зеркало из https://github.com/microsoft/FLAML.git
precommit: end-of-file-fixer (#929)
* precommit: end-of-file-fixer * exclude .gitignore * apply --------- Co-authored-by: Shaokun <shaokunzhang529@gmail.com>
This commit is contained in:
Родитель
a3e368d2ca
Коммит
2ff1035733
|
@ -2,4 +2,4 @@
|
|||
branch = True
|
||||
source = flaml
|
||||
omit =
|
||||
*test*
|
||||
*test*
|
||||
|
|
|
@ -10,4 +10,4 @@
|
|||
"terminal.integrated.defaultProfile.linux": "bash"
|
||||
},
|
||||
"updateContentCommand": "pip install -e .[test,notebook] && pre-commit install"
|
||||
}
|
||||
}
|
||||
|
|
2
.flake8
2
.flake8
|
@ -2,4 +2,4 @@
|
|||
ignore = E203, E266, E501, W503, F403, F401, C901
|
||||
max-line-length = 127
|
||||
max-complexity = 10
|
||||
select = B,C,E,F,W,T4,B9
|
||||
select = B,C,E,F,W,T4,B9
|
||||
|
|
|
@ -122,4 +122,4 @@ jobs:
|
|||
# GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
# BRANCH: gh-pages
|
||||
# FOLDER: docs/_build/html
|
||||
# CLEAN: true
|
||||
# CLEAN: true
|
||||
|
|
|
@ -159,4 +159,3 @@ automl.pkl
|
|||
|
||||
test/nlp/testtmp.py
|
||||
test/nlp/testtmpfl.py
|
||||
|
||||
|
|
|
@ -24,7 +24,9 @@ repos:
|
|||
- id: check-toml
|
||||
- id: check-json
|
||||
- id: check-byte-order-marker
|
||||
exclude: .gitignore
|
||||
- id: check-merge-conflict
|
||||
- id: detect-private-key
|
||||
- id: trailing-whitespace
|
||||
- id: no-commit-to-branch
|
||||
- id: end-of-file-fixer
|
||||
- id: no-commit-to-branch
|
||||
|
|
|
@ -38,4 +38,4 @@ We prefer all communications to be in English.
|
|||
|
||||
Microsoft follows the principle of [Coordinated Vulnerability Disclosure](https://www.microsoft.com/en-us/msrc/cvd).
|
||||
|
||||
<!-- END MICROSOFT SECURITY.MD BLOCK -->
|
||||
<!-- END MICROSOFT SECURITY.MD BLOCK -->
|
||||
|
|
|
@ -346,7 +346,10 @@ class AutoMLState:
|
|||
|
||||
@staticmethod
|
||||
def _compute_with_config_base(
|
||||
config_w_resource: dict, state: AutoMLState, estimator: str, is_report: bool = True
|
||||
config_w_resource: dict,
|
||||
state: AutoMLState,
|
||||
estimator: str,
|
||||
is_report: bool = True,
|
||||
) -> dict:
|
||||
if "FLAML_sample_size" in config_w_resource:
|
||||
sample_size = int(config_w_resource["FLAML_sample_size"])
|
||||
|
|
|
@ -23,5 +23,3 @@ Our findings on troubleshooting fine-tuning the Electra and RoBERTa model for th
|
|||
booktitle={ACL-IJCNLP},
|
||||
}
|
||||
```
|
||||
|
||||
|
||||
|
|
|
@ -181,4 +181,4 @@ For more technical details, please check our research paper.
|
|||
year={2022},
|
||||
journal={arXiv preprint arXiv:2202.09927},
|
||||
}
|
||||
```
|
||||
```
|
||||
|
|
|
@ -943,4 +943,4 @@
|
|||
"extra_tree/bank-marketing",
|
||||
"extra_tree/default"
|
||||
]
|
||||
}
|
||||
}
|
||||
|
|
|
@ -1325,4 +1325,4 @@
|
|||
"extra_tree/fried",
|
||||
"extra_tree/default"
|
||||
]
|
||||
}
|
||||
}
|
||||
|
|
|
@ -882,4 +882,4 @@
|
|||
"extra_tree/dilbert",
|
||||
"extra_tree/particulate-matter"
|
||||
]
|
||||
}
|
||||
}
|
||||
|
|
|
@ -358,4 +358,4 @@
|
|||
"bank-marketing",
|
||||
"default"
|
||||
]
|
||||
}
|
||||
}
|
||||
|
|
|
@ -307,4 +307,4 @@
|
|||
"fried",
|
||||
"default"
|
||||
]
|
||||
}
|
||||
}
|
||||
|
|
|
@ -309,4 +309,4 @@
|
|||
"dilbert",
|
||||
"particulate-matter"
|
||||
]
|
||||
}
|
||||
}
|
||||
|
|
|
@ -367,4 +367,4 @@
|
|||
"Dionis",
|
||||
"default"
|
||||
]
|
||||
}
|
||||
}
|
||||
|
|
|
@ -413,4 +413,4 @@
|
|||
"APSFailure",
|
||||
"default"
|
||||
]
|
||||
}
|
||||
}
|
||||
|
|
|
@ -278,4 +278,4 @@
|
|||
"poker",
|
||||
"default"
|
||||
]
|
||||
}
|
||||
}
|
||||
|
|
|
@ -330,4 +330,4 @@
|
|||
"Helena",
|
||||
"default"
|
||||
]
|
||||
}
|
||||
}
|
||||
|
|
|
@ -325,4 +325,4 @@
|
|||
"MiniBooNE",
|
||||
"default"
|
||||
]
|
||||
}
|
||||
}
|
||||
|
|
|
@ -290,4 +290,4 @@
|
|||
"bank-marketing",
|
||||
"default"
|
||||
]
|
||||
}
|
||||
}
|
||||
|
|
|
@ -326,4 +326,4 @@
|
|||
"Amazon_employee_access",
|
||||
"default"
|
||||
]
|
||||
}
|
||||
}
|
||||
|
|
|
@ -354,4 +354,4 @@
|
|||
"vehicle",
|
||||
"mfeat-factors"
|
||||
]
|
||||
}
|
||||
}
|
||||
|
|
|
@ -347,4 +347,4 @@
|
|||
"bng_echomonths",
|
||||
"default"
|
||||
]
|
||||
}
|
||||
}
|
||||
|
|
|
@ -372,4 +372,4 @@
|
|||
"pol",
|
||||
"Amazon_employee_access"
|
||||
]
|
||||
}
|
||||
}
|
||||
|
|
|
@ -509,4 +509,4 @@
|
|||
"dilbert",
|
||||
"jungle_chess_2pcs_raw_endgame_complete"
|
||||
]
|
||||
}
|
||||
}
|
||||
|
|
|
@ -308,4 +308,4 @@
|
|||
"bng_echomonths",
|
||||
"house_16H"
|
||||
]
|
||||
}
|
||||
}
|
||||
|
|
|
@ -44,4 +44,4 @@ autovw = AutoVW(max_live_model_num=5, search_space=search_space_nilr, init_confi
|
|||
A user can use the resulting AutoVW instances `autovw` in a similar way to a vanilla Vowpal Wabbit instance, i.e., `pyvw.vw`, to perform online learning by iteratively calling its `predict(data_example)` and `learn(data_example)` functions at each data example.
