46 50 1 369 232 30 45 1 342 221 26 28 1 374 203 17 16 1 399 208 17 22 1 413 203 16 17 1 446 212 19 18 1 451 235 28 31 1 501 222 26 29 1 524 215 17 20 1 545 210 15 19 1 325 205 17 22 1 328 196 14 15 1 313 195 15 17 1 270 212 19 20 1 269 200 14 16 1 285 201 14 15 1 220 195 17 18 1 246 199 8 14 1 207 203 17 20 1 185 211 22 28 1 139 227 31 40 1 127 212 26 23 1 124 196 17 15 1 149 187 15 19 1 169 200 15 20 1 184 168 8 13 1 103 186 13 17 1 91 186 15 19 1 69 196 22 21 1 79 216 26 35 1 29 208 28 28 1 44 191 17 21 1 31 161 15 13 1
JPEGImages/PartB_01803.jpg 7 70 210 120 145 1 85 128 110 111 1 235 12 108 130 1 259 236 116 127 1 354 146 115 143 1 395 118 94 99 1 471 131 129 135 1
JPEGImages/PartB_00666.jpg 6 222 64 214 265 1 141 164 98 118 1 575 124 124 144 1 711 104 109 135 1 857 149 107 111 1 1078 168 99 109 1
JPEGImages/PartB_00217.jpg 22 14 77 44 48 1 109 88 39 47 1 91 64 27 32 1 121 53 19 23 1 95 50 15 17 1 103 42 14 17 1 73 46 17 22 1 55 51 22 30 1 29 59 32 28 1 153 4 15 18 1 179 42 14 17 1 189 41 15 21 1 198 42 18 23 1 215 43 14 19 1 227 47 22 27 1 240 40 20 24 1 268 59 27 31 1 279 47 15 20 1 265 39 12 18 1 297 40 14 20 1 318 41 14 18 1 338 46 12 17 1
JPEGImages/PartB_02107.jpg 26 19 207 23 20 1 26 190 21 19 1 12 200 18 13 1 59 200 29 33 1 62 187 17 20 1 94 185 18 21 1 124 188 20 25 1 32 263 69 47 1 166 192 19 18 1 203 186 25 23 1 231 183 18 19 1 253 154 13 20 1 207 206 29 36 1 255 194 20 28 1 256 222 31 34 1 261 256 59 57 1 290 197 26 26 1 322 186 17 20 1 330 192 20 20 1 350 192 21 23 1 367 206 28 39 1 393 188 14 18 1 409 189 17 22 1 430 198 16 18 1 449 197 21 28 1 487 190 17 19 1
JPEGImages/PartB_00279.jpg 10 496 93 101 111 1 380 97 85 81 1 262 90 53 53 1 246 77 43 49 1 214 59 45 48 1 146 55 33 32 1 91 53 28 31 1 50 72 45 44 1 65 61 34 30 1 6 74 42 42 1
JPEGImages/PartB_01054.jpg 116 2 92 15 17 1 2 76 9 9 1 10 82 10 9 1 17 87 12 10 1 28 96 18 24 1 43 86 14 16 1 23 77 11 11 1 13 69 11 11 1 42 75 10 10 1 55 79 12 10 1 49 69 10 8 1 60 88 16 15 1 55 106 27 25 1 83 101 25 29 1 99 107 18 24 1 108 102 21 27 1 120 108 29 33 1 162 105 33 35 1 194 113 35 42 1 252 113 45 49 1 292 92 27 31 1 277 80 21 24 1 255 78 16 24 1 222 82 26 27 1 212 86 23 26 1 191 80 17 22 1 173 83 15 16 1 153 86 21 24 1 170 72 12 13 1 186 69 13 11 1 159 72 10 10 1 151 70 10 13 1 134 76 13 11 1 131 69 12 10 1 120 74 13 15 1 114 87 13 14 1 81 83 12 17 1 99 87 12 13 1 102 81 14 12 1 102 67 12 13 1 91 77 12 12 1 68 81 12 14 1 68 73 12 12 1 71 67 13 10 1 138 50 13 14 1 152 41 13 12 1 178 48 14 14 1 210 65 10 13 1 216 60 11 14 1 210 50 10 11 1 217 46 12 14 1 233 40 13 15 1 245 48 11 12 1 258 48 12 13 1 277 37 12 15 1 351 147 49 55 1 430 129 56 61 1 482 124 48 76 1 505 112 94 108 1 480 100 36 42 1 434 93 34 39 1 372 93 32 33 1 327 95 30 33 1 337 69 24 25 1 320 80 21 20 1 310 76 13 18 1 295 66 13 16 1 305 64 11 14 1 295 47 9 11 1 313 46 10 14 1 324 40 11 12 1 324 61 14 16 1 317 65 12 13 1 338 39 13 18 1 350 36 9 10 1 349 16 9 10 1 361 37 13 16 1 354 49 11 11 1 366 64 22 22 1 379 78 25 24 1 404 74 27 30 1 396 59 20 22 1 375 37 13 19 1 405 32 14 16 1 392 19 9 12 1 430 30 15 18 1 411 20 9 9 1 419 16 9 10 1 434 13 10 12 1 414 50 17 22 1 428 62 17 21 1 452 60 24 28 1 463 77 25 30 1 512 77 20 28 1 529 58 30 41 1 498 51 25 28 1 487 56 16 21 1 479 31 20 22 1 465 25 14 18 1 459 39 11 13 1 442 21 11 13 1 456 11 10 13 1 505 30 9 10 1 512 38 12 15 1 524 25 16 20 1 516 30 8 11 1 546 50 18 17 1 561 51 16 22 1 586 56 14 19 1 588 33 12 19 1 572 23 11 16 1 564 38 13 15 1 560 27 11 12 1 553 30 8 10 1 546 39 13 13 1 540 24 10 13 1
JPEGImages/PartB_01600.jpg 18 205 1103 212 184 1 5 1014 108 151 1 701 1075 85 79 1 876 862 86 109 1 893 1087 122 157 1 780 1240 498 500 1 1127 1075 112 145 1 1197 1077 87 104 1 1272 1091 106 114 1 1621 1171 131 145 1 1827 1124 112 128 1 1811 1118 73 79 1 1517 967 65 79 1 2064 1150 71 86 1 2101 1124 69 75 1 2117 1173 133 143 1 2231 1207 302 280 1 2201 1152 124 129 1
JPEGImages/PartB_00745.jpg 11 71 107 29 34 1 120 118 33 35 1 179 108 32 38 1 229 114 35 36 1 101 172 38 45 1 162 229 57 73 1 225 161 39 56 1 363 151 35 42 1 266 218 55 60 1 367 209 57 63 1 466 191 54 63 1

