Add ruff sort to pre-commit and sort imports in the library (#1259)

* lint

* bump ver

* bump ver

* fixed circular import

---------

Co-authored-by: Jirka Borovec <6035284+Borda@users.noreply.github.com>
This commit is contained in:
Gleb Levitski 2024-03-12 23:28:57 +02:00 коммит произвёл GitHub
Родитель 6840dc2b09
Коммит 3de0dc667e
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: B5690EEEBB952194
148 изменённых файлов: 767 добавлений и 582 удалений

Просмотреть файл

@ -1,9 +1,9 @@
import logging
from flaml.automl import AutoML, logger_formatter
from flaml.tune.searcher import CFO, BlendSearch, FLOW2, BlendSearchTuner, RandomSearch
from flaml.onlineml.autovw import AutoVW
from flaml.version import __version__
from flaml.automl import AutoML, logger_formatter
from flaml.onlineml.autovw import AutoVW
from flaml.tune.searcher import CFO, FLOW2, BlendSearch, BlendSearchTuner, RandomSearch
from flaml.version import __version__
# Set the root logger.
logger = logging.getLogger(__name__)

Просмотреть файл

@ -1,3 +1,3 @@
from .oai import *
from .agentchat import *
from .code_utils import DEFAULT_MODEL, FAST_MODEL
from .oai import *

Просмотреть файл

@ -1,8 +1,8 @@
from .agent import Agent
from .conversable_agent import ConversableAgent
from .assistant_agent import AssistantAgent
from .user_proxy_agent import UserProxyAgent
from .conversable_agent import ConversableAgent
from .groupchat import GroupChat, GroupChatManager
from .user_proxy_agent import UserProxyAgent
__all__ = [
"Agent",

Просмотреть файл

@ -1,6 +1,7 @@
from .conversable_agent import ConversableAgent
from typing import Callable, Dict, Optional, Union
from .conversable_agent import ConversableAgent
class AssistantAgent(ConversableAgent):
"""(In preview) Assistant agent, designed to solve a task with LLM.

Просмотреть файл

@ -1,14 +1,14 @@
import re
import os
from pydantic import BaseModel, Extra, root_validator
from typing import Any, Callable, Dict, List, Optional, Union
import re
from time import sleep
from typing import Any, Callable, Dict, List, Optional, Union
from pydantic import BaseModel, Extra, root_validator
from flaml.autogen.agentchat import Agent, UserProxyAgent
from flaml.autogen.code_utils import UNKNOWN, extract_code, execute_code, infer_lang
from flaml.autogen.code_utils import UNKNOWN, execute_code, extract_code, infer_lang
from flaml.autogen.math_utils import get_answer
PROMPTS = {
# default
"default": """Let's use Python to solve a math problem.

Просмотреть файл

@ -1,6 +1,7 @@
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
from flaml.autogen.agentchat.agent import Agent
from flaml.autogen.agentchat.assistant_agent import AssistantAgent
from typing import Callable, Dict, Optional, Union, List, Tuple, Any
class RetrieveAssistantAgent(AssistantAgent):

Просмотреть файл

@ -1,12 +1,13 @@
import chromadb
from flaml.autogen.agentchat.agent import Agent
from flaml.autogen.agentchat import UserProxyAgent
from flaml.autogen.retrieve_utils import create_vector_db_from_dir, query_vector_db, num_tokens_from_text
from flaml.autogen.code_utils import extract_code
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
from typing import Callable, Dict, Optional, Union, List, Tuple, Any
import chromadb
from IPython import get_ipython
from flaml.autogen.agentchat import UserProxyAgent
from flaml.autogen.agentchat.agent import Agent
from flaml.autogen.code_utils import extract_code
from flaml.autogen.retrieve_utils import create_vector_db_from_dir, num_tokens_from_text, query_vector_db
try:
from termcolor import colored
except ImportError:

Просмотреть файл

@ -1,10 +1,10 @@
import asyncio
from collections import defaultdict
import copy
import json
from collections import defaultdict
from typing import Any, Callable, Dict, List, Optional, Tuple, Type, Union
from flaml.autogen import oai
from .agent import Agent
from flaml.autogen.code_utils import (
DEFAULT_MODEL,
UNKNOWN,
@ -13,6 +13,8 @@ from flaml.autogen.code_utils import (
infer_lang,
)
from .agent import Agent
try:
from termcolor import colored
except ImportError:

Просмотреть файл

@ -1,6 +1,7 @@
from dataclasses import dataclass
import sys
from dataclasses import dataclass
from typing import Dict, List, Optional, Union
from .agent import Agent
from .conversable_agent import ConversableAgent

Просмотреть файл

@ -1,6 +1,7 @@
from .conversable_agent import ConversableAgent
from typing import Callable, Dict, Optional, Union
from .conversable_agent import ConversableAgent
class UserProxyAgent(ConversableAgent):
"""(In preview) A proxy agent for the user, that can execute code and provide feedback to the other agents.

Просмотреть файл

@ -1,13 +1,14 @@
import logging
import os
import pathlib
import re
import signal
import subprocess
import sys
import os
import pathlib
from typing import List, Dict, Tuple, Optional, Union, Callable
import re
import time
from hashlib import md5
import logging
from typing import Callable, Dict, List, Optional, Tuple, Union
from flaml.autogen import oai
try:

Просмотреть файл

@ -1,5 +1,6 @@
from typing import Optional
from flaml.autogen import oai, DEFAULT_MODEL
from flaml.autogen import DEFAULT_MODEL, oai
_MATH_PROMPT = "{problem} Solve the problem carefully. Simplify your answer as much as possible. Put the final answer in \\boxed{{}}."
_MATH_CONFIG = {

Просмотреть файл

@ -1,10 +1,10 @@
from flaml.autogen.oai.completion import Completion, ChatCompletion
from flaml.autogen.oai.completion import ChatCompletion, Completion
from flaml.autogen.oai.openai_utils import (
get_config_list,
config_list_from_json,
config_list_from_models,
config_list_gpt4_gpt35,
config_list_openai_aoai,
config_list_from_models,
config_list_from_json,
get_config_list,
)
__all__ = [

Просмотреть файл

@ -1,28 +1,31 @@
from time import sleep
import logging
import time
from typing import List, Optional, Dict, Callable, Union
import sys
import shutil
import sys
import time
from time import sleep
from typing import Callable, Dict, List, Optional, Union
import numpy as np
from flaml import tune, BlendSearch
from flaml.tune.space import is_constant
from flaml import BlendSearch, tune
from flaml.automl.logger import logger_formatter
from flaml.tune.space import is_constant
from .openai_utils import get_key
try:
import openai
from openai.error import (
ServiceUnavailableError,
RateLimitError,
APIError,
InvalidRequestError,
APIConnectionError,
Timeout,
AuthenticationError,
)
from openai import Completion as openai_Completion
import diskcache
import openai
from openai import Completion as openai_Completion
from openai.error import (
APIConnectionError,
APIError,
AuthenticationError,
InvalidRequestError,
RateLimitError,
ServiceUnavailableError,
Timeout,
)
ERROR = None
except ImportError:

Просмотреть файл

@ -1,7 +1,7 @@
import os
import json
from typing import List, Optional, Dict, Set, Union
import logging
import os
from typing import Dict, List, Optional, Set, Union
NON_CACHE_KEY = ["api_key", "api_base", "api_type", "api_version"]

