зеркало из https://github.com/microsoft/EdgeML.git
405 строки
14 KiB
Python
405 строки
14 KiB
Python
# Copyright (c) Microsoft Corporation. All rights reserved.
|
|
# Licensed under the MIT license.
|
|
|
|
import argparse
|
|
import datetime
|
|
from distutils.dir_util import copy_tree
|
|
import os
|
|
import shutil
|
|
import operator
|
|
import tempfile
|
|
import traceback
|
|
|
|
from seedot.compiler.converter.converter import Converter
|
|
|
|
import seedot.common as Common
|
|
from seedot.compiler.compiler import Compiler
|
|
from seedot.predictor import Predictor
|
|
import seedot.util as Util
|
|
|
|
|
|
class Main:
|
|
|
|
def __init__(self, algo, version, target, trainingFile, testingFile, modelDir, sf):
|
|
self.algo, self.version, self.target = algo, version, target
|
|
self.trainingFile, self.testingFile, self.modelDir = trainingFile, testingFile, modelDir
|
|
self.sf = sf
|
|
self.accuracy = {}
|
|
|
|
def setup(self):
|
|
curr_dir = os.path.dirname(os.path.realpath(__file__))
|
|
|
|
copy_tree(os.path.join(curr_dir, "Predictor"), Common.tempdir)
|
|
|
|
for fileName in ["arduino.ino", "config.h", "library.h", "predict.h"]:
|
|
srcFile = os.path.join(curr_dir, "arduino", fileName)
|
|
destFile = os.path.join(Common.outdir, fileName)
|
|
shutil.copyfile(srcFile, destFile)
|
|
|
|
# Generate the fixed-point code using the input generated from the
|
|
# Converter project
|
|
def compile(self, target, sf):
|
|
print("Generating code...", end='')
|
|
|
|
# Set input and output files
|
|
inputFile = os.path.join(Common.tempdir, "input.sd")
|
|
profileLogFile = os.path.join(
|
|
Common.tempdir, "output", self.algo + "-float", "profile.txt")
|
|
|
|
if target == Common.Target.Arduino:
|
|
outputFile = os.path.join(Common.outdir, "predict.cpp")
|
|
elif target == Common.Target.X86:
|
|
outputFile = os.path.join(Common.tempdir, "seedot_fixed.cpp")
|
|
|
|
try:
|
|
obj = Compiler(self.algo, target, inputFile,
|
|
outputFile, profileLogFile, sf)
|
|
obj.run()
|
|
except:
|
|
print("failed!\n")
|
|
#traceback.print_exc()
|
|
return False
|
|
|
|
print("completed")
|
|
return True
|
|
|
|
# Run the converter project to generate the input files using reading the
|
|
# training model
|
|
def convert(self, version, datasetType, target):
|
|
print("Generating input files for %s %s dataset..." %
|
|
(version, datasetType), end='')
|
|
|
|
# Create output dirs
|
|
if target == Common.Target.Arduino:
|
|
outputDir = os.path.join(Common.outdir, "input")
|
|
datasetOutputDir = outputDir
|
|
elif target == Common.Target.X86:
|
|
outputDir = Common.tempdir
|
|
datasetOutputDir = os.path.join(Common.tempdir, "input")
|
|
else:
|
|
assert False
|
|
|
|
os.makedirs(datasetOutputDir, exist_ok=True)
|
|
os.makedirs(outputDir, exist_ok=True)
|
|
|
|
try:
|
|
obj = Converter(self.algo, version, datasetType, target,
|
|
datasetOutputDir, outputDir)
|
|
obj.setInput(self.modelDir, self.trainingFile, self.testingFile)
|
|
obj.run()
|
|
except Exception as e:
|
|
traceback.print_exc()
|
|
return False
|
|
|
|
print("done\n")
|
|
return True
|
|
|
|
# Build and run the Predictor project
|
|
def predict(self, version, datasetType):
|
|
outputDir = os.path.join(
|
|
Common.tempdir, "output", self.algo + "-" + version)
|
|
|
|
curDir = os.getcwd()
|
|
os.chdir(Common.tempdir)
|
|
|
|
obj = Predictor(self.algo, version, datasetType, outputDir)
|
|
acc = obj.run()
|
|
|
|
os.chdir(curDir)
|
|
|
|
return acc
|
|
|
|
# Compile and run the generated code once for a given scaling factor
|
|
def runOnce(self, version, datasetType, target, sf):
|
|
res = self.compile(target, sf)
|
|
if res == False:
|
|
return False, False
|
|
|
|
acc = self.predict(version, datasetType)
|
|
if acc == None:
|
|
return False, True
|
|
|
|
self.accuracy[sf] = acc
|
|
print("Accuracy is %.3f%%\n" % (acc))
|
|
|
|
return True, False
|
|
|
|
# Iterate over multiple scaling factors and store their accuracies
|
|
def performSearch(self):
|
|
start, end = Common.maxScaleRange
|
|
searching = False
|
|
|
|
for i in range(start, end, -1):
|
|
print("Testing with max scale factor of " + str(i))
|
|
|
|
res, exit = self.runOnce(
|
|
Common.Version.Fixed, Common.DatasetType.Training, Common.Target.X86, i)
|
|
|
|
if exit == True:
|
|
return False
|
|
|
|