Просмотреть файл

@ -7,13 +7,19 @@ import torch.utils.data as data
import numpy as np
import random
import sys; sys.path.append('../')
from utils.augmentations import preprocess
from utils.augmentations import preprocess, preprocess_qvga
from data.choose_config import cfg
cfg = cfg.cfg
import os
HOME = os.environ['DATA_HOME']
SCUT_ROOT = os.path.join(HOME, 'SCUT_HEAD_Part_B')
class WIDERDetection(data.Dataset):
"""docstring for WIDERDetection"""
def __init__(self, list_file, mode='train', mono_mode=False):
def __init__(self, list_file, mode='train', mono_mode=False, is_scut=False):
super(WIDERDetection, self).__init__()
self.mode = mode
self.mono_mode = mono_mode
@ -40,7 +46,10 @@ class WIDERDetection(data.Dataset):
box.append([x, y, x + w, y + h])
label.append(c)
if len(box) > 0:
self.fnames.append(line[0])
if is_scut==True:
self.fnames.append(SCUT_ROOT + '/' + line[0])
else:
self.fnames.append(line[0])
self.boxes.append(box)
self.labels.append(label)
@ -65,8 +74,13 @@ class WIDERDetection(data.Dataset):
np.array(self.boxes[index]), im_width, im_height)
label = np.array(self.labels[index])
bbox_labels = np.hstack((label[:, np.newaxis], boxes)).tolist()
img, sample_labels = preprocess(
img, bbox_labels, self.mode, image_path)
if self.mono_mode==False:
img, sample_labels = preprocess(
img, bbox_labels, self.mode, image_path)
else:
img, sample_labels = preprocess_qvga(
img, bbox_labels, self.mode, image_path)
sample_labels = np.array(sample_labels)
if len(sample_labels) > 0:
target = np.hstack(

Просмотреть файл

@ -21,6 +21,8 @@ from utils.augmentations import to_chw_bgr
from importlib import import_module
def str2bool(v):
return v.lower() in ("yes", "true", "t", "1")
parser = argparse.ArgumentParser(description='face detection demo')
parser.add_argument('--save_dir', type=str, default='results/',
@ -29,11 +31,17 @@ parser.add_argument('--model', type=str,
default='weights/rpool_face_c.pth', help='trained model')
parser.add_argument('--thresh', default=0.17, type=float,
help='Final confidence threshold')
parser.add_argument('--multigpu',
default=False, type=str2bool,
help='Specify whether model was trained with multigpu')
parser.add_argument('--model_arch',
default='RPool_Face_C', type=str,
choices=['RPool_Face_C', 'RPool_Face_Quant', 'RPool_Face_QVGA_monochrome'],
choices=['RPool_Face_C', 'RPool_Face_Quant', 'RPool_Face_QVGA_monochrome', 'RPool_Face_M4'],
help='choose architecture among rpool variants')
parser.add_argument('--image_folder', default=None, type=str, help='folder containing images')
parser.add_argument('--save_traces',
default=False, type=str2bool,
help='Specify whether to save input output traces')
args = parser.parse_args()
@ -49,7 +57,7 @@ else:
torch.set_default_tensor_type('torch.FloatTensor')
def detect(net, img_path, thresh):
def detect(net, img_path, thresh, save_traces):
img = Image.open(img_path)
img = img.convert('RGB')
img = np.array(img)
@ -62,9 +70,14 @@ def detect(net, img_path, thresh):
max_im_shrink = np.sqrt(
640 * 480 / (img.shape[0] * img.shape[1]))
image = cv2.resize(img, None, None, fx=max_im_shrink,
if save_traces==True and os.environ['IS_QVGA_MONO'] == '1':
image = cv2.resize(img, (320, 240))
elif save_traces==True:
image = cv2.resize(img, (640, 480))
else:
image = cv2.resize(img, None, None, fx=max_im_shrink,
fy=max_im_shrink, interpolation=cv2.INTER_LINEAR)
# img = cv2.resize(img, (640, 640))
x = to_chw_bgr(image)
x = x.astype('float32')
x -= cfg.img_mean
@ -79,7 +92,7 @@ def detect(net, img_path, thresh):
if use_cuda:
x = x.cuda()
t1 = time.time()
y = net(x)
y, loc, conf = net(x)
detections = y.data
scale = torch.Tensor([img.shape[1], img.shape[0],
img.shape[1], img.shape[0]])
@ -94,9 +107,9 @@ def detect(net, img_path, thresh):
left_up, right_bottom = (pt[0], pt[1]), (pt[2], pt[3])
j += 1
cv2.rectangle(img, left_up, right_bottom, (0, 0, 255), 2)
conf = "{:.3f}".format(score)
conf_score = "{:.3f}".format(score)
point = (int(left_up[0]), int(left_up[1] - 5))
cv2.putText(img, conf, point, cv2.FONT_HERSHEY_COMPLEX,
cv2.putText(img, conf_score, point, cv2.FONT_HERSHEY_COMPLEX,
0.6, (0, 255, 0), 1)
t2 = time.time()
@ -104,13 +117,17 @@ def detect(net, img_path, thresh):
cv2.imwrite(os.path.join(args.save_dir, os.path.basename(img_path)), img)
if save_traces == True:
return x, loc, conf
if __name__ == '__main__':
module = import_module('models.' + args.model_arch)
net = module.build_s3fd('test', cfg.NUM_CLASSES)
net = torch.nn.DataParallel(net)
if args.multigpu == True:
net = torch.nn.DataParallel(net)
checkpoint_dict = torch.load(args.model)
@ -129,5 +146,18 @@ if __name__ == '__main__':
img_path = args.image_folder
img_list = [os.path.join(img_path, x)
for x in os.listdir(img_path)]
x = []
loc = []
conf = []
for path in img_list:
detect(net, path, args.thresh)
if args.save_traces == True:
x_temp, loc_temp, conf_temp = detect(net, path, args.thresh, args.save_traces)
x.append(x_temp)
loc.append(loc_temp)
conf.append(conf_temp)
else:
detect(net, path, args.thresh, args.save_traces)
if args.save_traces == True:
np.save('trace_inputs.npy', torch.cat(x).cpu().detach().numpy())
np.save('trace_outputs.npy', torch.cat([torch.cat(conf), torch.cat(loc)], dim=1).cpu().detach().numpy())

Просмотреть файл

@ -24,6 +24,3 @@ class L2Norm(nn.Module):
x = torch.div(x,norm)
out = self.weight.unsqueeze(0).unsqueeze(2).unsqueeze(3).expand_as(x) * x
return out

Просмотреть файл

@ -86,7 +86,7 @@ class MultiBoxLoss(nn.Module):
pos_idx = pos.unsqueeze(pos.dim()).expand_as(loc_data)
loc_p = loc_data[pos_idx].view(-1, 4)
loc_t = loc_t[pos_idx].view(-1, 4)
loss_l = F.smooth_l1_loss(loc_p, loc_t, size_average=False)
loss_l = F.smooth_l1_loss(loc_p, loc_t, reduction='sum')
# print(loc_p)
# Compute max conf across batch for hard negative mining
batch_conf = conf_data.view(-1, self.num_classes)
@ -109,7 +109,7 @@ class MultiBoxLoss(nn.Module):
conf_p = conf_data[(pos_idx + neg_idx).gt(0)
].view(-1, self.num_classes)
targets_weighted = conf_t[(pos + neg).gt(0)]
loss_c = F.cross_entropy(conf_p, targets_weighted, size_average=False)
loss_c = F.cross_entropy(conf_p, targets_weighted, reduction='sum')
# Sum of losses: L(x,c,l,g) = (Lconf(x, c) + αLloc(x,l,g)) / N
N = num_pos.data.sum() if num_pos.data.sum() > 0 else num