Просмотреть файл

@ -1,13 +1,14 @@
from typing import List, Union, Dict, Tuple
import os
import requests
from urllib.parse import urlparse
import glob
import tiktoken
import chromadb
from chromadb.api import API
import chromadb.utils.embedding_functions as ef
import logging
import os
from typing import Dict, List, Tuple, Union
from urllib.parse import urlparse
import chromadb
import chromadb.utils.embedding_functions as ef
import requests
import tiktoken
from chromadb.api import API
logger = logging.getLogger(__name__)
TEXT_FORMATS = ["txt", "json", "csv", "tsv", "md", "html", "htm", "rtf", "rst", "jsonl", "log", "xml", "yaml", "yml"]

Просмотреть файл

@ -1,5 +1,5 @@
from flaml.automl.automl import AutoML, size
from flaml.automl.logger import logger_formatter
from flaml.automl.state import SearchState, AutoMLState
from flaml.automl.state import AutoMLState, SearchState
__all__ = ["AutoML", "AutoMLState", "SearchState", "logger_formatter", "size"]

Просмотреть файл

@ -3,40 +3,41 @@
# * Licensed under the MIT License. See LICENSE file in the
# * project root for license information.
from __future__ import annotations
import time
import json
import logging
import os
import sys
from typing import Callable, List, Union, Optional
import time
from functools import partial
from typing import Callable, List, Optional, Union
import numpy as np
import logging
import json
from flaml.automl.state import SearchState, AutoMLState
from flaml import tune
from flaml.automl.logger import logger, logger_formatter
from flaml.automl.ml import train_estimator
from flaml.automl.time_series import TimeSeriesDataset
from flaml.config import (
MIN_SAMPLE_TRAIN,
MEM_THRES,
RANDOM_SEED,
SMALL_LARGE_THRES,
CV_HOLDOUT_THRESHOLD,
SPLIT_RATIO,
N_SPLITS,
SAMPLE_MULTIPLY_FACTOR,
)
from flaml.automl.spark import DataFrame, Series, psDataFrame, psSeries
from flaml.automl.state import AutoMLState, SearchState
from flaml.automl.task.factory import task_factory
# TODO check to see when we can remove these
from flaml.automl.task.task import CLASSIFICATION, Task
from flaml.automl.task.factory import task_factory
from flaml import tune
from flaml.automl.logger import logger, logger_formatter
from flaml.automl.time_series import TimeSeriesDataset
from flaml.automl.training_log import training_log_reader, training_log_writer
from flaml.config import (
CV_HOLDOUT_THRESHOLD,
MEM_THRES,
MIN_SAMPLE_TRAIN,
N_SPLITS,
RANDOM_SEED,
SAMPLE_MULTIPLY_FACTOR,
SMALL_LARGE_THRES,
SPLIT_RATIO,
)
from flaml.default import suggest_learner
from flaml.version import __version__ as flaml_version
from flaml.automl.spark import psDataFrame, psSeries, DataFrame, Series
from flaml.tune.spark.utils import check_spark, get_broadcast_data
from flaml.version import __version__ as flaml_version
ERROR = (
DataFrame is None and ImportError("please install flaml[automl] option to use the flaml.automl package.") or None

Просмотреть файл

@ -2,15 +2,17 @@
# * Copyright (c) Microsoft Corporation. All rights reserved.
# * Licensed under the MIT License. See LICENSE file in the
# * project root for license information.
import numpy as np
import os
from datetime import datetime
from typing import TYPE_CHECKING, Union
import os
import numpy as np
from flaml.automl.spark import DataFrame, Series, pd, ps, psDataFrame, psSeries
from flaml.automl.training_log import training_log_reader
from flaml.automl.spark import ps, psDataFrame, psSeries, DataFrame, Series, pd
try:
from scipy.sparse import vstack, issparse
from scipy.sparse import issparse, vstack
except ImportError:
pass
@ -41,8 +43,9 @@ def load_openml_dataset(dataset_id, data_dir=None, random_state=0, dataset_forma
y_train: A series or array of labels for training data.
y_test: A series or array of labels for test data.
"""
import openml
import pickle
import openml
from sklearn.model_selection import train_test_split
filename = "openml_ds" + str(dataset_id) + ".pkl"
@ -93,9 +96,10 @@ def load_openml_task(task_id, data_dir):
y_train: A series of labels for training data.
y_test: A series of labels for test data.
"""
import openml
import pickle
import openml
task = openml.tasks.get_task(task_id)
filename = "openml_task" + str(task_id) + ".pkl"
filepath = os.path.join(data_dir, filename)
@ -341,8 +345,8 @@ class DataTransformer:
drop = True
else:
drop = False
from sklearn.impute import SimpleImputer
from sklearn.compose import ColumnTransformer
from sklearn.impute import SimpleImputer
self.transformer = ColumnTransformer(
[

Просмотреть файл

@ -2,30 +2,30 @@
# * Copyright (c) FLAML authors. All rights reserved.
# * Licensed under the MIT License. See LICENSE file in the
# * project root for license information.
import time
from typing import Union, Callable, TypeVar, Optional, Tuple
import logging
import time
from typing import Callable, Optional, Tuple, TypeVar, Union
import numpy as np
from flaml.automl.data import group_counts
from flaml.automl.task.task import Task
from flaml.automl.model import BaseEstimator, TransformersEstimator
from flaml.automl.spark import psDataFrame, psSeries, ERROR as SPARK_ERROR, Series, DataFrame
from flaml.automl.spark import ERROR as SPARK_ERROR
from flaml.automl.spark import DataFrame, Series, psDataFrame, psSeries
from flaml.automl.task.task import Task
try:
from sklearn.metrics import (
mean_squared_error,
r2_score,
roc_auc_score,
accuracy_score,
mean_absolute_error,
log_loss,
average_precision_score,
f1_score,
log_loss,
mean_absolute_error,
mean_absolute_percentage_error,
mean_squared_error,
ndcg_score,
r2_score,
roc_auc_score,
)
except ImportError:
pass

Просмотреть файл

@ -1,17 +1,18 @@
from dataclasses import dataclass
from transformers.data.data_collator import (
DataCollatorWithPadding,
DataCollatorForTokenClassification,
DataCollatorForSeq2Seq,
)
from collections import OrderedDict
from dataclasses import dataclass
from transformers.data.data_collator import (
DataCollatorForSeq2Seq,
DataCollatorForTokenClassification,
DataCollatorWithPadding,
)
from flaml.automl.task.task import (
TOKENCLASSIFICATION,
MULTICHOICECLASSIFICATION,
SUMMARIZATION,
SEQCLASSIFICATION,
SEQREGRESSION,
SUMMARIZATION,
TOKENCLASSIFICATION,
)
@ -19,6 +20,7 @@ from flaml.automl.task.task import (
class DataCollatorForMultipleChoiceClassification(DataCollatorWithPadding):
def __call__(self, features):
from itertools import chain
import torch
label_name = "label" if "label" in features[0].keys() else "labels"

Просмотреть файл

@ -1,6 +1,7 @@
import argparse
from dataclasses import dataclass, field
from typing import Optional, List
from typing import List, Optional
from flaml.automl.task.task import NLG_TASKS
try:

