This commit is contained in:
Harsha Vardhan Simhadri 2019-08-17 18:32:46 +05:30
Родитель 474330b178
Коммит f431fc0e24
1 изменённых файлов: 5 добавлений и 4 удалений

Просмотреть файл

@ -40,16 +40,17 @@ Applications demonstrating usecases of these algorithms.
- The `Tools/SeeDot` directory has the quantization tool to generate fixed-point inference code.
### Details and project pages
For details, please see our [wiki page](https://github.com/Microsoft/EdgeML/wiki/),
For details, please see our [project page](https://microsoft.github.io/EdgeML/)
and [wiki](https://github.com/Microsoft/EdgeML/wiki/).
our ICML'17 publications on [Bonsai](docs/publications/Bonsai.pdf) and
[ProtoNN](docs/publications/ProtoNN.pdf) algorithms,
NeurIPS'18 publications on [EMI-RNN](docs/publications/emi-rnn-nips18.pdf) and
[FastGRNN](docs/publications/FastGRNN.pdf),
and PLDI'19 publication on [SeeDot](docs/publications/SeeDot.pdf).
[People](https://github.com/Microsoft/EdgeML/wiki/People/) who have contributed
to this [project](https://microsoft.github.io/EdgeML/). Also see project page at
[Microsoft Research](https://www.microsoft.com/en-us/research/project/resource-efficient-ml-for-the-edge-and-endpoint-iot-devices/).
[People](https://github.com/Microsoft/EdgeML/wiki/People/) who have contributed to this project.
Also see
[Microsoft Research page](https://www.microsoft.com/en-us/research/project/resource-efficient-ml-for-the-edge-and-endpoint-iot-devices/).
Please also checkout the [ELL](https://github.com/Microsoft/ELL) which can
provide optimized binaries for the models trained by this library.