Просмотреть файл

@ -171,7 +171,7 @@ class S3FD(nn.Module):
if self.phase == 'test':
output = detect_function(
output = detect_function(cfg,
loc.view(loc.size(0), -1, 4), # loc preds
self.softmax(conf.view(conf.size(0), -1,
self.num_classes)), # conf preds
@ -184,7 +184,7 @@ class S3FD(nn.Module):
conf.view(conf.size(0), -1, self.num_classes),
self.priors
)
return output
return output, loc, conf
def load_weights(self, base_file):
other, ext = os.path.splitext(base_file)
@ -304,7 +304,6 @@ class MobileNetV2(nn.Module):
# building first layer
input_channel = _make_divisible(input_channel * width_mult, round_nearest)
self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
self.layers = []
# building inverted residual blocks
for t, c, n, s in inverted_residual_setting:
@ -379,4 +378,3 @@ if __name__ == '__main__':
net = build_s3fd('train', num_classes=2)
inputs = Variable(torch.randn(4, 3, 640, 640))
output = net(inputs)

Просмотреть файл

@ -0,0 +1,349 @@
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT license.
from __future__ import division
from __future__ import absolute_import
from __future__ import print_function
import os
import torch
import torch.nn as nn
import torch.nn.init as init
import torch.nn.functional as F
from layers import *
from data.config_qvga import cfg
import numpy as np
from edgeml_pytorch.graph.rnnpool import *
class S3FD(nn.Module):
"""Single Shot Multibox Architecture
The network is composed of a base VGG network followed by the
added multibox conv layers. Each multibox layer branches into
1) conv2d for class conf scores
2) conv2d for localization predictions
3) associated priorbox layer to produce default bounding
boxes specific to the layer's feature map size.
See: https://arxiv.org/pdf/1512.02325.pdf for more details.
Args:
phase: (string) Can be "test" or "train"
size: input image size
base: VGG16 layers for input, size of either 300 or 500
extras: extra layers that feed to multibox loc and conf layers
head: "multibox head" consists of loc and conf conv layers
"""
def __init__(self, phase, base, head, num_classes):
super(S3FD, self).__init__()
self.phase = phase
self.num_classes = num_classes
'''
self.priorbox = PriorBox(size,cfg)
self.priors = Variable(self.priorbox.forward(), volatile=True)
'''
# SSD network
self.conv = ConvBNReLU(1, 4, stride=2)
self.unfold = nn.Unfold(kernel_size=(8,8),stride=(4,4))
self.rnn_model = RNNPool(8, 8, 16, 16, 4,
w1Sparsity=0.5, u1Sparsity=0.3, w2Sparsity=0.3, u2Sparsity=0.3)
self.mob = nn.ModuleList(base)
# Layer learns to scale the l2 normalized features from conv4_3
self.L2Norm3_3 = L2Norm(32, 10)
self.L2Norm4_3 = L2Norm(32, 8)
self.L2Norm5_3 = L2Norm(64, 5)
self.loc = nn.ModuleList(head[0])
self.conf = nn.ModuleList(head[1])
if self.phase == 'test':
self.softmax = nn.Softmax(dim=-1)
def forward(self, x):
"""Applies network layers and ops on input image(s) x.
Args:
x: input image or batch of images. Shape: [batch,3,300,300].
Return:
Depending on phase:
test:
Variable(tensor) of output class label predictions,
confidence score, and corresponding location predictions for
each object detected. Shape: [batch,topk,7]
train:
list of concat outputs from:
1: confidence layers, Shape: [batch*num_priors,num_classes]
2: localization layers, Shape: [batch,num_priors*4]
3: priorbox layers, Shape: [2,num_priors*4]
"""
size = x.size()[2:]
batch_size = x.shape[0]
sources = list()
loc = list()
conf = list()
x = self.conv(x)
patches = self.unfold(x)
patches = torch.cat(torch.unbind(patches,dim=2),dim=0)
patches = torch.reshape(patches,(-1,4,8,8))
output_x = int((x.shape[2]-8)/4 + 1)
output_y = int((x.shape[3]-8)/4 + 1)
rnnX = self.rnn_model(patches, int(batch_size)*output_x*output_y)
x = torch.stack(torch.split(rnnX, split_size_or_sections=int(batch_size), dim=0),dim=2)
x = F.fold(x, kernel_size=(1,1), output_size=(output_x,output_y))
x = F.pad(x, (0,1,0,1), mode='replicate')
for k in range(1):
x = self.mob[k](x)
s = self.L2Norm3_3(x)
sources.append(s)
# apply vgg up to fc7
for k in range(1, 2):
x = self.mob[k](x)
s = self.L2Norm4_3(x)
sources.append(s)
for k in range(2, 3):
x = self.mob[k](x)
s = self.L2Norm5_3(x)
sources.append(s)
for k in range(3, 4):
x = self.mob[k](x)
sources.append(x)
# apply multibox head to source layers
loc_x = self.loc[0](sources[0])
conf_x = self.conf[0](sources[0])
max_conf, _ = torch.max(conf_x[:, 0:3, :, :], dim=1, keepdim=True)
conf_x = torch.cat((max_conf, conf_x[:, 3:, :, :]), dim=1)
loc.append(loc_x.permute(0, 2, 3, 1).contiguous())
conf.append(conf_x.permute(0, 2, 3, 1).contiguous())
for i in range(1, len(sources)):
x = sources[i]
conf.append(self.conf[i](x).permute(0, 2, 3, 1).contiguous())
loc.append(self.loc[i](x).permute(0, 2, 3, 1).contiguous())
features_maps = []
for i in range(len(loc)):
feat = []
feat += [loc[i].size(1), loc[i].size(2)]
features_maps += [feat]
self.priorbox = PriorBox(size, features_maps, cfg)
self.priors = self.priorbox.forward()
loc = torch.cat([o.view(o.size(0), -1) for o in loc], 1)
conf = torch.cat([o.view(o.size(0), -1) for o in conf], 1)
if self.phase == 'test':
output = detect_function(cfg,
loc.view(loc.size(0), -1, 4), # loc preds
self.softmax(conf.view(conf.size(0), -1,
self.num_classes)), # conf preds
self.priors.type(type(x.data)) # default boxes
)
else:
output = (
loc.view(loc.size(0), -1, 4),
conf.view(conf.size(0), -1, self.num_classes),
self.priors
)
return output, loc, conf
def load_weights(self, base_file):
other, ext = os.path.splitext(base_file)
if ext == '.pkl' or '.pth':
print('Loading weights into state dict...')
mdata = torch.load(base_file,
map_location=lambda storage, loc: storage)
weights = mdata['weight']
epoch = mdata['epoch']
self.load_state_dict(weights)
print('Finished!')
else:
print('Sorry only .pth and .pkl files supported.')
return epoch
def xavier(self, param):
init.xavier_uniform(param)
def weights_init(self, m):
if isinstance(m, nn.Conv2d):
self.xavier(m.weight.data)
m.bias.data.zero_()
def _make_divisible(v, divisor, min_value=None):
"""
This function is taken from the original tf repo.
It ensures that all layers have a channel number that is divisible by 8
It can be seen here:
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
:param v:
:param divisor:
:param min_value:
:return:
"""
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
class ConvBNReLU(nn.Sequential):
def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
padding = (kernel_size - 1) // 2
super(ConvBNReLU, self).__init__(
nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False),
nn.BatchNorm2d(out_planes),
nn.ReLU6(inplace=True)
)
class InvertedResidual(nn.Module):
def __init__(self, inp, oup, stride, expand_ratio):
super(InvertedResidual, self).__init__()
self.stride = stride
assert stride in [1, 2]
hidden_dim = int(round(inp * expand_ratio))
self.use_res_connect = self.stride == 1 and inp == oup
layers = []
if expand_ratio != 1:
# pw
layers.append(ConvBNReLU(inp, hidden_dim, kernel_size=1))
layers.extend([
# dw
ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim),
# pw-linear
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
nn.BatchNorm2d(oup),
])
self.conv = nn.Sequential(*layers)
def forward(self, x):
if self.use_res_connect:
return x + self.conv(x)
else:
return self.conv(x)
class MobileNetV2(nn.Module):
def __init__(self, num_classes=1000, width_mult=1.0, inverted_residual_setting=None, round_nearest=8):
"""
MobileNet V2 main class
Args:
num_classes (int): Number of classes
width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount
inverted_residual_setting: Network structure
round_nearest (int): Round the number of channels in each layer to be a multiple of this number
Set to 1 to turn off rounding
"""
super(MobileNetV2, self).__init__()
block = InvertedResidual
input_channel = 64
if inverted_residual_setting is None:
inverted_residual_setting = [
# t, c, n, s
[2, 32, 1, 1],
[2, 32, 1, 1],
[2, 64, 1, 2],
[2, 64, 1, 1],
]
# only check the first element, assuming user knows t,c,n,s are required
if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4:
raise ValueError("inverted_residual_setting should be non-empty "
"or a 4-element list, got {}".format(inverted_residual_setting))
# building first layer
input_channel = _make_divisible(input_channel * width_mult, round_nearest)
self.layers = []
# building inverted residual blocks
for t, c, n, s in inverted_residual_setting:
output_channel = _make_divisible(c * width_mult, round_nearest)
for i in range(n):
stride = s if i == 0 else 1
self.layers.append(block(input_channel, output_channel, stride, expand_ratio=t))
input_channel = output_channel
# weight initialization
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.BatchNorm2d):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.zeros_(m.bias)
def multibox(mobilenet, num_classes):
loc_layers = []
conf_layers = []
loc_layers += [nn.Conv2d(32, 4, kernel_size=3, padding=1)]
conf_layers += [nn.Conv2d(32, 3 + (num_classes-1), kernel_size=3, padding=1)]
loc_layers += [nn.Conv2d(32, 4, kernel_size=3, padding=1)]
conf_layers += [nn.Conv2d(32, num_classes, kernel_size=3, padding=1)]
loc_layers += [nn.Conv2d(64, 4, kernel_size=3, padding=1)]
conf_layers += [nn.Conv2d(64, num_classes, kernel_size=3, padding=1)]
loc_layers += [nn.Conv2d(64, 4, kernel_size=3, padding=1)]
conf_layers += [nn.Conv2d(64, num_classes, kernel_size=3, padding=1)]
return mobilenet, (loc_layers, conf_layers)
def build_s3fd(phase, num_classes=2):
base_, head_ = multibox(
MobileNetV2().layers, num_classes)
return S3FD(phase, base_, head_, num_classes)
if __name__ == '__main__':
net = build_s3fd('train', num_classes=2)
inputs = Variable(torch.randn(4, 1, 320, 320))
output = net(inputs)