Просмотреть файл

@ -1,14 +1,16 @@
from itertools import chain
import numpy as np
from flaml.automl.task.task import (
SUMMARIZATION,
SEQREGRESSION,
SEQCLASSIFICATION,
MULTICHOICECLASSIFICATION,
TOKENCLASSIFICATION,
NLG_TASKS,
)
from flaml.automl.data import pd
from flaml.automl.task.task import (
MULTICHOICECLASSIFICATION,
NLG_TASKS,
SEQCLASSIFICATION,
SEQREGRESSION,
SUMMARIZATION,
TOKENCLASSIFICATION,
)
def todf(X, Y, column_name):
@ -377,6 +379,7 @@ def load_model(checkpoint_path, task, num_labels=None):
transformers.logging.set_verbosity_error()
from transformers import AutoConfig
from flaml.automl.task.task import (
SEQCLASSIFICATION,
SEQREGRESSION,
@ -384,10 +387,12 @@ def load_model(checkpoint_path, task, num_labels=None):
)
def get_this_model(checkpoint_path, task, model_config):
from transformers import AutoModelForSequenceClassification
from transformers import AutoModelForSeq2SeqLM
from transformers import AutoModelForMultipleChoice
from transformers import AutoModelForTokenClassification
from transformers import (
AutoModelForMultipleChoice,
AutoModelForSeq2SeqLM,
AutoModelForSequenceClassification,
AutoModelForTokenClassification,
)
if task in (SEQCLASSIFICATION, SEQREGRESSION):
return AutoModelForSequenceClassification.from_pretrained(

Просмотреть файл

@ -1,11 +1,12 @@
from typing import Dict, Any
from typing import Any, Dict
import numpy as np
from flaml.automl.task.task import (
SUMMARIZATION,
SEQREGRESSION,
SEQCLASSIFICATION,
MULTICHOICECLASSIFICATION,
SEQCLASSIFICATION,
SEQREGRESSION,
SUMMARIZATION,
TOKENCLASSIFICATION,
)

Просмотреть файл

@ -6,8 +6,10 @@ try:
import pyspark.pandas as ps
import pyspark.sql.functions as F
import pyspark.sql.types as T
from pyspark.pandas import DataFrame as psDataFrame
from pyspark.pandas import Series as psSeries
from pyspark.pandas import set_option
from pyspark.sql import DataFrame as sparkDataFrame
from pyspark.pandas import DataFrame as psDataFrame, Series as psSeries, set_option
from pyspark.util import VersionUtils
except ImportError:

Просмотреть файл

@ -1,14 +1,16 @@
import numpy as np
from typing import Union
from flaml.automl.spark import psSeries, F
import numpy as np
from pyspark.ml.evaluation import (
BinaryClassificationEvaluator,
RegressionEvaluator,
MulticlassClassificationEvaluator,
MultilabelClassificationEvaluator,
RankingEvaluator,
RegressionEvaluator,
)
from flaml.automl.spark import F, psSeries
def ps_group_counts(groups: Union[psSeries, np.ndarray]) -> np.ndarray:
if isinstance(groups, np.ndarray):

Просмотреть файл

@ -1,17 +1,19 @@
import logging
from typing import Union, List, Optional, Tuple
from typing import List, Optional, Tuple, Union
import numpy as np
from flaml.automl.spark import (
sparkDataFrame,
ps,
DataFrame,
F,
Series,
T,
_spark_major_minor_version,
ps,
psDataFrame,
psSeries,
_spark_major_minor_version,
DataFrame,
Series,
set_option,
sparkDataFrame,
)
logger = logging.getLogger(__name__)

Просмотреть файл

@ -1,13 +1,15 @@
import inspect
import copy
import inspect
import time
from typing import Any, Optional
import numpy as np
from flaml import tune
from flaml.automl.logger import logger
from flaml.automl.ml import compute_estimator, train_estimator
from flaml.automl.spark import DataFrame, Series, psDataFrame, psSeries
from flaml.automl.time_series.ts_data import TimeSeriesDataset
from flaml.automl.spark import psDataFrame, psSeries, DataFrame, Series
class SearchState:

Просмотреть файл

@ -1,8 +1,9 @@
from typing import Optional, Union
import numpy as np
from flaml.automl.data import DataFrame, Series
from flaml.automl.task.task import Task, TS_FORECAST
from flaml.automl.task.task import TS_FORECAST, Task
def task_factory(

Просмотреть файл

@ -1,6 +1,8 @@
from abc import ABC, abstractmethod
from typing import TYPE_CHECKING, List, Optional, Tuple, Union
import numpy as np
from flaml.automl.data import DataFrame, Series, psDataFrame, psSeries
if TYPE_CHECKING:

Просмотреть файл

@ -2,26 +2,25 @@ import logging
import time
from typing import List
import pandas as pd
import numpy as np
import pandas as pd
from scipy.sparse import issparse
from sklearn.model_selection import (
GroupKFold,
TimeSeriesSplit,
)
from flaml.automl.ml import get_val_loss, default_cv_score_agg_func
from flaml.automl.time_series.ts_data import (
TimeSeriesDataset,
DataTransformerTS,
normalize_ts_data,
)
from flaml.automl.ml import default_cv_score_agg_func, get_val_loss
from flaml.automl.task.task import (
Task,
get_classification_objective,
TS_FORECAST,
TS_FORECASTPANEL,
Task,
get_classification_objective,
)
from flaml.automl.time_series.ts_data import (
DataTransformerTS,
TimeSeriesDataset,
normalize_ts_data,
)
logger = logging.getLogger(__name__)
@ -33,18 +32,18 @@ class TimeSeriesTask(Task):
if self._estimators is None:
# put this into a function to avoid circular dependency
from flaml.automl.time_series import (
ARIMA,
LGBM_TS,
RF_TS,
SARIMAX,
CatBoost_TS,
ExtraTrees_TS,
HoltWinters,
Orbit,
Prophet,
TemporalFusionTransformerEstimator,
XGBoost_TS,
XGBoostLimitDepth_TS,
RF_TS,
LGBM_TS,
ExtraTrees_TS,
CatBoost_TS,
Prophet,
Orbit,
ARIMA,
SARIMAX,
TemporalFusionTransformerEstimator,
HoltWinters,
)
self._estimators = {

Просмотреть файл

@ -1,17 +1,16 @@
from .ts_model import (
Prophet,
Orbit,
ARIMA,
SARIMAX,
HoltWinters,
LGBM_TS,
XGBoost_TS,
RF_TS,
ExtraTrees_TS,
XGBoostLimitDepth_TS,
CatBoost_TS,
TimeSeriesEstimator,
)
from .tft import TemporalFusionTransformerEstimator
from .ts_data import TimeSeriesDataset
from .ts_model import (
ARIMA,
LGBM_TS,
RF_TS,
SARIMAX,
CatBoost_TS,
ExtraTrees_TS,
HoltWinters,
Orbit,
Prophet,
TimeSeriesEstimator,
XGBoost_TS,
XGBoostLimitDepth_TS,
)

Просмотреть файл

@ -1,5 +1,5 @@
import math
import datetime
import math
from functools import lru_cache
import pandas as pd

Просмотреть файл

@ -12,8 +12,8 @@ except ImportError:
DataFrame = Series = None
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.preprocessing import StandardScaler
def make_lag_features(X: pd.DataFrame, y: pd.Series, lags: int):

Просмотреть файл

@ -105,6 +105,7 @@ class TemporalFusionTransformerEstimator(TimeSeriesEstimator):
def fit(self, X_train, y_train, budget=None, **kwargs):
import warnings
import pytorch_lightning as pl
import torch
from pytorch_forecasting import TemporalFusionTransformer

Просмотреть файл

@ -2,7 +2,7 @@ import copy
import datetime
import math
from dataclasses import dataclass, field
from typing import List, Optional, Callable, Dict, Generator, Union
from typing import Callable, Dict, Generator, List, Optional, Union
import numpy as np
@ -10,9 +10,9 @@ try:
import pandas as pd
from pandas import DataFrame, Series, to_datetime
from scipy.sparse import issparse
from sklearn.preprocessing import LabelEncoder
from sklearn.impute import SimpleImputer
from sklearn.compose import ColumnTransformer
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import LabelEncoder
from .feature import monthly_fourier_features
except ImportError:

Просмотреть файл

@ -1,8 +1,8 @@
import time
import logging
import os
from datetime import datetime
import math
import os
import time
from datetime import datetime
from typing import List, Optional, Union
try:
@ -22,26 +22,26 @@ except ImportError:
import numpy as np
from flaml import tune
from flaml.automl.model import (
suppress_stdout_stderr,
SKLearnEstimator,
logger,
LGBMEstimator,
XGBoostSklearnEstimator,
RandomForestEstimator,
ExtraTreesEstimator,
XGBoostLimitDepthEstimator,
CatBoostEstimator,
)
from flaml.automl.data import TS_TIMESTAMP_COL, TS_VALUE_COL
from flaml.automl.time_series.ts_data import (
TimeSeriesDataset,
enrich_dataset,
enrich_dataframe,
normalize_ts_data,
create_forward_frame,
from flaml.automl.model import (
CatBoostEstimator,
ExtraTreesEstimator,
LGBMEstimator,
RandomForestEstimator,
SKLearnEstimator,
XGBoostLimitDepthEstimator,
XGBoostSklearnEstimator,
logger,
suppress_stdout_stderr,
)
from flaml.automl.task import Task
from flaml.automl.time_series.ts_data import (
TimeSeriesDataset,
create_forward_frame,
enrich_dataframe,
enrich_dataset,
normalize_ts_data,
)
class TimeSeriesEstimator(SKLearnEstimator):
@ -143,6 +143,7 @@ class TimeSeriesEstimator(SKLearnEstimator):
def score(self, X_val: DataFrame, y_val: Series, **kwargs):
from sklearn.metrics import r2_score
from ..ml import metric_loss_score
y_pred = self.predict(X_val, **kwargs)

Просмотреть файл

@ -4,9 +4,9 @@
"""
import json
from typing import IO
from contextlib import contextmanager
import logging
from contextlib import contextmanager
from typing import IO
logger = logging.getLogger("flaml.automl")

Просмотреть файл

@ -1,18 +1,18 @@
from .suggest import (
suggest_config,
suggest_learner,
suggest_hyperparams,
preprocess_and_suggest_hyperparams,
meta_feature,
)
from .estimator import (
flamlize_estimator,
LGBMClassifier,
LGBMRegressor,
XGBClassifier,
XGBRegressor,
RandomForestClassifier,
RandomForestRegressor,
ExtraTreesClassifier,
ExtraTreesRegressor,
LGBMClassifier,
LGBMRegressor,
RandomForestClassifier,
RandomForestRegressor,
XGBClassifier,
XGBRegressor,
flamlize_estimator,
)
from .suggest import (
meta_feature,
preprocess_and_suggest_hyperparams,
suggest_config,
suggest_hyperparams,
suggest_learner,
)

Просмотреть файл

@ -1,5 +1,7 @@
from functools import wraps
from flaml.automl.task.task import CLASSIFICATION
from .suggest import preprocess_and_suggest_hyperparams
DEFAULT_LOCATION = "default_location"

Просмотреть файл

@ -1,7 +1,7 @@
import numpy as np
import pandas as pd
from sklearn.preprocessing import RobustScaler
from sklearn.metrics import pairwise_distances
from sklearn.preprocessing import RobustScaler
def _augment(row):

Просмотреть файл

@ -1,11 +1,13 @@
import pandas as pd
import numpy as np
import argparse
from pathlib import Path
import json
from pathlib import Path
import numpy as np
import pandas as pd
from sklearn.preprocessing import RobustScaler
from flaml.default import greedy
from flaml.default.regret import load_result, build_regret
from flaml.default.regret import build_regret, load_result
from flaml.version import __version__
regret_bound = 0.01

Просмотреть файл

@ -1,5 +1,6 @@
import argparse
from os import path
import pandas as pd

Просмотреть файл

@ -1,11 +1,13 @@
import numpy as np
import json
import logging
import pathlib
import json
import numpy as np
from flaml.automl.data import DataTransformer
from flaml.automl.task.task import CLASSIFICATION, get_classification_objective
from flaml.automl.task.generic_task import len_labels
from flaml.automl.task.factory import task_factory
from flaml.automl.task.generic_task import len_labels
from flaml.automl.task.task import CLASSIFICATION, get_classification_objective
from flaml.version import __version__
try:

Просмотреть файл

@ -2,7 +2,6 @@ import warnings
from flaml.automl.ml import *
warnings.warn(
"Importing from `flaml.ml` is deprecated. Please use `flaml.automl.ml`.",
DeprecationWarning,

Просмотреть файл

@ -1,16 +1,17 @@
from typing import Optional, Union
import logging
from typing import Optional, Union
from flaml.onlineml import OnlineTrialRunner
from flaml.onlineml.trial import get_ns_feature_dim_from_vw_example
from flaml.tune import (
Trial,
Categorical,
Float,
PolynomialExpansionSet,
Trial,
polynomial_expansion_set,
)
from flaml.onlineml import OnlineTrialRunner
from flaml.tune.scheduler import ChaChaScheduler
from flaml.tune.searcher import ChampionFrontierSearcher
from flaml.onlineml.trial import get_ns_feature_dim_from_vw_example
logger = logging.getLogger(__name__)
@ -140,7 +141,7 @@ class AutoVW:
max_live_model_num=self._max_live_model_num,
searcher=searcher,
scheduler=scheduler,
**self._automl_runner_args
**self._automl_runner_args,
)
def predict(self, data_sample):

Просмотреть файл

@ -1,14 +1,16 @@
import numpy as np
import logging
import time
import math
import copy
import collections
import copy
import logging
import math
import time
from typing import Optional, Union
import numpy as np
from flaml.tune import Trial
try:
from sklearn.metrics import mean_squared_error, mean_absolute_error
from sklearn.metrics import mean_absolute_error, mean_squared_error
except ImportError:
pass

Просмотреть файл

@ -1,10 +1,11 @@
import numpy as np
import logging
import math
import numpy as np
from flaml.tune import Trial
from flaml.tune.scheduler import TrialScheduler
import logging
logger = logging.getLogger(__name__)

Просмотреть файл

@ -3,16 +3,16 @@ try:
assert ray_version >= "1.10.0"
from ray.tune import (
uniform,
lograndint,
loguniform,
qlograndint,
qloguniform,
qrandint,
qrandn,
quniform,
randint,
qrandint,
randn,
qrandn,
loguniform,
qloguniform,
lograndint,
qlograndint,
uniform,
)
if ray_version.startswith("1."):
@ -20,21 +20,20 @@ try:
else:
from ray.tune.search import sample
except (ImportError, AssertionError):
from . import sample
from .sample import (
uniform,
lograndint,
loguniform,
qlograndint,
qloguniform,
qrandint,
qrandn,
quniform,
randint,
qrandint,
randn,
qrandn,
loguniform,
qloguniform,
lograndint,
qlograndint,
uniform,
)
from . import sample
from .tune import run, report, INCUMBENT_RESULT
from .sample import polynomial_expansion_set
from .sample import PolynomialExpansionSet, Categorical, Float
from .sample import Categorical, Float, PolynomialExpansionSet, polynomial_expansion_set
from .trial import Trial
from .tune import INCUMBENT_RESULT, report, run
from .utils import choice

Просмотреть файл

@ -15,10 +15,12 @@
# This source file is adapted here because ray does not fully support Windows.
# Copyright (c) Microsoft Corporation.
from typing import Dict, Optional
import numpy as np
from .trial import Trial
import logging
from typing import Dict, Optional
import numpy as np
from .trial import Trial
logger = logging.getLogger(__name__)

Просмотреть файл

@ -19,6 +19,7 @@ import logging
from copy import copy
from math import isclose
from typing import Any, Dict, List, Optional, Sequence, Union
import numpy as np
# Backwards compatibility