# The iterator logic is as follows:
|
|
# Search begins when the first valid scaling factor is found (runOnce returns True)
|
|
# Search ends when the execution fails on a particular scaling factor (runOnce returns False)
|
|
# This is the window where valid scaling factors exist and we
|
|
# select the one with the best accuracy
|
|
if res == True:
|
|
searching = True
|
|
elif searching == True:
|
|
break
|
|
|
|
# If search didn't begin at all, something went wrong
|
|
if searching == False:
|
|
return False
|
|
|
|
print("\nSearch completed\n")
|
|
print("----------------------------------------------")
|
|
print("Best performing scaling factors with accuracy:")
|
|
|
|
self.sf = self.getBestScale()
|
|
|
|
return True
|
|
|
|
# Reverse sort the accuracies, print the top 5 accuracies and return the
|
|
# best scaling factor
|
|
def getBestScale(self):
|
|
sorted_accuracy = dict(
|
|
sorted(self.accuracy.items(), key=operator.itemgetter(1), reverse=True)[:5])
|
|
print(sorted_accuracy)
|
|
return next(iter(sorted_accuracy))
|
|
|
|
# Find the scaling factor which works best on the training dataset and
|
|
# predict on the testing dataset
|
|
def findBestScalingFactor(self):
|
|
print("-------------------------------------------------")
|
|
print("Performing search to find the best scaling factor")
|
|
print("-------------------------------------------------\n")
|
|
|
|
# Generate input files for training dataset
|
|
res = self.convert(Common.Version.Fixed,
|
|
Common.DatasetType.Training, Common.Target.X86)
|
|
if res == False:
|
|
return False
|
|
|
|
# Search for the best scaling factor
|
|
res = self.performSearch()
|
|
if res == False:
|
|
return False
|
|
|
|
print("Best scaling factor = %d" % (self.sf))
|
|
|
|
return True
|
|
|
|
def runOnTestingDataset(self):
|
|
print("\n-------------------------------")
|
|
print("Prediction on testing dataset")
|
|
print("-------------------------------\n")
|
|
|
|
print("Setting max scaling factor to %d\n" % (self.sf))
|
|
|
|
# Generate files for the testing dataset
|
|
res = self.convert(Common.Version.Fixed,
|
|
Common.DatasetType.Testing, Common.Target.X86)
|
|
if res == False:
|
|
return False
|
|
|
|
# Compile and run code using the best scaling factor
|
|
res = self.runOnce(
|
|
Common.Version.Fixed, Common.DatasetType.Testing, Common.Target.X86, self.sf)
|
|
if res == False:
|
|
return False
|
|
|
|
return True
|
|
|
|
# Generate files for training dataset and perform a profiled execution
|
|
def collectProfileData(self):
|
|
print("-----------------------")
|
|
print("Collecting profile data")
|
|
print("-----------------------")
|
|
|
|
res = self.convert(Common.Version.Float,
|
|
Common.DatasetType.Training, Common.Target.X86)
|
|
if res == False:
|
|
return False
|
|
|
|
acc = self.predict(Common.Version.Float, Common.DatasetType.Training)
|
|
if acc == None:
|
|
return False
|
|
|
|
print("Accuracy is %.3f%%\n" % (acc))
|
|
|
|
# Generate code for Arduino
|
|
def compileForTarget(self):
|
|
print("------------------------------")
|
|
print("Generating code for %s..." % (self.target))
|
|
print("------------------------------\n")
|
|
|
|
res = self.convert(Common.Version.Fixed,
|
|
Common.DatasetType.Testing, self.target)
|
|
if res == False:
|
|
return False
|
|
|
|
# Copy file
|
|
srcFile = os.path.join(Common.outdir, "input", "seedot_fixed_model.h")
|
|
destFile = os.path.join(Common.outdir, "model.h")
|
|
shutil.copyfile(srcFile, destFile)
|
|
|
|
res = self.compile(self.target, self.sf)
|
|
if res == False:
|
|
return False
|
|
|
|
def runForFixed(self):
|
|
# Collect runtime profile for ProtoNN
|
|
if self.algo == Common.Algo.Protonn:
|
|
res = self.collectProfileData()
|
|
if res == False:
|
|
return False
|
|
|
|
# Obtain best scaling factor
|
|
if self.sf == None:
|
|
res = self.findBestScalingFactor()
|
|
if res == False:
|
|
return False
|
|
|
|
res = self.runOnTestingDataset()
|
|
if res == False:
|
|
return False
|
|
else:
|
|
self.testingAccuracy = self.accuracy[self.sf]
|
|
|
|
# Generate code for target
|
|
self.compileForTarget()
|
|
|
|
print("\nArduino sketch dumped in the folder %s\n" % (Common.outdir))
|
|
|
|
return True
|
|
|
|
def runForFloat(self):
|
|
print("---------------------------")
|
|
print("Executing for X86 target...")