Просмотреть файл

@ -172,7 +172,7 @@ class S3FD(nn.Module):
conf.view(conf.size(0), -1, self.num_classes),
self.priors
)
return output
return output, loc, conf
def load_weights(self, base_file):
other, ext = os.path.splitext(base_file)
@ -289,7 +289,6 @@ class MobileNetV2(nn.Module):
# building first layer
input_channel = _make_divisible(input_channel * width_mult, round_nearest)
self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
self.layers = []
# building inverted residual blocks
for t, c, n, s in inverted_residual_setting:

Просмотреть файл

@ -180,7 +180,7 @@ class S3FD(nn.Module):
conf.view(conf.size(0), -1, self.num_classes),
self.priors
)
return output
return output, loc, conf
def load_weights(self, base_file):
other, ext = os.path.splitext(base_file)
@ -297,7 +297,6 @@ class MobileNetV2(nn.Module):
# building first layer
input_channel = _make_divisible(input_channel * width_mult, round_nearest)
self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
self.layers = []
# building inverted residual blocks
for t, c, n, s in inverted_residual_setting:

Просмотреть файл

@ -4,3 +4,5 @@
from __future__ import absolute_import
from .RPool_Face_C import *
from .RPool_Face_Quant import *
from .RPool_Face_QVGA_monochrome import *
from .RPool_Face_M4 import *

Просмотреть файл

@ -10,7 +10,10 @@ import os
from data.config import cfg
import cv2
WIDER_ROOT = os.path.join(cfg.HOME, 'WIDER_FACE')
HOME = os.environ['DATA_HOME']
WIDER_ROOT = os.path.join(HOME, 'WIDER_FACE')
train_list_file = os.path.join(WIDER_ROOT, 'wider_face_split',
'wider_face_train_bbx_gt.txt')
val_list_file = os.path.join(WIDER_ROOT, 'wider_face_split',