|
||||
|
||||
For more examples, please check out
|
||||
[AutoVW notebook](https://github.com/microsoft/FLAML/blob/main/notebook/autovw.ipynb).
|
||||
[AutoVW notebook](https://github.com/microsoft/FLAML/blob/main/notebook/autovw.ipynb).
|
||||
|
|
|
@ -2,4 +2,3 @@
|
|||
addopts = -m "not conda"
|
||||
markers =
|
||||
conda: test related to conda forge distribution
|
||||
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "extra_tree", "hyperparameters": {"n_estimators": 16, "max_features": 1.0, "max_leaves": 54}}
|
||||
{"class": "extra_tree", "hyperparameters": {"n_estimators": 16, "max_features": 1.0, "max_leaves": 54}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "extra_tree", "hyperparameters": {"n_estimators": 2047, "max_features": 1.0, "max_leaves": 8194, "criterion": "gini", "FLAML_sample_size": 436899}}
|
||||
{"class": "extra_tree", "hyperparameters": {"n_estimators": 2047, "max_features": 1.0, "max_leaves": 8194, "criterion": "gini", "FLAML_sample_size": 436899}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "extra_tree", "hyperparameters": {"n_estimators": 1733, "max_features": 0.3841826938360253, "max_leaves": 32767, "criterion": "entropy", "FLAML_sample_size": 344444}}
|
||||
{"class": "extra_tree", "hyperparameters": {"n_estimators": 1733, "max_features": 0.3841826938360253, "max_leaves": 32767, "criterion": "entropy", "FLAML_sample_size": 344444}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "extra_tree", "hyperparameters": {"n_estimators": 812, "max_features": 1.0, "max_leaves": 1474, "criterion": "entropy"}}
|
||||
{"class": "extra_tree", "hyperparameters": {"n_estimators": 812, "max_features": 1.0, "max_leaves": 1474, "criterion": "entropy"}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "extra_tree", "hyperparameters": {"n_estimators": 859, "max_features": 1.0, "max_leaves": 967, "criterion": "entropy"}}
|
||||
{"class": "extra_tree", "hyperparameters": {"n_estimators": 859, "max_features": 1.0, "max_leaves": 967, "criterion": "entropy"}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "extra_tree", "hyperparameters": {"n_estimators": 90, "max_features": 1.0, "max_leaves": 1301, "FLAML_sample_size": 94478}}
|
||||
{"class": "extra_tree", "hyperparameters": {"n_estimators": 90, "max_features": 1.0, "max_leaves": 1301, "FLAML_sample_size": 94478}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "extra_tree", "hyperparameters": {"n_estimators": 1211, "max_features": 1.0, "max_leaves": 32767, "FLAML_sample_size": 810000}}
|
||||
{"class": "extra_tree", "hyperparameters": {"n_estimators": 1211, "max_features": 1.0, "max_leaves": 32767, "FLAML_sample_size": 810000}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "extra_tree", "hyperparameters": {"n_estimators": 333, "max_features": 1.0, "max_leaves": 201, "criterion": "gini"}}
|
||||
{"class": "extra_tree", "hyperparameters": {"n_estimators": 333, "max_features": 1.0, "max_leaves": 201, "criterion": "gini"}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "extra_tree", "hyperparameters": {"n_estimators": 229, "max_features": 0.5372053700721111, "max_leaves": 11150, "criterion": "entropy"}}
|
||||
{"class": "extra_tree", "hyperparameters": {"n_estimators": 229, "max_features": 0.5372053700721111, "max_leaves": 11150, "criterion": "entropy"}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "extra_tree", "hyperparameters": {}}
|
||||
{"class": "extra_tree", "hyperparameters": {}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "extra_tree", "hyperparameters": {"n_estimators": 346, "max_features": 1.0, "max_leaves": 1007, "criterion": "entropy"}}
|
||||
{"class": "extra_tree", "hyperparameters": {"n_estimators": 346, "max_features": 1.0, "max_leaves": 1007, "criterion": "entropy"}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "extra_tree", "hyperparameters": {"n_estimators": 1416, "max_features": 1.0, "max_leaves": 32767, "FLAML_sample_size": 830258}}
|
||||
{"class": "extra_tree", "hyperparameters": {"n_estimators": 1416, "max_features": 1.0, "max_leaves": 32767, "FLAML_sample_size": 830258}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "lgbm", "hyperparameters": {"n_estimators": 103, "num_leaves": 33, "min_child_samples": 4, "learning_rate": 0.05800185361316003, "log_max_bin": 6, "colsample_bytree": 1.0, "reg_alpha": 1.5987124004961213, "reg_lambda": 10.56445079499673}}
|
||||
{"class": "lgbm", "hyperparameters": {"n_estimators": 103, "num_leaves": 33, "min_child_samples": 4, "learning_rate": 0.05800185361316003, "log_max_bin": 6, "colsample_bytree": 1.0, "reg_alpha": 1.5987124004961213, "reg_lambda": 10.56445079499673}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "lgbm", "hyperparameters": {"n_estimators": 733, "num_leaves": 11, "min_child_samples": 94, "learning_rate": 0.06276798296942972, "log_max_bin": 6, "colsample_bytree": 0.6341928918435795, "reg_alpha": 0.5811038918218691, "reg_lambda": 43.304997517523944}}