Просмотреть файл

@ -1,6 +1,6 @@
from .trial_scheduler import TrialScheduler
from .online_scheduler import (
ChaChaScheduler,
OnlineScheduler,
OnlineSuccessiveDoublingScheduler,
ChaChaScheduler,
)
from .trial_scheduler import TrialScheduler

Просмотреть файл

@ -1,9 +1,12 @@
import numpy as np
import logging
from typing import Dict
from flaml.tune.scheduler import TrialScheduler
import numpy as np
from flaml.tune import Trial
from .trial_scheduler import TrialScheduler
logger = logging.getLogger(__name__)

Просмотреть файл

@ -2,10 +2,11 @@
# * Copyright (c) Microsoft Corporation. All rights reserved.
# * Licensed under the MIT License. See LICENSE file in the
# * project root for license information.
from typing import Dict, Optional, List, Tuple, Callable, Union
import numpy as np
import time
import pickle
import time
from typing import Callable, Dict, List, Optional, Tuple, Union
import numpy as np
try:
from ray import __version__ as ray_version
@ -18,17 +19,17 @@ try:
from ray.tune.search import Searcher
from ray.tune.search.optuna import OptunaSearch as GlobalSearch
except (ImportError, AssertionError):
from .suggestion import Searcher
from .suggestion import OptunaSearch as GlobalSearch
from ..trial import unflatten_dict, flatten_dict
from .. import INCUMBENT_RESULT
from .search_thread import SearchThread
from .flow2 import FLOW2
from ..space import add_cost_to_space, indexof, normalize, define_by_run_func
from ..result import TIME_TOTAL_S
from .suggestion import Searcher
import logging
from .. import INCUMBENT_RESULT
from ..result import TIME_TOTAL_S
from ..space import add_cost_to_space, define_by_run_func, indexof, normalize
from ..trial import flatten_dict, unflatten_dict
from .flow2 import FLOW2
from .search_thread import SearchThread
SEARCH_THREAD_EPS = 1.0
PENALTY = 1e10 # penalty term for constraints
logger = logging.getLogger(__name__)
@ -931,27 +932,27 @@ try:
assert ray_version >= "1.10.0"
from ray.tune import (
uniform,
quniform,
choice,
randint,
qrandint,
randn,
qrandn,
loguniform,
qloguniform,
qrandint,
qrandn,
quniform,
randint,
randn,
uniform,
)
except (ImportError, AssertionError):
from ..sample import (
uniform,
quniform,
choice,
randint,
qrandint,
randn,
qrandn,
loguniform,
qloguniform,
qrandint,
qrandn,
quniform,
randint,
randn,
uniform,
)
try:
@ -978,7 +979,7 @@ class BlendSearchTuner(BlendSearch, NNITuner):
result = {
"config": parameters,
self._metric: extract_scalar_reward(value),
self.cost_attr: 1 if isinstance(value, float) else value.get(self.cost_attr, value.get("sequence", 1))
self.cost_attr: 1 if isinstance(value, float) else value.get(self.cost_attr, value.get("sequence", 1)),
# if nni does not report training cost,
# using sequence as an approximation.
# if no sequence, using a constant 1

Просмотреть файл

@ -2,8 +2,8 @@
# * Copyright (c) Microsoft Corporation. All rights reserved.
# * Licensed under the MIT License. See LICENSE file in the
# * project root for license information.
from .flow2 import FLOW2
from .blendsearch import CFO
from .flow2 import FLOW2
class FLOW2Cat(FLOW2):

Просмотреть файл

@ -2,31 +2,34 @@
# * Copyright (c) Microsoft Corporation. All rights reserved.
# * Licensed under the MIT License. See LICENSE file in the
# * project root for license information.
from typing import Dict, Optional, Tuple
import numpy as np
import logging
from collections import defaultdict
from typing import Dict, Optional, Tuple
import numpy as np
try:
from ray import __version__ as ray_version
assert ray_version >= "1.0.0"
if ray_version.startswith("1."):
from ray.tune.suggest import Searcher
from ray.tune import sample
from ray.tune.suggest import Searcher
else:
from ray.tune.search import Searcher, sample
from ray.tune.utils.util import flatten_dict, unflatten_dict
except (ImportError, AssertionError):
from .suggestion import Searcher
from flaml.tune import sample
from ..trial import flatten_dict, unflatten_dict
from .suggestion import Searcher
from flaml.config import SAMPLE_MULTIPLY_FACTOR
from ..space import (
complete_config,
denormalize,
normalize,
generate_variants_compatible,
normalize,
)
logger = logging.getLogger(__name__)

Просмотреть файл

@ -1,9 +1,11 @@
import numpy as np
import logging
import itertools
from typing import Dict, Optional, List
from flaml.tune import Categorical, Float, PolynomialExpansionSet, Trial
import logging
from typing import Dict, List, Optional
import numpy as np
from flaml.onlineml import VowpalWabbitTrial
from flaml.tune import Categorical, Float, PolynomialExpansionSet, Trial
from flaml.tune.searcher import CFO
logger = logging.getLogger(__name__)

Просмотреть файл

@ -3,6 +3,7 @@
# * Licensed under the MIT License. See LICENSE file in the
# * project root for license information.
from typing import Dict, Optional
import numpy as np
try:
@ -15,11 +16,12 @@ try:
from ray.tune.search import Searcher
except (ImportError, AssertionError):
from .suggestion import Searcher
from .flow2 import FLOW2
from ..space import add_cost_to_space, unflatten_hierarchical
from ..result import TIME_TOTAL_S
import logging
from ..result import TIME_TOTAL_S
from ..space import add_cost_to_space, unflatten_hierarchical
from .flow2 import FLOW2
logger = logging.getLogger(__name__)

Просмотреть файл

@ -15,15 +15,17 @@
# This source file is adapted here because ray does not fully support Windows.
# Copyright (c) Microsoft Corporation.
import time
import functools
import warnings
import copy
import numpy as np
import functools
import logging
from typing import Any, Dict, Optional, Union, List, Tuple, Callable
import pickle
from .variant_generator import parse_spec_vars
import time
import warnings
from collections import defaultdict
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import numpy as np
from ..sample import (
Categorical,
Domain,
@ -34,7 +36,7 @@ from ..sample import (
Uniform,
)
from ..trial import flatten_dict, unflatten_dict
from collections import defaultdict
from .variant_generator import parse_spec_vars
logger = logging.getLogger(__name__)
@ -183,7 +185,7 @@ class ConcurrencyLimiter(Searcher):
"""
def __init__(self, searcher: Searcher, max_concurrent: int, batch: bool = False):
assert type(max_concurrent) is int and max_concurrent > 0
assert isinstance(max_concurrent, int) and max_concurrent > 0
self.searcher = searcher
self.max_concurrent = max_concurrent
self.batch = batch
@ -252,8 +254,8 @@ try:
import optuna as ot
from optuna.distributions import BaseDistribution as OptunaDistribution
from optuna.samplers import BaseSampler
from optuna.trial import TrialState as OptunaTrialState
from optuna.trial import Trial as OptunaTrial
from optuna.trial import TrialState as OptunaTrialState
except ImportError:
ot = None
OptunaDistribution = None

Просмотреть файл

@ -17,9 +17,11 @@
# Copyright (c) Microsoft Corporation.
import copy
import logging
from typing import Any, Dict, Generator, List, Tuple
import numpy
import random
from typing import Any, Dict, Generator, List, Tuple
import numpy
from ..sample import Categorical, Domain, RandomState
try:

Просмотреть файл

@ -11,9 +11,10 @@ try:
except (ImportError, AssertionError):
from . import sample
from .searcher.variant_generator import generate_variants
from typing import Dict, Optional, Any, Tuple, Generator, List, Union
import numpy as np
import logging
from typing import Any, Dict, Generator, List, Optional, Tuple, Union
import numpy as np
logger = logging.getLogger(__name__)

Просмотреть файл

@ -1,8 +1,8 @@
from flaml.tune.spark.utils import (
broadcast_code,
check_spark,
get_n_cpus,
with_parameters,
broadcast_code,
)
__all__ = ["check_spark", "get_n_cpus", "with_parameters", "broadcast_code"]

Просмотреть файл

@ -5,7 +5,6 @@ import threading
import time
from functools import lru_cache, partial
logger = logging.getLogger(__name__)
logger_formatter = logging.Formatter(
"[%(name)s: %(asctime)s] {%(lineno)d} %(levelname)s - %(message)s", "%m-%d %H:%M:%S"
@ -13,10 +12,10 @@ logger_formatter = logging.Formatter(
logger.propagate = False
os.environ["PYARROW_IGNORE_TIMEZONE"] = "1"
try:
import py4j
import pyspark
from pyspark.sql import SparkSession
from pyspark.util import VersionUtils
import py4j
except ImportError:
_have_spark = False
py4j = None

Просмотреть файл

@ -15,10 +15,10 @@
# This source file is adapted here because ray does not fully support Windows.
# Copyright (c) Microsoft Corporation.
import uuid
import time
from numbers import Number
import uuid
from collections import deque
from numbers import Number
def flatten_dict(dt, delimiter="/", prevent_delimiter=False):

Просмотреть файл

@ -2,6 +2,7 @@
# * Copyright (c) Microsoft Corporation. All rights reserved.
# * Licensed under the MIT License. See LICENSE file in the
# * project root for license information.
import logging
from typing import Optional
# try:
@ -10,7 +11,6 @@ from typing import Optional
# from ray.tune.trial import Trial
# except (ImportError, AssertionError):
from .trial import Trial
import logging
logger = logging.getLogger(__name__)

Просмотреть файл

@ -2,13 +2,14 @@
# * Copyright (c) FLAML authors. All rights reserved.
# * Licensed under the MIT License. See LICENSE file in the
# * project root for license information.
from typing import Optional, Union, List, Callable, Tuple, Dict
import numpy as np
import datetime
import time
import os
import sys
import time
from collections import defaultdict
from typing import Callable, Dict, List, Optional, Tuple, Union
import numpy as np
try:
from ray import __version__ as ray_version
@ -21,11 +22,13 @@ except (ImportError, AssertionError):
else:
ray_available = True
from .trial import Trial
from .result import DEFAULT_METRIC
import logging
from flaml.tune.spark.utils import PySparkOvertimeMonitor, check_spark
from .result import DEFAULT_METRIC
from .trial import Trial
logger = logging.getLogger(__name__)
logger.propagate = False
_use_ray = True
@ -483,7 +486,7 @@ def run(
else:
logger.setLevel(logging.CRITICAL)
from .searcher.blendsearch import BlendSearch, CFO, RandomSearch
from .searcher.blendsearch import CFO, BlendSearch, RandomSearch
if lexico_objectives is not None:
if "modes" not in lexico_objectives.keys():
@ -652,12 +655,13 @@ def run(
if not spark_available:
raise spark_error_msg
try:
from pyspark.sql import SparkSession
from joblib import Parallel, delayed, parallel_backend
from joblibspark import register_spark
from pyspark.sql import SparkSession
except ImportError as e:
raise ImportError(f"{e}. Try pip install flaml[spark] or set use_spark=False.")
from flaml.tune.searcher.suggestion import ConcurrencyLimiter
from .trial_runner import SparkTrialRunner
register_spark()

Просмотреть файл

@ -24,6 +24,7 @@ select = [
# "D", # see: https://pypi.org/project/pydocstyle
# "N", # see: https://pypi.org/project/pep8-naming
# "S", # see: https://pypi.org/project/flake8-bandit
"I", # see: https://pypi.org/project/isort/
]
ignore = [
"E501",

Просмотреть файл

@ -1,6 +1,7 @@
import setuptools
import os
import setuptools
here = os.path.abspath(os.path.dirname(__file__))
with open("README.md", "r", encoding="UTF-8") as fh:

Просмотреть файл

@ -1,6 +1,8 @@
import os
import sys
import pytest
from flaml import autogen
from flaml.autogen.agentchat import AssistantAgent, UserProxyAgent

Просмотреть файл

@ -1,7 +1,9 @@
import asyncio
from flaml import autogen
from test_assistant_agent import KEY_LOC, OAI_CONFIG_LIST
from flaml import autogen
def get_market_news(ind, ind_upper):
data = {

Просмотреть файл

@ -1,4 +1,5 @@
import pytest
from flaml.autogen.agentchat import ConversableAgent

Просмотреть файл

@ -1,12 +1,14 @@
import pytest
import sys
import pytest
from test_assistant_agent import KEY_LOC, OAI_CONFIG_LIST
from flaml import autogen
from flaml.autogen.agentchat.contrib.math_user_proxy_agent import (
MathUserProxyAgent,
_remove_print,
_add_print_to_last_line,
_remove_print,
)
from test_assistant_agent import KEY_LOC, OAI_CONFIG_LIST
@pytest.mark.skipif(

Просмотреть файл

@ -1,9 +1,13 @@
import pytest
import sys
from flaml import autogen
import pytest
from test_assistant_agent import KEY_LOC, OAI_CONFIG_LIST
from flaml import autogen
try:
import chromadb
from flaml.autogen.agentchat.contrib.retrieve_assistant_agent import (
RetrieveAssistantAgent,
)
@ -11,7 +15,6 @@ try:
RetrieveUserProxyAgent,
)
from flaml.autogen.retrieve_utils import create_vector_db_from_dir, query_vector_db
import chromadb
skip_test = False
except ImportError:

Просмотреть файл

@ -1,16 +1,18 @@
import datasets
import json
import os
import sys
from functools import partial
import datasets
import numpy as np
import pytest
from functools import partial
import os
import json
from flaml import autogen
from flaml.autogen.code_utils import (
eval_function_completions,
generate_assertions,
implement,
generate_code,
implement,
)
from flaml.autogen.math_utils import eval_math_responses, solve_problem
@ -117,8 +119,8 @@ def test_multi_model():
def test_nocontext():
try:
import openai
import diskcache
import openai
except ImportError as exc:
print(exc)
return
@ -206,8 +208,8 @@ def test_humaneval(num_samples=1):
autogen.Completion.clear_cache(cache_path_root="{here}/cache")
autogen.Completion.set_cache(seed)
try:
import openai
import diskcache
import openai
except ImportError as exc:
print(exc)
return
@ -325,8 +327,8 @@ def test_humaneval(num_samples=1):
def test_math(num_samples=-1):
try:
import openai
import diskcache
import openai
except ImportError as exc:
print(exc)
return

Просмотреть файл

@ -1,8 +1,10 @@
import json
import os
from flaml import autogen
from test_completion import KEY_LOC, OAI_CONFIG_LIST
from flaml import autogen
def test_config_list_from_json():
config_list = autogen.config_list_gpt4_gpt35(key_file_path=KEY_LOC)

Просмотреть файл

@ -1,14 +1,16 @@
import sys
import os
import sys
import pytest
from flaml import autogen
from flaml.autogen.code_utils import (
UNKNOWN,
extract_code,
execute_code,
infer_lang,
extract_code,
improve_code,
improve_function,
infer_lang,
)
KEY_LOC = "notebook"