Просмотреть файл

@ -0,0 +1,219 @@
"""
WiderFace evaluation code
author: wondervictor
mail: tianhengcheng@gmail.com
copyright@wondervictor
Code buit upon https://github.com/wondervictor/WiderFace-Evaluation having MIT License
"""
import os
import tqdm
import pickle
import argparse
import numpy as np
from scipy.io import loadmat
from bbox import bbox_overlaps
from IPython import embed
import cv2
import sys
sys.path.append('../')
from data.choose_config import cfg
cfg = cfg.cfg
HOME = os.environ['DATA_HOME']
SCUT_ROOT = os.path.join(HOME, 'SCUT_HEAD_Part_B')
def read_pred_file(filepath):
with open(filepath, 'r') as f:
lines = f.readlines()
img_file = lines[0].rstrip('\n\r')
lines = lines[2:]
boxes = np.array(list(map(lambda x: [float(a) for a in x.rstrip('\r\n').split(' ')], lines))).astype('float')
return img_file.split('/')[-1], boxes
def get_preds(pred_dir):
events = os.listdir(pred_dir)
boxes = dict()
pbar = tqdm.tqdm(events)
for event in pbar:
pbar.set_description('Reading Predictions ')
event_dir = os.path.join(pred_dir, event)
event_images = os.listdir(event_dir)
current_event = dict()
for imgtxt in event_images:
imgname, _boxes = read_pred_file(os.path.join(event_dir, imgtxt))
current_event[imgname.rstrip('.jpg')] = _boxes
boxes[event] = current_event
return boxes
def norm_score(pred):
""" norm score
pred {key: [[x1,y1,x2,y2,s]]}
"""
max_score = 0
min_score = 1
for _, k in pred.items():
for _, v in k.items():
if len(v) == 0:
continue
_min = np.min(v[:, -1])
_max = np.max(v[:, -1])
max_score = max(_max, max_score)
min_score = min(_min, min_score)
diff = max_score - min_score
for _, k in pred.items():
for _, v in k.items():
if len(v) == 0:
continue
v[:, -1] = (v[:, -1] - min_score)/diff
def image_eval(pred, gt, iou_thresh):
""" single image evaluation
pred: Nx5
gt: Nx4
ignore:
"""
_pred = pred.copy()
_gt = gt.copy()
pred_recall = np.zeros(_pred.shape[0])
recall_list = np.zeros(_gt.shape[0])
proposal_list = np.ones(_pred.shape[0])
_pred[:, 2] = _pred[:, 2] + _pred[:, 0]
_pred[:, 3] = _pred[:, 3] + _pred[:, 1]
_gt[:, 2] = _gt[:, 2] + _gt[:, 0]
_gt[:, 3] = _gt[:, 3] + _gt[:, 1]
overlaps = bbox_overlaps(_pred[:, :4], _gt)
for h in range(_pred.shape[0]):
gt_overlap = overlaps[h]
max_overlap, max_idx = gt_overlap.max(), gt_overlap.argmax()
if max_overlap >= iou_thresh:
if recall_list[max_idx] == 0:
recall_list[max_idx] = 1
r_keep_index = np.where(recall_list == 1)[0]
pred_recall[h] = len(r_keep_index)
return pred_recall, proposal_list
def img_pr_info(thresh_num, pred_info, proposal_list, pred_recall):
pr_info = np.zeros((thresh_num, 2)).astype('float')
for t in range(thresh_num):
thresh = 1 - (t+1)/thresh_num
r_index = np.where(pred_info[:, 4] >= thresh)[0]
if len(r_index) == 0:
pr_info[t, 0] = 0
pr_info[t, 1] = 0
else:
r_index = r_index[-1]
p_index = np.where(proposal_list[:r_index+1] == 1)[0]
pr_info[t, 0] = len(p_index)
pr_info[t, 1] = pred_recall[r_index]
return pr_info
def dataset_pr_info(thresh_num, pr_curve, count_face):
_pr_curve = np.zeros((thresh_num, 2))
for i in range(thresh_num):
_pr_curve[i, 0] = pr_curve[i, 1] / pr_curve[i, 0]
_pr_curve[i, 1] = pr_curve[i, 1] / count_face
return _pr_curve
def voc_ap(rec, prec):
# correct AP calculation
# first append sentinel values at the end
mrec = np.concatenate(([0.], rec, [1.]))
mpre = np.concatenate(([0.], prec, [0.]))
# compute the precision envelope
for i in range(mpre.size - 1, 0, -1):
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
# to calculate area under PR curve, look for points
# where X axis (recall) changes value
i = np.where(mrec[1:] != mrec[:-1])[0]
# and sum (\Delta recall) * prec
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
return ap
def evaluation(pred, iou_thresh=0.5):
f = open('../data/face_val_scutB.txt')
lines = f.readlines()
names = []
gt_list = []
for line in lines:
line = line.strip().split()
names.append(os.path.split(line[0])[1][0:-4])
th, tw, tc = cv2.imread(SCUT_ROOT + '/' + line[0]).shape
num_faces = int(line[1])
faces = []
for i in range(num_faces):
x = float(line[2 + 5 * i])
y = float(line[3 + 5 * i])
w = float(line[4 + 5 * i])
h = float(line[5 + 5 * i])
faces.append([x, y, w, h])
gt_list.append(faces)
thresh_num = 1000
aps = []
count_face = 0
pr_curve = np.zeros((thresh_num, 2)).astype('float')
for j in range(len(names)):
gt_boxes = np.asarray(gt_list[j]).astype('float')
pred_file = open(os.path.join(pred, names[j] + '.txt'))
pred_lines = pred_file.readlines()
pred_info = np.array(list(map(lambda x: [float(a) for a in x.rstrip('\r\n').split(' ')], pred_lines[2:]))).astype('float')
count_face += len(gt_boxes)
if len(gt_boxes) == 0 or len(pred_info) == 0:
continue
pred_recall, proposal_list = image_eval(pred_info, gt_boxes, iou_thresh)
_img_pr_info = img_pr_info(thresh_num, pred_info, proposal_list, pred_recall)
pr_curve += _img_pr_info
pr_curve = dataset_pr_info(thresh_num, pr_curve, count_face)
propose = pr_curve[:, 0]
recall = pr_curve[:, 1]
ap = voc_ap(recall, propose)
aps.append(ap)
print(ap)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-p', '--pred')
args = parser.parse_args()
evaluation(args.pred)