|
||||
{"class": "lgbm", "hyperparameters": {"n_estimators": 733, "num_leaves": 11, "min_child_samples": 94, "learning_rate": 0.06276798296942972, "log_max_bin": 6, "colsample_bytree": 0.6341928918435795, "reg_alpha": 0.5811038918218691, "reg_lambda": 43.304997517523944}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "lgbm", "hyperparameters": {"n_estimators": 2541, "num_leaves": 1667, "min_child_samples": 29, "learning_rate": 0.0016660662914022302, "log_max_bin": 8, "colsample_bytree": 0.5157078343718623, "reg_alpha": 0.045792841240713165, "reg_lambda": 0.0012362651138125363, "FLAML_sample_size": 436899}}
|
||||
{"class": "lgbm", "hyperparameters": {"n_estimators": 2541, "num_leaves": 1667, "min_child_samples": 29, "learning_rate": 0.0016660662914022302, "log_max_bin": 8, "colsample_bytree": 0.5157078343718623, "reg_alpha": 0.045792841240713165, "reg_lambda": 0.0012362651138125363, "FLAML_sample_size": 436899}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "lgbm", "hyperparameters": {"n_estimators": 12659, "num_leaves": 566, "min_child_samples": 51, "learning_rate": 0.0017248557932071625, "log_max_bin": 10, "colsample_bytree": 0.35373661752616337, "reg_alpha": 0.004824272162679245, "reg_lambda": 8.51563063056529, "FLAML_sample_size": 344444}}
|
||||
{"class": "lgbm", "hyperparameters": {"n_estimators": 12659, "num_leaves": 566, "min_child_samples": 51, "learning_rate": 0.0017248557932071625, "log_max_bin": 10, "colsample_bytree": 0.35373661752616337, "reg_alpha": 0.004824272162679245, "reg_lambda": 8.51563063056529, "FLAML_sample_size": 344444}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "lgbm", "hyperparameters": {"n_estimators": 198, "num_leaves": 6241, "min_child_samples": 3, "learning_rate": 0.003807690748728824, "log_max_bin": 10, "colsample_bytree": 0.3192882305722113, "reg_alpha": 0.024630507311503163, "reg_lambda": 0.06738306675149014}}
|
||||
{"class": "lgbm", "hyperparameters": {"n_estimators": 198, "num_leaves": 6241, "min_child_samples": 3, "learning_rate": 0.003807690748728824, "log_max_bin": 10, "colsample_bytree": 0.3192882305722113, "reg_alpha": 0.024630507311503163, "reg_lambda": 0.06738306675149014}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "lgbm", "hyperparameters": {"n_estimators": 362, "num_leaves": 1208, "min_child_samples": 8, "learning_rate": 0.02070742242160566, "log_max_bin": 4, "colsample_bytree": 0.37915528071680865, "reg_alpha": 0.002982599447751338, "reg_lambda": 1.136605174453919, "FLAML_sample_size": 337147}}
|
||||
{"class": "lgbm", "hyperparameters": {"n_estimators": 362, "num_leaves": 1208, "min_child_samples": 8, "learning_rate": 0.02070742242160566, "log_max_bin": 4, "colsample_bytree": 0.37915528071680865, "reg_alpha": 0.002982599447751338, "reg_lambda": 1.136605174453919, "FLAML_sample_size": 337147}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "lgbm", "hyperparameters": {"n_estimators": 11842, "num_leaves": 31, "min_child_samples": 3, "learning_rate": 0.0015861878568503534, "log_max_bin": 8, "colsample_bytree": 0.3814347840573729, "reg_alpha": 0.0009765625, "reg_lambda": 0.011319689446351965}}
|
||||
{"class": "lgbm", "hyperparameters": {"n_estimators": 11842, "num_leaves": 31, "min_child_samples": 3, "learning_rate": 0.0015861878568503534, "log_max_bin": 8, "colsample_bytree": 0.3814347840573729, "reg_alpha": 0.0009765625, "reg_lambda": 0.011319689446351965}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "lgbm", "hyperparameters": {"n_estimators": 644, "num_leaves": 40, "min_child_samples": 38, "learning_rate": 0.06007328261566753, "log_max_bin": 5, "colsample_bytree": 0.6950692048656423, "reg_alpha": 0.0009765625, "reg_lambda": 9.849318389111616, "FLAML_sample_size": 94478}}
|
||||
{"class": "lgbm", "hyperparameters": {"n_estimators": 644, "num_leaves": 40, "min_child_samples": 38, "learning_rate": 0.06007328261566753, "log_max_bin": 5, "colsample_bytree": 0.6950692048656423, "reg_alpha": 0.0009765625, "reg_lambda": 9.849318389111616, "FLAML_sample_size": 94478}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "lgbm", "hyperparameters": {"n_estimators": 27202, "num_leaves": 848, "min_child_samples": 2, "learning_rate": 0.0019296395751528979, "log_max_bin": 5, "colsample_bytree": 0.7328229531785452, "reg_alpha": 6.112225454676263, "reg_lambda": 0.08606162543586986, "FLAML_sample_size": 810000}}
|
||||