Просмотреть файл

@ -2,11 +2,13 @@ try:
import openai
except ImportError:
openai = None
import pytest
import json
import pytest
from test_code import KEY_LOC
from flaml import autogen
from flaml.autogen.math_utils import eval_math_responses
from test_code import KEY_LOC
@pytest.mark.skipif(openai is None, reason="openai not installed")

Просмотреть файл

@ -1,5 +1,6 @@
import sys
import os
import sys
import pytest
try:
@ -15,8 +16,7 @@ here = os.path.abspath(os.path.dirname(__file__))
def run_notebook(input_nb, output_nb="executed_openai_notebook.ipynb", save=False):
import nbformat
from nbconvert.preprocessors import ExecutePreprocessor
from nbconvert.preprocessors import CellExecutionError
from nbconvert.preprocessors import CellExecutionError, ExecutePreprocessor
try:
nb_loc = os.path.join(here, os.pardir, os.pardir, "notebook")

Просмотреть файл

@ -1,10 +1,12 @@
from urllib.error import URLError
from sklearn.datasets import fetch_openml
from sklearn.model_selection import train_test_split
from sklearn.externals._arff import ArffException
from functools import partial
from flaml.automl import AutoML, size
from urllib.error import URLError
from sklearn.datasets import fetch_openml
from sklearn.externals._arff import ArffException
from sklearn.model_selection import train_test_split
from flaml import tune
from flaml.automl import AutoML, size
dataset = "credit-g"
@ -71,9 +73,10 @@ def custom_metric(
weight_train,
*args,
):
from sklearn.metrics import log_loss
import time
from sklearn.metrics import log_loss
start = time.time()
y_pred = estimator.predict_proba(X_val)
pred_time = (time.time() - start) / len(X_val)

Просмотреть файл

@ -1,11 +1,13 @@
import sys
import pytest
from flaml import AutoML, tune
@pytest.mark.skipif(sys.platform == "darwin", reason="do not run on mac os")
def test_custom_hp_nlp():
from test.nlp.utils import get_toy_data_seqclassification, get_automl_settings
from test.nlp.utils import get_automl_settings, get_toy_data_seqclassification
X_train, y_train, X_val, y_val, X_test = get_toy_data_seqclassification()

Просмотреть файл

@ -4,7 +4,6 @@ import numpy as np
import pandas as pd
from flaml import AutoML
from flaml.automl.task.time_series_task import TimeSeriesTask
@ -153,6 +152,7 @@ def test_numpy():
def test_numpy_large():
import numpy as np
import pandas as pd
from flaml import AutoML
X_train = pd.date_range("2017-01-01", periods=70000, freq="T")

Просмотреть файл

@ -1,8 +1,9 @@
import mlflow
import mlflow.entities
import pytest
from pandas import DataFrame
from sklearn.datasets import load_iris
import mlflow
import mlflow.entities
from flaml import AutoML

Просмотреть файл

@ -1,11 +1,12 @@
import unittest
import numpy as np
import scipy.sparse
from sklearn.datasets import load_iris, load_wine
from flaml import AutoML
from flaml import AutoML, tune
from flaml.automl.data import get_output_from_log
from flaml.automl.model import LGBMEstimator, XGBoostSklearnEstimator, SKLearnEstimator
from flaml import tune
from flaml.automl.model import LGBMEstimator, SKLearnEstimator, XGBoostSklearnEstimator
from flaml.automl.training_log import training_log_reader
@ -112,9 +113,10 @@ def custom_metric(
groups_val=None,
groups_train=None,
):
from sklearn.metrics import log_loss
import time
from sklearn.metrics import log_loss
start = time.time()
y_pred = estimator.predict_proba(X_val)
pred_time = (time.time() - start) / len(X_val)
@ -289,10 +291,10 @@ class TestMultiClass(unittest.TestCase):
estimator = automl_experiment_macro.model
y_pred = estimator.predict(X_train)
y_pred_proba = estimator.predict_proba(X_train)
from flaml.automl.ml import norm_confusion_matrix, multi_class_curves
from flaml.automl.ml import multi_class_curves, norm_confusion_matrix
print(norm_confusion_matrix(y_train, y_pred))
from sklearn.metrics import roc_curve, precision_recall_curve
from sklearn.metrics import precision_recall_curve, roc_curve
print(multi_class_curves(y_train, y_pred_proba, roc_curve))
print(multi_class_curves(y_train, y_pred_proba, precision_recall_curve))

Просмотреть файл

@ -1,10 +1,9 @@
import nbformat
from nbconvert.preprocessors import ExecutePreprocessor
from nbconvert.preprocessors import CellExecutionError
import os
import sys
import pytest
import nbformat
import pytest
from nbconvert.preprocessors import CellExecutionError, ExecutePreprocessor
here = os.path.abspath(os.path.dirname(__file__))

Просмотреть файл

@ -1,13 +1,15 @@
import sys
from minio.error import ServerError
from openml.exceptions import OpenMLServerException
from requests.exceptions import ChunkedEncodingError, SSLError
from minio.error import ServerError
def test_automl(budget=5, dataset_format="dataframe", hpo_method=None):
from flaml.automl.data import load_openml_dataset
import urllib3
from flaml.automl.data import load_openml_dataset
performance_check_budget = 600
if (
sys.platform == "darwin"
@ -118,6 +120,7 @@ def _test_nobudget():
def test_mlflow():
# subprocess.check_call([sys.executable, "-m", "pip", "install", "mlflow"])
import mlflow
from flaml.automl.data import load_openml_task
try:
@ -159,8 +162,9 @@ def test_mlflow():
def test_mlflow_iris():
from sklearn.datasets import load_iris
import mlflow
from sklearn.datasets import load_iris
from flaml import AutoML
with mlflow.start_run():

Просмотреть файл

@ -1,11 +1,13 @@
from flaml.tune.space import unflatten_hierarchical
from flaml import AutoML
from sklearn.datasets import fetch_california_housing
import os
import unittest
import logging
import tempfile
import io
import logging
import os
import tempfile
import unittest
from sklearn.datasets import fetch_california_housing
from flaml import AutoML
from flaml.tune.space import unflatten_hierarchical
class TestLogging(unittest.TestCase):
@ -49,7 +51,7 @@ class TestLogging(unittest.TestCase):
import optuna as ot
study = ot.create_study()
from flaml.tune.space import define_by_run_func, add_cost_to_space
from flaml.tune.space import add_cost_to_space, define_by_run_func
sample = define_by_run_func(study.ask(), automl.search_space)
logger.info(sample)
@ -60,10 +62,11 @@ class TestLogging(unittest.TestCase):
config = automl.best_config.copy()
config["learner"] = automl.best_estimator
automl.trainable({"ml": config})
from flaml import tune, BlendSearch
from flaml.automl import size
from functools import partial
from flaml import BlendSearch, tune
from flaml.automl import size
low_cost_partial_config = automl.low_cost_partial_config
search_alg = BlendSearch(
metric="val_loss",

Просмотреть файл

@ -1,4 +1,5 @@
import unittest
import numpy as np
import scipy.sparse
from sklearn.datasets import (

Просмотреть файл

@ -1,7 +1,8 @@
from flaml import AutoML
import pandas as pd
from sklearn.datasets import fetch_california_housing, fetch_openml
from flaml import AutoML
class TestScore:
def test_forecast(self, budget=5):