Просмотреть файл

@ -0,0 +1,244 @@
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT license.
import os
import argparse
import torch
import torch.nn as nn
import torch.utils.data as data
import torch.backends.cudnn as cudnn
import torchvision.transforms as transforms
import os.path as osp
import cv2
import time
import numpy as np
from PIL import Image
import scipy.io as sio
from data.choose_config import cfg
cfg = cfg.cfg
from torch.autograd import Variable
from utils.augmentations import to_chw_bgr
from importlib import import_module
import warnings
warnings.filterwarnings("ignore")
HOME = os.environ['DATA_HOME']
SCUT_ROOT = os.path.join(HOME, 'SCUT_HEAD_Part_B')
def str2bool(v):
return v.lower() in ("yes", "true", "t", "1")
parser = argparse.ArgumentParser(description='s3fd evaluatuon wider')
parser.add_argument('--model', type=str,
default='./weights/rpool_face_m4.pth', help='trained model')
parser.add_argument('--thresh', default=0.05, type=float,
help='Final confidence threshold')
parser.add_argument('--multigpu',
default=False, type=str2bool,
help='Specify whether model was trained with multigpu')
parser.add_argument('--model_arch',
default='RPool_Face_M4', type=str,
choices=['RPool_Face_M4', 'RPool_Face_QVGA_monochrome'],
help='choose architecture among rpool variants')
parser.add_argument('--save_folder', type=str,
default='rpool_face_predictions', help='folder for saving predictions')
args = parser.parse_args()
use_cuda = torch.cuda.is_available()
if use_cuda:
torch.set_default_tensor_type('torch.cuda.FloatTensor')
else:
torch.set_default_tensor_type('torch.FloatTensor')
def detect_face(net, img, shrink):
if shrink != 1:
img = cv2.resize(img, None, None, fx=shrink, fy=shrink,
interpolation=cv2.INTER_LINEAR)
x = to_chw_bgr(img)
x = x.astype('float32')
x -= cfg.img_mean
x = x[[2, 1, 0], :, :]
if cfg.IS_MONOCHROME == True:
x = 0.299 * x[0] + 0.587 * x[1] + 0.114 * x[2]
x = torch.from_numpy(x).unsqueeze(0).unsqueeze(0)
else:
x = torch.from_numpy(x).unsqueeze(0)
if use_cuda:
x = x.cuda()
y = net(x)
detections = y.data
detections = detections.cpu().numpy()
det_conf = detections[0, 1, :, 0]
det_xmin = img.shape[1] * detections[0, 1, :, 1] / shrink
det_ymin = img.shape[0] * detections[0, 1, :, 2] / shrink
det_xmax = img.shape[1] * detections[0, 1, :, 3] / shrink
det_ymax = img.shape[0] * detections[0, 1, :, 4] / shrink
det = np.column_stack((det_xmin, det_ymin, det_xmax, det_ymax, det_conf))
keep_index = np.where(det[:, 4] >= args.thresh)[0]
det = det[keep_index, :]
return det
def multi_scale_test(net, image, max_im_shrink):
# shrink detecting and shrink only detect big face
st = 0.5 if max_im_shrink >= 0.75 else 0.5 * max_im_shrink
det_s = detect_face(net, image, st)
index = np.where(np.maximum(
det_s[:, 2] - det_s[:, 0] + 1, det_s[:, 3] - det_s[:, 1] + 1) > 30)[0]
det_s = det_s[index, :]
# enlarge one times
bt = min(2, max_im_shrink) if max_im_shrink > 1 else (
st + max_im_shrink) / 2
det_b = detect_face(net, image, bt)
# enlarge small image x times for small face
if max_im_shrink > 2:
bt *= 2
while bt < max_im_shrink:
det_b = np.row_stack((det_b, detect_face(net, image, bt)))
bt *= 2
det_b = np.row_stack((det_b, detect_face(net, image, max_im_shrink)))
# enlarge only detect small face
if bt > 1:
index = np.where(np.minimum(
det_b[:, 2] - det_b[:, 0] + 1, det_b[:, 3] - det_b[:, 1] + 1) < 100)[0]
det_b = det_b[index, :]
else:
index = np.where(np.maximum(
det_b[:, 2] - det_b[:, 0] + 1, det_b[:, 3] - det_b[:, 1] + 1) > 30)[0]
det_b = det_b[index, :]
return det_s, det_b
def flip_test(net, image, shrink):
image_f = cv2.flip(image, 1)
det_f = detect_face(net, image_f, shrink)
det_t = np.zeros(det_f.shape)
det_t[:, 0] = image.shape[1] - det_f[:, 2]
det_t[:, 1] = det_f[:, 1]
det_t[:, 2] = image.shape[1] - det_f[:, 0]
det_t[:, 3] = det_f[:, 3]
det_t[:, 4] = det_f[:, 4]
return det_t
def bbox_vote(det):
order = det[:, 4].ravel().argsort()[::-1]
det = det[order, :]
while det.shape[0] > 0:
# IOU
area = (det[:, 2] - det[:, 0] + 1) * (det[:, 3] - det[:, 1] + 1)
xx1 = np.maximum(det[0, 0], det[:, 0])
yy1 = np.maximum(det[0, 1], det[:, 1])
xx2 = np.minimum(det[0, 2], det[:, 2])
yy2 = np.minimum(det[0, 3], det[:, 3])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
o = inter / (area[0] + area[:] - inter)
# get needed merge det and delete these det
merge_index = np.where(o >= 0.3)[0]
det_accu = det[merge_index, :]
det = np.delete(det, merge_index, 0)
if merge_index.shape[0] <= 1:
continue
det_accu[:, 0:4] = det_accu[:, 0:4] * np.tile(det_accu[:, -1:], (1, 4))
max_score = np.max(det_accu[:, 4])
det_accu_sum = np.zeros((1, 5))
det_accu_sum[:, 0:4] = np.sum(
det_accu[:, 0:4], axis=0) / np.sum(det_accu[:, -1:])
det_accu_sum[:, 4] = max_score
try:
dets = np.row_stack((dets, det_accu_sum))
except:
dets = det_accu_sum
dets = dets[0:750, :]
return dets
if __name__ == '__main__':
cfg.USE_NMS = False
module = import_module('models.' + args.model_arch)
net = module.build_s3fd('test', cfg.NUM_CLASSES)
if args.multigpu == True:
net = torch.nn.DataParallel(net)
checkpoint_dict = torch.load(args.model)
model_dict = net.state_dict()
model_dict.update(checkpoint_dict)
net.load_state_dict(model_dict)
net.eval()
if use_cuda:
net.cuda()
cudnn.benckmark = True
counter = 0
f = open('./data/face_val_scutB.txt')
lines = f.readlines()
if os.path.exists('./{}'.format(args.save_folder)) is False:
os.mkdir('./{}'.format(args.save_folder))
for line in lines:
line = line.strip().split()
im_name = SCUT_ROOT + '/' + line[0]
img = Image.open(im_name)
img = img.convert('RGB')
img = np.array(img)
max_im_shrink = np.sqrt(
320 * 240 / (img.shape[0] * img.shape[1]))
shrink = max_im_shrink if max_im_shrink < 1 else 1
counter += 1
t1 = time.time()
det0 = detect_face(net, img, shrink)
dets = det0
t2 = time.time()
print('Detect %04d th image costs %.4f' % (counter, t2 - t1))
imgname = osp.split(line[0])[1]
save_path = './{}'.format(args.save_folder)
fout = open(osp.join(save_path, imgname[0:-4] + '.txt'), 'w')
fout.write('{:s}\n'.format(imgname[0:-4] + '.txt'))
fout.write('{:d}\n'.format(dets.shape[0]))
for i in range(dets.shape[0]):
xmin = dets[i][0]
ymin = dets[i][1]
xmax = dets[i][2]
ymax = dets[i][3]
score = dets[i][4]
fout.write('{:.1f} {:.1f} {:.1f} {:.1f} {:.3f}\n'.
format(xmin, ymin, (xmax - xmin + 1), (ymax - ymin + 1), score))