{"class": "lgbm", "hyperparameters": {"n_estimators": 27202, "num_leaves": 848, "min_child_samples": 2, "learning_rate": 0.0019296395751528979, "log_max_bin": 5, "colsample_bytree": 0.7328229531785452, "reg_alpha": 6.112225454676263, "reg_lambda": 0.08606162543586986, "FLAML_sample_size": 810000}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "lgbm", "hyperparameters": {"n_estimators": 311, "num_leaves": 4, "min_child_samples": 5, "learning_rate": 0.5547292134798673, "log_max_bin": 3, "colsample_bytree": 0.9917614238487915, "reg_alpha": 0.0009765625, "reg_lambda": 0.0019177370889840813}}
|
||||
{"class": "lgbm", "hyperparameters": {"n_estimators": 311, "num_leaves": 4, "min_child_samples": 5, "learning_rate": 0.5547292134798673, "log_max_bin": 3, "colsample_bytree": 0.9917614238487915, "reg_alpha": 0.0009765625, "reg_lambda": 0.0019177370889840813}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "lgbm", "hyperparameters": {"n_estimators": 3726, "num_leaves": 155, "min_child_samples": 4, "learning_rate": 0.040941607728296484, "log_max_bin": 5, "colsample_bytree": 0.5326256194627191, "reg_alpha": 0.7408711930398492, "reg_lambda": 0.5467731065349226}}
|
||||
{"class": "lgbm", "hyperparameters": {"n_estimators": 3726, "num_leaves": 155, "min_child_samples": 4, "learning_rate": 0.040941607728296484, "log_max_bin": 5, "colsample_bytree": 0.5326256194627191, "reg_alpha": 0.7408711930398492, "reg_lambda": 0.5467731065349226}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "lgbm", "hyperparameters": {}}
|
||||
{"class": "lgbm", "hyperparameters": {}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "lgbm", "hyperparameters": {"n_estimators": 7325, "num_leaves": 15, "min_child_samples": 6, "learning_rate": 0.009932524214971736, "log_max_bin": 6, "colsample_bytree": 0.8592091503131608, "reg_alpha": 0.0009997224940106115, "reg_lambda": 0.04069855891326503}}
|
||||
{"class": "lgbm", "hyperparameters": {"n_estimators": 7325, "num_leaves": 15, "min_child_samples": 6, "learning_rate": 0.009932524214971736, "log_max_bin": 6, "colsample_bytree": 0.8592091503131608, "reg_alpha": 0.0009997224940106115, "reg_lambda": 0.04069855891326503}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "lgbm", "hyperparameters": {"n_estimators": 32767, "num_leaves": 372, "min_child_samples": 4, "learning_rate": 0.03517259015200922, "log_max_bin": 5, "colsample_bytree": 1.0, "reg_alpha": 0.02271142170225636, "reg_lambda": 0.001963791798843179, "FLAML_sample_size": 830258}}
|
||||
{"class": "lgbm", "hyperparameters": {"n_estimators": 32767, "num_leaves": 372, "min_child_samples": 4, "learning_rate": 0.03517259015200922, "log_max_bin": 5, "colsample_bytree": 1.0, "reg_alpha": 0.02271142170225636, "reg_lambda": 0.001963791798843179, "FLAML_sample_size": 830258}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "rf", "hyperparameters": {"n_estimators": 38, "max_features": 1.0, "max_leaves": 58}}
|
||||
{"class": "rf", "hyperparameters": {"n_estimators": 38, "max_features": 1.0, "max_leaves": 58}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "rf", "hyperparameters": {"n_estimators": 418, "max_features": 0.5303485415288045, "max_leaves": 6452, "criterion": "entropy", "FLAML_sample_size": 436899}}
|
||||
{"class": "rf", "hyperparameters": {"n_estimators": 418, "max_features": 0.5303485415288045, "max_leaves": 6452, "criterion": "entropy", "FLAML_sample_size": 436899}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "rf", "hyperparameters": {"n_estimators": 2047, "max_features": 0.10091610074262287, "max_leaves": 32767, "criterion": "entropy", "FLAML_sample_size": 344444}}
|
||||
{"class": "rf", "hyperparameters": {"n_estimators": 2047, "max_features": 0.10091610074262287, "max_leaves": 32767, "criterion": "entropy", "FLAML_sample_size": 344444}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "rf", "hyperparameters": {"n_estimators": 501, "max_features": 0.24484242524861066, "max_leaves": 1156, "criterion": "entropy"}}
|
||||
{"class": "rf", "hyperparameters": {"n_estimators": 501, "max_features": 0.24484242524861066, "max_leaves": 1156, "criterion": "entropy"}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "rf", "hyperparameters": {"n_estimators": 510, "max_features": 0.12094682590862652, "max_leaves": 32767, "criterion": "entropy", "FLAML_sample_size": 337147}}
|
||||
{"class": "rf", "hyperparameters": {"n_estimators": 510, "max_features": 0.12094682590862652, "max_leaves": 32767, "criterion": "entropy", "FLAML_sample_size": 337147}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "rf", "hyperparameters": {"n_estimators": 1212, "max_features": 0.3129111648657632, "max_leaves": 779, "criterion": "entropy"}}
|
||||
{"class": "rf", "hyperparameters": {"n_estimators": 1212, "max_features": 0.3129111648657632, "max_leaves": 779, "criterion": "entropy"}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "rf", "hyperparameters": {"n_estimators": 288, "max_features": 0.6436380990499977, "max_leaves": 1823, "FLAML_sample_size": 94478}}
|
||||