|
|
print("---------------------------\n")
|
|
|
|
res = self.convert(Common.Version.Float,
|
|
Common.DatasetType.Testing, Common.Target.X86)
|
|
if res == False:
|
|
return False
|
|
|
|
acc = self.predict(Common.Version.Float, Common.DatasetType.Testing)
|
|
if acc == None:
|
|
return False
|
|
else:
|
|
self.testingAccuracy = acc
|
|
|
|
print("Accuracy is %.3f%%\n" % (acc))
|
|
|
|
print("------------------------------")
|
|
print("Generating code for Arduino...")
|
|
print("------------------------------\n")
|
|
|
|
res = self.convert(Common.Version.Float,
|
|
Common.DatasetType.Testing, Common.Target.Arduino)
|
|
if res == False:
|
|
return False
|
|
|
|
# Copy model.h
|
|
srcFile = os.path.join(Common.outdir, "input",
|
|
self.algo + "_" + "float_model.h")
|
|
destFile = os.path.join(Common.outdir, "model.h")
|
|
shutil.copyfile(srcFile, destFile)
|
|
|
|
curr_dir = os.path.dirname(os.path.realpath(__file__))
|
|
|
|
# Copy predict.cpp
|
|
srcFile = os.path.join(
|
|
curr_dir, "arduino", "floating-point", self.algo + "_float.cpp")
|
|
destFile = os.path.join(Common.outdir, "predict.cpp")
|
|
shutil.copyfile(srcFile, destFile)
|
|
|
|
return True
|
|
|
|
def run(self):
|
|
|
|
self.setup()
|
|
|
|
if self.version == Common.Version.Fixed:
|
|
return self.runForFixed()
|
|
else:
|
|
return self.runForFloat()
|
|
|
|
|
|
|
|
class MainDriver:
|
|
|
|
def parseArgs(self):
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument("-a", "--algo", choices=Common.Algo.All,
|
|
metavar='', help="Algorithm to run")
|
|
parser.add_argument("--train", required=True,
|
|
metavar='', help="Training set file")
|
|
parser.add_argument("--test", required=True,
|
|
metavar='', help="Testing set file")
|
|
parser.add_argument("--model", required=True, metavar='',
|
|
help="Directory containing trained model")
|
|
parser.add_argument("--tempdir", metavar='', help="Scratch directory")
|
|
parser.add_argument("-o", "--outdir", metavar='',
|
|
help="Directory to output the generated Arduino sketch")
|
|
|
|
self.args = parser.parse_args()
|
|
|
|
# Verify the input files and directory exists
|
|
assert os.path.isfile(self.args.train), "Training set doesn't exist"
|
|
assert os.path.isfile(self.args.test), "Testing set doesn't exist"
|
|
assert os.path.isdir(self.args.model), "Model directory doesn't exist"
|
|
|
|
if self.args.tempdir is not None:
|
|
assert os.path.isdir(
|
|
self.args.tempdir), "Scratch directory doesn't exist"
|
|
Common.tempdir = self.args.tempdir
|
|
else:
|
|
Common.tempdir = os.path.join(tempfile.gettempdir(
|
|
), "SeeDot", datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S'))
|
|
os.makedirs(Common.tempdir, exist_ok=True)
|
|
|
|
if self.args.outdir is not None:
|
|
assert os.path.isdir(
|
|
self.args.outdir), "Output directory doesn't exist"
|
|
Common.outdir = self.args.outdir
|
|
else:
|
|
Common.outdir = os.path.join(Common.tempdir, "arduino")
|
|
os.makedirs(Common.outdir, exist_ok=True)
|
|
|
|
def checkMSBuildPath(self):
|
|
found = False
|
|
for path in Common.msbuildPathOptions:
|
|
if os.path.isfile(path):
|
|
found = True
|
|
Common.msbuildPath = path
|
|
|
|
if not found:
|
|
raise Exception("Msbuild.exe not found at the following locations:\n%s\nPlease change the path and run again" % (
|
|
Common.msbuildPathOptions))
|
|
|
|
def run(self):
|
|
if Util.windows():
|
|
self.checkMSBuildPath()
|
|
|
|
algo, trainingInput, testingInput, modelDir = self.args.algo, self.args.train, self.args.test, self.args.model
|
|
|
|
print("\n================================")
|
|
print("Executing on %s for Arduino" % (algo))
|
|
print("--------------------------------")
|
|
print("Train file: %s" % (trainingInput))
|
|
print("Test file: %s" % (testingInput))
|
|
print("Model directory: %s" % (modelDir))
|
|
print("================================\n")
|
|
|
|
obj = Main(algo, Common.Version.Fixed, Common.Target.Arduino,
|
|
trainingInput, testingInput, modelDir, None)
|
|
obj.run()
|
|
|
|
if __name__ == "__main__":
|
|
obj = MainDriver()
|
|
obj.parseArgs()
|
|
obj.run()
|