Просмотреть файл

@ -29,9 +29,6 @@ parser.add_argument('--dataset',
default='face',
choices=['hand', 'face', 'head'],
help='Train target')
parser.add_argument('--basenet',
default='vgg16_reducedfc.pth',
help='Pretrained base model')
parser.add_argument('--batch_size',
default=16, type=int,
help='Batch size for training')
@ -40,8 +37,11 @@ parser.add_argument('--resume',
help='Checkpoint state_dict file to resume training from')
parser.add_argument('--model_arch',
default='RPool_Face_C', type=str,
choices=['RPool_Face_C', 'RPool_Face_Quant', 'RPool_Face_QVGA_monochrome'],
choices=['RPool_Face_C', 'RPool_Face_Quant', 'RPool_Face_QVGA_monochrome', 'RPool_Face_M4'],
help='choose architecture among rpool variants')
parser.add_argument('--finetune',
default=False, type=str2bool,
help='Use CUDA to train model')
parser.add_argument('--num_workers',
default=128, type=int,
help='Number of workers used in dataloading')
@ -88,9 +88,13 @@ else:
if not os.path.exists(args.save_folder):
os.makedirs(args.save_folder)
if args.finetune==True:
train_dataset = WIDERDetection('./data/face_train_scutB.txt', mode='train', mono_mode=cfg.IS_MONOCHROME, is_scut=True)
val_dataset = WIDERDetection('./data/face_val_scutB.txt', mode='val', mono_mode=cfg.IS_MONOCHROME, is_scut=True)
else:
train_dataset = WIDERDetection(cfg.FACE.TRAIN_FILE, mode='train', mono_mode=cfg.IS_MONOCHROME)
val_dataset = WIDERDetection(cfg.FACE.VAL_FILE, mode='val', mono_mode=cfg.IS_MONOCHROME)
train_dataset = WIDERDetection(cfg.FACE.TRAIN_FILE, mode='train', mono_mode=cfg.IS_MONOCHROME)
val_dataset = WIDERDetection(cfg.FACE.VAL_FILE, mode='val', mono_mode=cfg.IS_MONOCHROME)
train_loader = data.DataLoader(train_dataset, args.batch_size,
num_workers=args.num_workers,
@ -112,7 +116,6 @@ module = import_module('models.' + args.model_arch)
net = module.build_s3fd('train', cfg.NUM_CLASSES)
if args.cuda:
if args.multigpu:
net = torch.nn.DataParallel(net)
@ -127,7 +130,7 @@ optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=args.momentum,
weight_decay=args.weight_decay)
criterion = MultiBoxLoss(cfg, args.dataset, args.cuda)
print('Loading wider dataset...')
print('Loading dataset...')
print('Using the specified args:')
print(args)
@ -153,7 +156,7 @@ def train():
t0 = time.time()
out = net(images)
out,_,_ = net(images)
# backprop
optimizer.zero_grad()
loss_l, loss_c = criterion(out, targets)
@ -179,9 +182,16 @@ def train():
os.path.join(args.save_folder, file))
iteration += 1
if args.model_arch == 'RPool_Face_M4' and args.finetune == True:
if args.multigpu == True:
net.module.rnn_model.cell_rnn.cell.sparsify()
net.module.rnn_model.cell_bidirrnn.cell.sparsify()
else:
net.rnn_model.cell_rnn.cell.sparsify()
net.rnn_model.cell_bidirrnn.cell.sparsify()
net.to('cuda')
val(epoch)
if iteration == cfg.MAX_STEPS:
break
def val(epoch):
@ -200,7 +210,7 @@ def val(epoch):
images = images
targets = [ann for ann in targets]
out = net(images)
out,_,_ = net(images)
loss_l, loss_c = criterion(out, targets)
loss = loss_l + loss_c
loc_loss += loss_l.item()

Просмотреть файл

@ -775,6 +775,87 @@ def anchor_crop_image_sampling(img,
return image, sampled_labels
def reduce_image(img, bbox_labels, img_width, img_height):
bbox_labels = np.array(bbox_labels)
scale = np.array([img_width, img_height, img_width, img_height])
boxes = bbox_labels[:, 1:5] * scale
boxArea = (boxes[:, 2] - boxes[:, 0] + 1) * (boxes[:, 3] - boxes[:, 1] + 1)
boxArea_max = np.amax(boxArea)
if boxArea_max > 48*48:
reduce_ratio = (boxArea_max/(48*48))**(0.5)
height = int(img_height / reduce_ratio)
width = int(img_width / reduce_ratio)
img = img.resize((width, height),
resample=Image.LANCZOS)
boxes = boxes//reduce_ratio
new_scale = np.array([width, height, width, height])
boxes = (boxes[:, 0:4]/new_scale)
bbox_labels[:,1:5] = boxes
bbox_labels = bbox_labels.tolist()
img_height = height
img_width = width
ratio_h = img_height/320
ratio_w = img_width/320
if ratio_h > 1 and ratio_w > 1:
expand_ratio = 1
else:
expand_ratio = 1/(min(ratio_h,ratio_w))
height = int(img_height * expand_ratio)
width = int(img_width * expand_ratio)
h_off = math.floor(np.random.uniform(0, height - img_height))
w_off = math.floor(np.random.uniform(0, width - img_width))
expand_bbox = bbox(-w_off / img_width, -h_off / img_height,
(width - w_off) / img_width,
(height - h_off) / img_height)
expand_img = np.ones((height, width, 3))
expand_img = np.uint8(expand_img * np.squeeze(cfg.img_mean))
expand_img = Image.fromarray(expand_img)
expand_img.paste(img, (int(w_off), int(h_off)))
bbox_labels = transform_labels(bbox_labels, expand_bbox)
return expand_img, bbox_labels, width, height
return img, bbox_labels.tolist(), img_width, img_height
def precrop(img, bbox_labels):
img_height, img_width = img.size[1], img.size[0]
scale = np.array([img_width, img_height, img_width, img_height])
bbox_labels = np.array(bbox_labels)
bbox_labels[:, 1:5] = bbox_labels[:, 1:5] * scale
if img_width-20 > img_height:
height_max, height_min = img_width + 20, img_width - 20
new_height = np.random.randint(height_min, height_max)
expand_img = np.ones((new_height, img_width, 3))
expand_img = np.uint8(expand_img * np.squeeze(cfg.img_mean))
expand_img = Image.fromarray(expand_img)
expand_img.paste(img, (int(0), int(0)))
img_height, img_width = new_height, img_width
img = expand_img
elif img_height-20 > img_width:
width_max, width_min = img_height + 20, img_height - 20
new_width = np.random.randint(width_min, width_max)
expand_img = np.ones((img_height, new_width, 3))
expand_img = np.uint8(expand_img * np.squeeze(cfg.img_mean))
expand_img = Image.fromarray(expand_img)
expand_img.paste(img, (int(0), int(0)))
img_height, img_width = img_height, new_width
img = expand_img
scale = np.array([img_width, img_height, img_width, img_height])
bbox_labels[:, 1:5] = bbox_labels[:, 1:5] / scale
return img, bbox_labels.tolist(), img_width, img_height
def preprocess(img, bbox_labels, mode, image_path):
img_width, img_height = img.size
@ -860,3 +941,51 @@ def preprocess(img, bbox_labels, mode, image_path):
#img = img * cfg.scale
return img, sampled_labels
def preprocess_qvga(img, bbox_labels, mode, image_path):
img_width, img_height = img.size
sampled_labels = bbox_labels
if mode == 'train':
img, bbox_labels, img_width, img_height = precrop(img, bbox_labels)
if cfg.apply_distort:
img = distort_image(img)
scale_array = np.array([8, 16, 32, 48])
img, bbox_labels, img_width, img_height = reduce_image(
img, bbox_labels, img_width, img_height)
img = np.array(img)
sampled_labels = bbox_labels
img = img.astype('uint8')
img = Image.fromarray(img)
interp_mode = [
Image.BILINEAR, Image.HAMMING, Image.NEAREST, Image.BICUBIC,
Image.LANCZOS
]
interp_indx = np.random.randint(0, 5)
img = img.resize((cfg.resize_width, cfg.resize_height),
resample=interp_mode[interp_indx])
img = np.array(img)
if mode == 'train':
mirror = int(np.random.uniform(0, 2))
if mirror == 1:
img = img[:, ::-1, :]
for i in six.moves.xrange(len(sampled_labels)):
tmp = sampled_labels[i][1]
sampled_labels[i][1] = 1 - sampled_labels[i][3]
sampled_labels[i][3] = 1 - tmp
img = to_chw_bgr(img)
img = img.astype('float32')
img -= cfg.img_mean
img = img[[2, 1, 0], :, :] # to RGB
return img, sampled_labels