Просмотреть файл

@ -1,8 +1,8 @@
from sklearn.datasets import fetch_openml
from flaml.automl import AutoML
from sklearn.model_selection import GroupKFold, train_test_split, KFold
from sklearn.metrics import accuracy_score
from sklearn.model_selection import GroupKFold, KFold, train_test_split
from flaml.automl import AutoML
dataset = "credit-g"
@ -89,8 +89,9 @@ def test_groups():
def test_stratified_groupkfold():
from sklearn.model_selection import StratifiedGroupKFold
from minio.error import ServerError
from sklearn.model_selection import StratifiedGroupKFold
from flaml.automl.data import load_openml_dataset
try:

Просмотреть файл

@ -1,9 +1,10 @@
import unittest
import numpy as np
from sklearn.datasets import load_iris
from flaml import AutoML
from flaml import AutoML, tune
from flaml.automl.model import LGBMEstimator
from flaml import tune
class TestWarmStart(unittest.TestCase):
@ -106,11 +107,12 @@ class TestWarmStart(unittest.TestCase):
print(automl.best_config_per_estimator)
def test_FLAML_sample_size_in_starting_points(self):
from minio.error import ServerError
from openml.exceptions import OpenMLServerException
from requests.exceptions import ChunkedEncodingError, SSLError
from minio.error import ServerError
from flaml.automl.data import load_openml_dataset
from flaml import AutoML
from flaml.automl.data import load_openml_dataset
try:
X_train, X_test, y_train, y_test = load_openml_dataset(dataset_id=1169, data_dir="./")

Просмотреть файл

@ -2,10 +2,10 @@ import unittest
from sklearn.datasets import fetch_openml
from sklearn.model_selection import train_test_split
from flaml import tune
from flaml.automl import AutoML
from flaml.automl.model import XGBoostSklearnEstimator
from flaml import tune
dataset = "credit-g"
@ -59,9 +59,10 @@ def test_simple(method=None):
config = automl.best_config.copy()
config["learner"] = automl.best_estimator
automl.trainable(config)
from functools import partial
from flaml import tune
from flaml.automl import size
from functools import partial
analysis = tune.run(
automl.trainable,

Просмотреть файл

@ -2,10 +2,10 @@ import unittest
from sklearn.datasets import fetch_openml
from sklearn.model_selection import train_test_split
from flaml import tune
from flaml.automl import AutoML
from flaml.automl.model import XGBoostSklearnEstimator
from flaml import tune
dataset = "credit-g"

Просмотреть файл

@ -1,15 +1,18 @@
import sys
import pickle
from sklearn.datasets import load_iris, fetch_california_housing, load_breast_cancer
from sklearn.model_selection import train_test_split
import sys
import pandas as pd
from sklearn.datasets import fetch_california_housing, load_breast_cancer, load_iris
from sklearn.model_selection import train_test_split
from flaml import AutoML
from flaml.default import (
portfolio,
preprocess_and_suggest_hyperparams,
regret,
suggest_hyperparams,
suggest_learner,
)
from flaml.default import portfolio, regret
def test_greedy_feedback(path="test/default", strategy="greedy-feedback"):
@ -124,7 +127,7 @@ def test_suggest_regression():
def test_rf():
from flaml.default import RandomForestRegressor, RandomForestClassifier
from flaml.default import RandomForestClassifier, RandomForestRegressor
X_train, y_train = load_breast_cancer(return_X_y=True, as_frame=True)
rf = RandomForestClassifier()
@ -142,7 +145,7 @@ def test_rf():
def test_extratrees():
from flaml.default import ExtraTreesRegressor, ExtraTreesClassifier
from flaml.default import ExtraTreesClassifier, ExtraTreesRegressor
X_train, y_train = load_iris(return_X_y=True, as_frame=True)
classifier = ExtraTreesClassifier()
@ -160,7 +163,7 @@ def test_extratrees():
def test_lgbm():
from flaml.default import LGBMRegressor, LGBMClassifier
from flaml.default import LGBMClassifier, LGBMRegressor
X_train, y_train = load_breast_cancer(return_X_y=True, as_frame=True)
classifier = LGBMClassifier(n_jobs=1)
@ -180,7 +183,7 @@ def test_lgbm():
def test_xgboost():
from flaml.default import XGBRegressor, XGBClassifier
from flaml.default import XGBClassifier, XGBRegressor
X_train, y_train = load_breast_cancer(return_X_y=True, as_frame=True)
classifier = XGBClassifier(max_depth=0)

Просмотреть файл

@ -1,6 +1,6 @@
from flaml.automl.data import load_openml_dataset
from flaml.default import LGBMRegressor
from flaml.automl.ml import sklearn_metric_loss_score
from flaml.default import LGBMRegressor
X_train, X_test, y_train, y_test = load_openml_dataset(dataset_id=537, data_dir="./")
lgbm = LGBMRegressor()

Просмотреть файл

@ -1,6 +1,6 @@
from flaml.automl.data import load_openml_dataset
from flaml.default import XGBClassifier
from flaml.automl.ml import sklearn_metric_loss_score
from flaml.default import XGBClassifier
X_train, X_test, y_train, y_test = load_openml_dataset(dataset_id=1169, data_dir="./")
xgb = XGBClassifier()

Просмотреть файл

@ -1,9 +1,10 @@
import sys
import pytest
import requests
from utils import get_toy_data_seqclassification, get_automl_settings
import os
import shutil
import sys
import pytest
import requests
from utils import get_automl_settings, get_toy_data_seqclassification
@pytest.mark.skipif(

Просмотреть файл

@ -1,13 +1,14 @@
from utils import (
get_toy_data_regression,
get_toy_data_binclassification,
get_toy_data_multiclassclassification,
get_automl_settings,
)
import sys
import pytest
import os
import shutil
import sys
import pytest
from utils import (
get_automl_settings,
get_toy_data_binclassification,
get_toy_data_multiclassclassification,
get_toy_data_regression,
)
data_list = [
"get_toy_data_regression",
@ -67,9 +68,10 @@ def test_switch_3_3():
def _test_switch_classificationhead(each_data, each_model_path):
from flaml import AutoML
import requests
from flaml import AutoML
automl = AutoML()
X_train, y_train, X_val, y_val = globals()[each_data]()

Просмотреть файл

@ -1,8 +1,9 @@
import sys
import pytest
from utils import get_toy_data_seqclassification, get_automl_settings
import os
import shutil
import sys
import pytest
from utils import get_automl_settings, get_toy_data_seqclassification
def custom_metric(
@ -42,9 +43,10 @@ def custom_metric(
@pytest.mark.skipif(sys.platform == "darwin", reason="do not run on mac os")
def test_custom_metric():
from flaml import AutoML
import requests
from flaml import AutoML
X_train, y_train, X_val, y_val, X_test = get_toy_data_seqclassification()
automl = AutoML()

Просмотреть файл

@ -1,15 +1,17 @@
import sys
import pytest
from utils import get_toy_data_seqclassification, get_automl_settings
import os
import shutil
import sys
import pytest
from utils import get_automl_settings, get_toy_data_seqclassification
@pytest.mark.skipif(sys.platform in ["darwin", "win32"], reason="do not run on mac os or windows")
def test_cv():
from flaml import AutoML
import requests
from flaml import AutoML
X_train, y_train, X_val, y_val, X_test = get_toy_data_seqclassification()
automl = AutoML()

Просмотреть файл

@ -1,15 +1,17 @@
import sys
import pytest
from utils import get_toy_data_multiplechoiceclassification, get_automl_settings
import os
import shutil
import sys
import pytest
from utils import get_automl_settings, get_toy_data_multiplechoiceclassification
@pytest.mark.skipif(sys.platform in ["darwin", "win32"], reason="do not run on mac os or windows")
def test_mcc():
from flaml import AutoML
import requests
from flaml import AutoML
(
X_train,
y_train,

Некоторые файлы не были показаны из-за слишком большого количества измененных файлов Показать больше