зеркало из https://github.com/microsoft/FQF.git
Fix bug
This commit is contained in:
Родитель
7ac67e827e
Коммит
0980bde05d
|
@ -32,7 +32,7 @@ tf.train.AdamOptimizer.epsilon = 0.0003125
|
|||
|
||||
atari_lib.create_atari_environment.game_name = 'GAME'
|
||||
atari_lib.create_atari_environment.sticky_actions = False
|
||||
create_agent.agent_name = 'implicit_quantile'
|
||||
create_agent.agent_name = 'fqf'
|
||||
Runner.num_iterations = 200
|
||||
Runner.game = 'GAME'
|
||||
Runner.runtype = 'RUNTYPE'
|
||||
|
|
|
@ -124,7 +124,10 @@ class FQFAgent(rainbow_agent.RainbowAgent):
|
|||
# have been run. This matches the Nature DQN behaviour.
|
||||
if self._replay.memory.add_count > self.min_replay_history:
|
||||
if self.training_steps % self.update_period == 0:
|
||||
_, _, _, loss, loss1, quan_value, quan, vdiff = self._sess.run(self._train_op)
|
||||
if 'sqloss' in self._runtype:
|
||||
_, _, loss, loss1, quan_value, quan, vdiff = self._sess.run(self._train_op)
|
||||
else:
|
||||
_, _, _, loss, loss1, quan_value, quan, vdiff = self._sess.run(self._train_op)
|
||||
if self.training_steps % 50000 == 0:
|
||||
batchsize = 32
|
||||
quan_value = np.reshape(quan_value, [batchsize, self.num_tau_samples])
|
||||
|
|
Двоичные данные
dopamine/discrete_domains/.run_experiment.py.swp
Двоичные данные
dopamine/discrete_domains/.run_experiment.py.swp
Двоичный файл не отображается.
|
@ -27,6 +27,7 @@ import csv, json, pickle
|
|||
from dopamine.agents.dqn import dqn_agent
|
||||
from dopamine.agents.implicit_quantile import implicit_quantile_agent
|
||||
from dopamine.agents.rainbow import rainbow_agent
|
||||
from dopamine.agents.fqf import fqf_agent
|
||||
from dopamine.discrete_domains import atari_lib
|
||||
from dopamine.discrete_domains import checkpointer
|
||||
from dopamine.discrete_domains import iteration_statistics
|
||||
|
@ -87,6 +88,10 @@ def create_agent(sess, environment, agent_name=None, summary_writer=None,
|
|||
return implicit_quantile_agent.ImplicitQuantileAgent(
|
||||
sess, num_actions=environment.action_space.n,
|
||||
summary_writer=summary_writer)
|
||||
elif agent_name == 'fqf':
|
||||
return fqf_agent.FQFAgent(
|
||||
sess, num_actions=environment.action_space.n,
|
||||
summary_writer=summary_writer)
|
||||
else:
|
||||
raise ValueError('Unknown agent: {}'.format(agent_name))
|
||||
|
||||
|
|
Загрузка…
Ссылка в новой задаче