{"class": "rf", "hyperparameters": {"n_estimators": 288, "max_features": 0.6436380990499977, "max_leaves": 1823, "FLAML_sample_size": 94478}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "rf", "hyperparameters": {"n_estimators": 2047, "max_features": 0.3158919059422144, "max_leaves": 32767, "FLAML_sample_size": 810000}}
|
||||
{"class": "rf", "hyperparameters": {"n_estimators": 2047, "max_features": 0.3158919059422144, "max_leaves": 32767, "FLAML_sample_size": 810000}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "rf", "hyperparameters": {"n_estimators": 792, "max_features": 1.0, "max_leaves": 67, "criterion": "entropy"}}
|
||||
{"class": "rf", "hyperparameters": {"n_estimators": 792, "max_features": 1.0, "max_leaves": 67, "criterion": "entropy"}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "rf", "hyperparameters": {"n_estimators": 1907, "max_features": 0.3728618389498168, "max_leaves": 11731, "criterion": "entropy"}}
|
||||
{"class": "rf", "hyperparameters": {"n_estimators": 1907, "max_features": 0.3728618389498168, "max_leaves": 11731, "criterion": "entropy"}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "rf", "hyperparameters": {}}
|
||||
{"class": "rf", "hyperparameters": {}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "rf", "hyperparameters": {"n_estimators": 350, "max_features": 0.748250835121453, "max_leaves": 433, "criterion": "entropy"}}
|
||||
{"class": "rf", "hyperparameters": {"n_estimators": 350, "max_features": 0.748250835121453, "max_leaves": 433, "criterion": "entropy"}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "rf", "hyperparameters": {"n_estimators": 2047, "max_features": 1.0, "max_leaves": 32767, "FLAML_sample_size": 830258}}
|
||||
{"class": "rf", "hyperparameters": {"n_estimators": 2047, "max_features": 1.0, "max_leaves": 32767, "FLAML_sample_size": 830258}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "xgb_limitdepth", "hyperparameters": {"n_estimators": 2704, "max_depth": 2, "min_child_weight": 0.23751738294732322, "learning_rate": 0.019828117294812268, "subsample": 0.8798706041292946, "colsample_bylevel": 0.978891799553329, "colsample_bytree": 1.0, "reg_alpha": 0.3023181744217667, "reg_lambda": 101.10719177747677}}
|
||||
{"class": "xgb_limitdepth", "hyperparameters": {"n_estimators": 2704, "max_depth": 2, "min_child_weight": 0.23751738294732322, "learning_rate": 0.019828117294812268, "subsample": 0.8798706041292946, "colsample_bylevel": 0.978891799553329, "colsample_bytree": 1.0, "reg_alpha": 0.3023181744217667, "reg_lambda": 101.10719177747677}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "xgb_limitdepth", "hyperparameters": {"n_estimators": 3573, "max_depth": 13, "min_child_weight": 2.921657581984971, "learning_rate": 0.00699976723859477, "subsample": 0.6110504706508572, "colsample_bylevel": 0.9998661537469163, "colsample_bytree": 0.5457693412489456, "reg_alpha": 0.05315763138176945, "reg_lambda": 23.067599600958623, "FLAML_sample_size": 436899}}
|
||||
{"class": "xgb_limitdepth", "hyperparameters": {"n_estimators": 3573, "max_depth": 13, "min_child_weight": 2.921657581984971, "learning_rate": 0.00699976723859477, "subsample": 0.6110504706508572, "colsample_bylevel": 0.9998661537469163, "colsample_bytree": 0.5457693412489456, "reg_alpha": 0.05315763138176945, "reg_lambda": 23.067599600958623, "FLAML_sample_size": 436899}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "xgb_limitdepth", "hyperparameters": {"n_estimators": 3526, "max_depth": 13, "min_child_weight": 0.0994486725676356, "learning_rate": 0.0009765625, "subsample": 0.46123759274652554, "colsample_bylevel": 1.0, "colsample_bytree": 0.4498813776397717, "reg_alpha": 0.002599398546499414, "reg_lambda": 0.028336396854402753}}
|
||||
{"class": "xgb_limitdepth", "hyperparameters": {"n_estimators": 3526, "max_depth": 13, "min_child_weight": 0.0994486725676356, "learning_rate": 0.0009765625, "subsample": 0.46123759274652554, "colsample_bylevel": 1.0, "colsample_bytree": 0.4498813776397717, "reg_alpha": 0.002599398546499414, "reg_lambda": 0.028336396854402753}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "xgb_limitdepth", "hyperparameters": {"n_estimators": 5457, "max_depth": 6, "min_child_weight": 0.19978269031877885, "learning_rate": 0.003906732665632749, "subsample": 0.8207785234496902, "colsample_bylevel": 0.8438751931476698, "colsample_bytree": 0.42202862997585794, "reg_alpha": 0.017372558844968737, "reg_lambda": 0.03977802121721031}}
|
||||
