зеркало из https://github.com/microsoft/FLAML.git
zero-shot AutoML in readme (#474)
* zero-shot AutoML in readme * use pydoc-markdown 4.5.0 to avoid error in 4.6.0
This commit is contained in:
Родитель
31ac984c4b
Коммит
f0b0cae682
|
@ -28,7 +28,7 @@ jobs:
|
|||
- name: pydoc-markdown install
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install pydoc-markdown
|
||||
pip install pydoc-markdown==4.5.0
|
||||
- name: pydoc-markdown run
|
||||
run: |
|
||||
pydoc-markdown
|
||||
|
@ -64,7 +64,7 @@ jobs:
|
|||
- name: pydoc-markdown install
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install pydoc-markdown
|
||||
pip install pydoc-markdown==4.5.0
|
||||
- name: pydoc-markdown run
|
||||
run: |
|
||||
pydoc-markdown
|
||||
|
|
18
README.md
18
README.md
|
@ -33,7 +33,7 @@ FLAML requires **Python version >= 3.6**. It can be installed from pip:
|
|||
pip install flaml
|
||||
```
|
||||
|
||||
To run the [`notebook example`](https://github.com/microsoft/FLAML/tree/main/notebook),
|
||||
To run the [`notebook examples`](https://github.com/microsoft/FLAML/tree/main/notebook),
|
||||
install flaml with the [notebook] option:
|
||||
|
||||
```bash
|
||||
|
@ -43,7 +43,7 @@ pip install flaml[notebook]
|
|||
## Quickstart
|
||||
|
||||
* With three lines of code, you can start using this economical and fast
|
||||
AutoML engine as a scikit-learn style estimator.
|
||||
AutoML engine as a [scikit-learn style estimator](https://microsoft.github.io/FLAML/docs/Use-Cases/Task-Oriented-AutoML).
|
||||
|
||||
```python
|
||||
from flaml import AutoML
|
||||
|
@ -52,19 +52,29 @@ automl.fit(X_train, y_train, task="classification")
|
|||
```
|
||||
|
||||
* You can restrict the learners and use FLAML as a fast hyperparameter tuning
|
||||
tool for XGBoost, LightGBM, Random Forest etc. or a customized learner.
|
||||
tool for XGBoost, LightGBM, Random Forest etc. or a [customized learner](https://microsoft.github.io/FLAML/docs/Use-Cases/Task-Oriented-AutoML#estimator-and-search-space).
|
||||
|
||||
```python
|
||||
automl.fit(X_train, y_train, task="classification", estimator_list=["lgbm"])
|
||||
```
|
||||
|
||||
* You can also run generic hyperparameter tuning for a custom function.
|
||||
* You can also run generic hyperparameter tuning for a [custom function](https://microsoft.github.io/FLAML/docs/Use-Cases/Tune-User-Defined-Function).
|
||||
|
||||
```python
|
||||
from flaml import tune
|
||||
tune.run(evaluation_function, config={…}, low_cost_partial_config={…}, time_budget_s=3600)
|
||||
```
|
||||
|
||||
* [Zero-shot AutoML](https://microsoft.github.io/FLAML/docs/Use-Cases/Zero-Shot-AutoML) allows using the existing training API from lightgbm, xgboost etc. while getting the benefit of AutoML in choosing high-performance hyperparameter configurations per task.
|
||||
|
||||
```python
|
||||
from flaml.default import LGBMRegressor
|
||||
# Use LGBMRegressor in the same way as you use lightgbm.LGBMRegressor.
|
||||
estimator = LGBMRegressor()
|
||||
# The hyperparameters are automatically set according to the training data.
|
||||
estimator.fit(X_train, y_train)
|
||||
```
|
||||
|
||||
## Documentation
|
||||
|
||||
You can find a detailed documentation about FLAML [here](https://microsoft.github.io/FLAML/) where you can find the API documentation, use cases and examples.
|
||||
|
|
Загрузка…
Ссылка в новой задаче