Просмотреть файл

@ -27,11 +27,19 @@ from importlib import import_module
import warnings
warnings.filterwarnings("ignore")
HOME = os.environ['DATA_HOME']
def str2bool(v):
return v.lower() in ("yes", "true", "t", "1")
parser = argparse.ArgumentParser(description='s3fd evaluatuon wider')
parser.add_argument('--model', type=str,
default='./weights/rpool_face_c.pth', help='trained model')
parser.add_argument('--thresh', default=0.05, type=float,
help='Final confidence threshold')
parser.add_argument('--multigpu',
default=False, type=str2bool,
help='Specify whether model was trained with multigpu')
parser.add_argument('--model_arch',
default='RPool_Face_C', type=str,
choices=['RPool_Face_C', 'RPool_Face_Quant', 'RPool_Face_QVGA_monochrome'],
@ -73,7 +81,7 @@ def detect_face(net, img, shrink):
if use_cuda:
x = x.cuda()
y = net(x)
y,_,_ = net(x)
detections = y.data
detections = detections.cpu().numpy()
@ -177,7 +185,7 @@ def bbox_vote(det):
def get_data():
subset = args.subset
WIDER_ROOT = os.path.join(cfg.HOME, 'WIDER_FACE')
WIDER_ROOT = os.path.join(HOME, 'WIDER_FACE')
if subset == 'val':
wider_face = sio.loadmat(
os.path.join(WIDER_ROOT, 'wider_face_split',
@ -191,7 +199,7 @@ def get_data():
del wider_face
imgs_path = os.path.join(
cfg.FACE.WIDER_DIR, 'WIDER_{}'.format(subset), 'images')
WIDER_ROOT, 'WIDER_{}'.format(subset), 'images')
save_path = './{}'.format(args.save_folder)
return event_list, file_list, imgs_path, save_path
@ -203,7 +211,8 @@ if __name__ == '__main__':
module = import_module('models.' + args.model_arch)
net = module.build_s3fd('test', cfg.NUM_CLASSES)
net = torch.nn.DataParallel(net)
if args.multigpu == True:
net = torch.nn.DataParallel(net)
checkpoint_dict = torch.load(args.model)

Просмотреть файл

@ -186,7 +186,9 @@ class RNNCell(nn.Module):
mats[i] = utils.hardThreshold(mats[i], self._wSparsity)
for i in range(endW, endU):
mats[i] = utils.hardThreshold(mats[i], self._uSparsity)
self.copy_previous_UW()
self.W.data.copy_(mats[0])
self.U.data.copy_(mats[1])
# self.copy_previous_UW()
def sparsifyWithSupport(self):
mats = self.getVars()

Просмотреть файл

@ -8,13 +8,18 @@ from edgeml_pytorch.graph.rnn import *
class RNNPool(nn.Module):
def __init__(self, nRows, nCols, nHiddenDims,
nHiddenDimsBiDir, inputDims):
nHiddenDimsBiDir, inputDims,
w1Sparsity=1.0, u1Sparsity=1.0, w2Sparsity=1.0, u2Sparsity=1.0):
super(RNNPool, self).__init__()
self.nRows = nRows
self.nCols = nCols
self.inputDims = inputDims
self.nHiddenDims = nHiddenDims
self.nHiddenDimsBiDir = nHiddenDimsBiDir
self.w1Sparsity = w1Sparsity
self.u1Sparsity = u1Sparsity
self.w2Sparsity = w2Sparsity
self.u2Sparsity = u2Sparsity
self._build()
@ -22,11 +27,13 @@ class RNNPool(nn.Module):
self.cell_rnn = FastGRNN(self.inputDims, self.nHiddenDims, gate_nonlinearity="sigmoid",
update_nonlinearity="tanh", zetaInit=100.0, nuInit=-100.0,
batch_first=False, bidirectional=False)
batch_first=False, bidirectional=False,
wSparsity=self.w1Sparsity, uSparsity=self.u1Sparsity)
self.cell_bidirrnn = FastGRNN(self.nHiddenDims, self.nHiddenDimsBiDir, gate_nonlinearity="sigmoid",
update_nonlinearity="tanh", zetaInit=100.0, nuInit=-100.0,
batch_first=False, bidirectional=True, is_shared_bidirectional=True)
batch_first=False, bidirectional=True, is_shared_bidirectional=True,
wSparsity=self.w2Sparsity, uSparsity=self.u2Sparsity)
def static_single(self,inputs, hidden, batch_size):
@ -40,24 +47,24 @@ class RNNPool(nn.Module):
row_timestack = torch.cat(torch.unbind(inputs, dim=3),dim=0)
stateList = self.static_single(torch.stack(torch.unbind(row_timestack,dim=2)),
(torch.zeros(1, batch_size * self.nRows, self.nHiddenDims).to(torch.device("cuda")),
torch.zeros(1, batch_size * self.nRows, self.nHiddenDims).to(torch.device("cuda"))),batch_size)
(torch.zeros(1, batch_size * self.nRows, self.nHiddenDims).to(inputs.device),
torch.zeros(1, batch_size * self.nRows, self.nHiddenDims).to(inputs.device)),batch_size)
outputs_cols = self.cell_bidirrnn(torch.stack(stateList),
torch.zeros(2, batch_size, self.nHiddenDimsBiDir).to(torch.device("cuda")),
torch.zeros(2, batch_size, self.nHiddenDimsBiDir).to(torch.device("cuda")))
torch.zeros(2, batch_size, self.nHiddenDimsBiDir).to(inputs.device),
torch.zeros(2, batch_size, self.nHiddenDimsBiDir).to(inputs.device))
## across columns
col_timestack = torch.cat(torch.unbind(inputs, dim=2),dim=0)
stateList = self.static_single(torch.stack(torch.unbind(col_timestack,dim=2)),
(torch.zeros(1, batch_size * self.nRows, self.nHiddenDims).to(torch.device("cuda")),
torch.zeros(1, batch_size * self.nRows, self.nHiddenDims).to(torch.device("cuda"))),batch_size)
(torch.zeros(1, batch_size * self.nRows, self.nHiddenDims).to(inputs.device),
torch.zeros(1, batch_size * self.nRows, self.nHiddenDims).to(inputs.device)),batch_size)
outputs_rows = self.cell_bidirrnn(torch.stack(stateList),
torch.zeros(2, batch_size, self.nHiddenDimsBiDir).to(torch.device("cuda")),
torch.zeros(2, batch_size, self.nHiddenDimsBiDir).to(torch.device("cuda")))
torch.zeros(2, batch_size, self.nHiddenDimsBiDir).to(inputs.device),
torch.zeros(2, batch_size, self.nHiddenDimsBiDir).to(inputs.device))