{"class": "xgb_limitdepth", "hyperparameters": {"n_estimators": 5457, "max_depth": 6, "min_child_weight": 0.19978269031877885, "learning_rate": 0.003906732665632749, "subsample": 0.8207785234496902, "colsample_bylevel": 0.8438751931476698, "colsample_bytree": 0.42202862997585794, "reg_alpha": 0.017372558844968737, "reg_lambda": 0.03977802121721031}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "xgb_limitdepth", "hyperparameters": {"n_estimators": 7782, "max_depth": 7, "min_child_weight": 0.3794874452608909, "learning_rate": 0.006733035771172325, "subsample": 1.0, "colsample_bylevel": 1.0, "colsample_bytree": 0.5611305922560855, "reg_alpha": 8.203853065625196, "reg_lambda": 56.48543538808782, "FLAML_sample_size": 94478}}
|
||||
{"class": "xgb_limitdepth", "hyperparameters": {"n_estimators": 7782, "max_depth": 7, "min_child_weight": 0.3794874452608909, "learning_rate": 0.006733035771172325, "subsample": 1.0, "colsample_bylevel": 1.0, "colsample_bytree": 0.5611305922560855, "reg_alpha": 8.203853065625196, "reg_lambda": 56.48543538808782, "FLAML_sample_size": 94478}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "xgb_limitdepth", "hyperparameters": {"n_estimators": 1013, "max_depth": 15, "min_child_weight": 57.33124114425335, "learning_rate": 0.009706354607542536, "subsample": 1.0, "colsample_bylevel": 0.7925997002174675, "colsample_bytree": 0.874062117666267, "reg_alpha": 0.7965442116152655, "reg_lambda": 2.769937488341342, "FLAML_sample_size": 810000}}
|
||||
{"class": "xgb_limitdepth", "hyperparameters": {"n_estimators": 1013, "max_depth": 15, "min_child_weight": 57.33124114425335, "learning_rate": 0.009706354607542536, "subsample": 1.0, "colsample_bylevel": 0.7925997002174675, "colsample_bytree": 0.874062117666267, "reg_alpha": 0.7965442116152655, "reg_lambda": 2.769937488341342, "FLAML_sample_size": 810000}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "xgb_limitdepth", "hyperparameters": {"n_estimators": 624, "max_depth": 3, "min_child_weight": 0.0017043575728019624, "learning_rate": 0.8481863978692453, "subsample": 0.9897901748446495, "colsample_bylevel": 1.0, "colsample_bytree": 1.0, "reg_alpha": 0.0009765625, "reg_lambda": 0.008686469265798288}}
|
||||
{"class": "xgb_limitdepth", "hyperparameters": {"n_estimators": 624, "max_depth": 3, "min_child_weight": 0.0017043575728019624, "learning_rate": 0.8481863978692453, "subsample": 0.9897901748446495, "colsample_bylevel": 1.0, "colsample_bytree": 1.0, "reg_alpha": 0.0009765625, "reg_lambda": 0.008686469265798288}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "xgb_limitdepth", "hyperparameters": {"n_estimators": 1499, "max_depth": 11, "min_child_weight": 0.07563529776156448, "learning_rate": 0.039042609221240955, "subsample": 0.7832981935783824, "colsample_bylevel": 1.0, "colsample_bytree": 1.0, "reg_alpha": 0.0009765625, "reg_lambda": 23.513066752844153}}
|
||||
{"class": "xgb_limitdepth", "hyperparameters": {"n_estimators": 1499, "max_depth": 11, "min_child_weight": 0.07563529776156448, "learning_rate": 0.039042609221240955, "subsample": 0.7832981935783824, "colsample_bylevel": 1.0, "colsample_bytree": 1.0, "reg_alpha": 0.0009765625, "reg_lambda": 23.513066752844153}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "xgb_limitdepth", "hyperparameters": {}}
|
||||
{"class": "xgb_limitdepth", "hyperparameters": {}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "xgb_limitdepth", "hyperparameters": {"n_estimators": 405, "max_depth": 4, "min_child_weight": 0.2264977130755997, "learning_rate": 0.3390883186947167, "subsample": 0.8078627200173096, "colsample_bylevel": 0.8570282862730856, "colsample_bytree": 0.8280063772581445, "reg_alpha": 0.007634576038353066, "reg_lambda": 1.7101180066063097}}
|
||||
{"class": "xgb_limitdepth", "hyperparameters": {"n_estimators": 405, "max_depth": 4, "min_child_weight": 0.2264977130755997, "learning_rate": 0.3390883186947167, "subsample": 0.8078627200173096, "colsample_bylevel": 0.8570282862730856, "colsample_bytree": 0.8280063772581445, "reg_alpha": 0.007634576038353066, "reg_lambda": 1.7101180066063097}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "xgb_limitdepth", "hyperparameters": {"n_estimators": 3234, "max_depth": 13, "min_child_weight": 0.07784911437942721, "learning_rate": 0.0565426521738442, "subsample": 1.0, "colsample_bylevel": 1.0, "colsample_bytree": 1.0, "reg_alpha": 0.007928962402687697, "reg_lambda": 3.881249823648859, "FLAML_sample_size": 830258}}
|
||||
{"class": "xgb_limitdepth", "hyperparameters": {"n_estimators": 3234, "max_depth": 13, "min_child_weight": 0.07784911437942721, "learning_rate": 0.0565426521738442, "subsample": 1.0, "colsample_bylevel": 1.0, "colsample_bytree": 1.0, "reg_alpha": 0.007928962402687697, "reg_lambda": 3.881249823648859, "FLAML_sample_size": 830258}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "xgboost", "hyperparameters": {"n_estimators": 6705, "max_leaves": 24, "min_child_weight": 58.562722088466444, "learning_rate": 0.0009765625, "subsample": 0.8993009465247683, "colsample_bylevel": 1.0, "colsample_bytree": 1.0, "reg_alpha": 0.2679275019160531, "reg_lambda": 91.95034898844547}}
|
||||
{"class": "xgboost", "hyperparameters": {"n_estimators": 6705, "max_leaves": 24, "min_child_weight": 58.562722088466444, "learning_rate": 0.0009765625, "subsample": 0.8993009465247683, "colsample_bylevel": 1.0, "colsample_bytree": 1.0, "reg_alpha": 0.2679275019160531, "reg_lambda": 91.95034898844547}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "xgboost", "hyperparameters": {"n_estimators": 17309, "max_leaves": 1146, "min_child_weight": 0.0193980002033358, "learning_rate": 0.0009765625, "subsample": 0.4169778612218198, "colsample_bylevel": 1.0, "colsample_bytree": 0.5504959296065052, "reg_alpha": 0.00505548829948545, "reg_lambda": 21.287234956122028, "FLAML_sample_size": 436899}}
|
||||
{"class": "xgboost", "hyperparameters": {"n_estimators": 17309, "max_leaves": 1146, "min_child_weight": 0.0193980002033358, "learning_rate": 0.0009765625, "subsample": 0.4169778612218198, "colsample_bylevel": 1.0, "colsample_bytree": 0.5504959296065052, "reg_alpha": 0.00505548829948545, "reg_lambda": 21.287234956122028, "FLAML_sample_size": 436899}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "xgboost", "hyperparameters": {"n_estimators": 6357, "max_leaves": 206, "min_child_weight": 1.9495322566288034, "learning_rate": 0.0068766724195393905, "subsample": 0.9451618245005704, "colsample_bylevel": 0.9030482524943064, "colsample_bytree": 0.9278972006416252, "reg_alpha": 0.01857648400903689, "reg_lambda": 6.021166480604588, "FLAML_sample_size": 344444}}
|
||||
{"class": "xgboost", "hyperparameters": {"n_estimators": 6357, "max_leaves": 206, "min_child_weight": 1.9495322566288034, "learning_rate": 0.0068766724195393905, "subsample": 0.9451618245005704, "colsample_bylevel": 0.9030482524943064, "colsample_bytree": 0.9278972006416252, "reg_alpha": 0.01857648400903689, "reg_lambda": 6.021166480604588, "FLAML_sample_size": 344444}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "xgboost", "hyperparameters": {"n_estimators": 591, "max_leaves": 16651, "min_child_weight": 0.03356567864689129, "learning_rate": 0.002595066436678338, "subsample": 0.9114132805513452, "colsample_bylevel": 0.9503441844594458, "colsample_bytree": 0.5703338448066768, "reg_alpha": 0.010405212349127894, "reg_lambda": 0.05352660657433639}}
|
||||
{"class": "xgboost", "hyperparameters": {"n_estimators": 591, "max_leaves": 16651, "min_child_weight": 0.03356567864689129, "learning_rate": 0.002595066436678338, "subsample": 0.9114132805513452, "colsample_bylevel": 0.9503441844594458, "colsample_bytree": 0.5703338448066768, "reg_alpha": 0.010405212349127894, "reg_lambda": 0.05352660657433639}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "xgboost", "hyperparameters": {"n_estimators": 23282, "max_leaves": 19, "min_child_weight": 0.02198438885474473, "learning_rate": 0.001700636796132106, "subsample": 1.0, "colsample_bylevel": 0.8954745234489918, "colsample_bytree": 0.22331977285961732, "reg_alpha": 0.4115502489939291, "reg_lambda": 0.015523027968801352}}
|
||||
{"class": "xgboost", "hyperparameters": {"n_estimators": 23282, "max_leaves": 19, "min_child_weight": 0.02198438885474473, "learning_rate": 0.001700636796132106, "subsample": 1.0, "colsample_bylevel": 0.8954745234489918, "colsample_bytree": 0.22331977285961732, "reg_alpha": 0.4115502489939291, "reg_lambda": 0.015523027968801352}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "xgboost", "hyperparameters": {"n_estimators": 4038, "max_leaves": 89, "min_child_weight": 0.23500921146599626, "learning_rate": 0.0039779941096963365, "subsample": 0.9421092355451888, "colsample_bylevel": 0.7772326835688742, "colsample_bytree": 0.6864341727912397, "reg_alpha": 4.8782018848557, "reg_lambda": 0.7531969031616396, "FLAML_sample_size": 94478}}
|
||||
{"class": "xgboost", "hyperparameters": {"n_estimators": 4038, "max_leaves": 89, "min_child_weight": 0.23500921146599626, "learning_rate": 0.0039779941096963365, "subsample": 0.9421092355451888, "colsample_bylevel": 0.7772326835688742, "colsample_bytree": 0.6864341727912397, "reg_alpha": 4.8782018848557, "reg_lambda": 0.7531969031616396, "FLAML_sample_size": 94478}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "xgboost", "hyperparameters": {"n_estimators": 32767, "max_leaves": 623, "min_child_weight": 0.03783048691639616, "learning_rate": 0.0021758863899615554, "subsample": 0.9086242379539484, "colsample_bylevel": 0.5880499360809446, "colsample_bytree": 1.0, "reg_alpha": 0.0037398450188259108, "reg_lambda": 16.894310259361305, "FLAML_sample_size": 810000}}
|
||||
{"class": "xgboost", "hyperparameters": {"n_estimators": 32767, "max_leaves": 623, "min_child_weight": 0.03783048691639616, "learning_rate": 0.0021758863899615554, "subsample": 0.9086242379539484, "colsample_bylevel": 0.5880499360809446, "colsample_bytree": 1.0, "reg_alpha": 0.0037398450188259108, "reg_lambda": 16.894310259361305, "FLAML_sample_size": 810000}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "xgboost", "hyperparameters": {"n_estimators": 765, "max_leaves": 6, "min_child_weight": 0.001, "learning_rate": 1.0, "subsample": 0.9833803894285497, "colsample_bylevel": 1.0, "colsample_bytree": 1.0, "reg_alpha": 0.0012553728257619922, "reg_lambda": 0.03280542610559108}}
|
||||
{"class": "xgboost", "hyperparameters": {"n_estimators": 765, "max_leaves": 6, "min_child_weight": 0.001, "learning_rate": 1.0, "subsample": 0.9833803894285497, "colsample_bylevel": 1.0, "colsample_bytree": 1.0, "reg_alpha": 0.0012553728257619922, "reg_lambda": 0.03280542610559108}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "xgboost", "hyperparameters": {"n_estimators": 6458, "max_leaves": 196, "min_child_weight": 0.020541449256787844, "learning_rate": 0.0067240405208345, "subsample": 0.5764514509827234, "colsample_bylevel": 1.0, "colsample_bytree": 0.9478632468968712, "reg_alpha": 0.08196899811780128, "reg_lambda": 1.3914579996946315}}
|
||||
{"class": "xgboost", "hyperparameters": {"n_estimators": 6458, "max_leaves": 196, "min_child_weight": 0.020541449256787844, "learning_rate": 0.0067240405208345, "subsample": 0.5764514509827234, "colsample_bylevel": 1.0, "colsample_bytree": 0.9478632468968712, "reg_alpha": 0.08196899811780128, "reg_lambda": 1.3914579996946315}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "xgboost", "hyperparameters": {}}
|
||||
{"class": "xgboost", "hyperparameters": {}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "xgboost", "hyperparameters": {"n_estimators": 5739, "max_leaves": 5, "min_child_weight": 0.1359602026207002, "learning_rate": 0.14496176867613397, "subsample": 0.864897070662231, "colsample_bylevel": 0.01, "colsample_bytree": 0.9394057513384305, "reg_alpha": 0.001103317921178771, "reg_lambda": 0.1655504349283218}}
|
||||
{"class": "xgboost", "hyperparameters": {"n_estimators": 5739, "max_leaves": 5, "min_child_weight": 0.1359602026207002, "learning_rate": 0.14496176867613397, "subsample": 0.864897070662231, "colsample_bylevel": 0.01, "colsample_bytree": 0.9394057513384305, "reg_alpha": 0.001103317921178771, "reg_lambda": 0.1655504349283218}}
|
||||
|
|
|
@ -1 +1 @@
|
|||
{"class": "xgboost", "hyperparameters": {"n_estimators": 6866, "max_leaves": 238, "min_child_weight": 0.1000665069590469, "learning_rate": 0.05522440252112267, "subsample": 0.9621433799637473, "colsample_bylevel": 0.8366787895853636, "colsample_bytree": 1.0, "reg_alpha": 0.002455941636379231, "reg_lambda": 0.02487031358204277, "FLAML_sample_size": 830258}}
|
||||
{"class": "xgboost", "hyperparameters": {"n_estimators": 6866, "max_leaves": 238, "min_child_weight": 0.1000665069590469, "learning_rate": 0.05522440252112267, "subsample": 0.9621433799637473, "colsample_bylevel": 0.8366787895853636, "colsample_bytree": 1.0, "reg_alpha": 0.002455941636379231, "reg_lambda": 0.02487031358204277, "FLAML_sample_size": 830258}}
|
||||
|
|
|
@ -3,4 +3,4 @@ glue-rte-,2500
|
|||
glue-mrpc-,3700
|
||||
glue-cola-,8500
|
||||
glue-qnli-,105000
|
||||
glue-sst2-,67000
|
||||
glue-sst2-,67000
|
||||
|
|
|
|
@ -3,4 +3,4 @@ glue-rte-,2500
|
|||
glue-mrpc-,3700
|
||||
glue-cola-,8500
|
||||
glue-qnli-,105000
|
||||
glue-sst2-,67000
|
||||
glue-sst2-,67000
|
||||
|
|
|
|
@ -2,4 +2,4 @@
|
|||
"hyperparameters": {"learning_rate": 1e-5, "num_train_epochs": 1.0, "per_device_train_batch_size": 8,
|
||||
"seed": 44, "global_max_steps": 101,
|
||||
"model_path": "google/electra-base-discriminator"}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -2,4 +2,4 @@
|
|||
"hyperparameters": {"learning_rate": 1e-5, "num_train_epochs": 1.0, "per_device_train_batch_size": 8,
|
||||
"seed": 43, "global_max_steps": 100,
|
||||
"model_path": "google/electra-base-discriminator"}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -2,4 +2,4 @@
|
|||
"hyperparameters": {"learning_rate": 1e-5, "num_train_epochs": 1.0, "per_device_train_batch_size": 8,
|
||||
"seed": 41, "global_max_steps": 102,
|
||||
"model_path": "google/electra-base-discriminator" }
|
||||
}
|
||||
}
|
||||
|
|
|
@ -2,4 +2,4 @@
|
|||
"hyperparameters": {"learning_rate": 1e-5, "num_train_epochs": 1.0, "per_device_train_batch_size": 8,
|
||||
"seed": 42, "global_max_steps": 103,
|
||||
"model_path": "google/electra-base-discriminator" }
|
||||
}
|
||||
}
|
||||
|
|
|
@ -2,4 +2,4 @@
|
|||
"hyperparameters": {"learning_rate": 1e-5, "num_train_epochs": 1.0, "per_device_train_batch_size": 8,
|
||||
"seed": 40, "global_max_steps": 105,
|
||||
"model_path": "google/electra-base-discriminator"}
|
||||
}
|
||||
}
|
||||
|
|
Некоторые файлы не были показаны из-за слишком большого количества измененных файлов Показать больше
Загрузка…
Ссылка в новой задаче