This commit is contained in:
famulare 2019-08-30 22:27:43 +00:00
Родитель b42578ee99
Коммит c0c3024eeb
2 изменённых файлов: 18 добавлений и 30 удалений

Просмотреть файл

@ -38,7 +38,7 @@ selectFromDB <- function( queryIn = jsonlite::toJSON(
GROUP_BY =list(COLUMN=c('encountered_week','residence_puma','residence_census_tract')),
SUMMARIZE=list(COLUMN='pathogen', IN= c('h1n1pdm'))
)
), source = 'simulated_data',
), source = 'production',
credentials_path = '/home/rstudio/seattle_flu',
na.rm = FALSE
){
@ -71,12 +71,7 @@ selectFromDB <- function( queryIn = jsonlite::toJSON(
# defined by the environment variables above.
rawData <- DBI::dbConnect(RPostgres::Postgres(), service = "seattleflu-production")
db <- DBI::dbGetQuery(rawData, "select distinct * from shipping.incidence_model_observation_v1;")
# fake pathogen field until db is ready
# if (!('pathogen' %in% names(db))){
# db$pathogen <- 'unknown'
# }
db <- DBI::dbGetQuery(rawData, "select distinct * from shipping.incidence_model_observation_v2;")
# db <- DBI::dbGetQuery(rawData, paste('select distinct * from shipping.incidence_model_observation_v1 encounter',
# 'left join shipping.presence_absence_result_v1 taq',
@ -86,42 +81,35 @@ selectFromDB <- function( queryIn = jsonlite::toJSON(
# this logic should be substantially rethought, as I'm mixing sql and dplyr in confusing ways, but it will have to do for now!
# get all samples and nest
db3 <- DBI::dbGetQuery(rawData, paste('select distinct * from shipping.presence_absence_result_v1',
db2 <- DBI::dbGetQuery(rawData, paste('select distinct * from shipping.presence_absence_result_v1',
';'),sep=' ')
names(db3)[names(db3)=='target'] <- 'pathogen'
names(db2)[names(db2)=='target'] <- 'pathogen'
db3 <- db3 %>% group_by(sample) %>%
mutate(number_pathogens_found = sum(present), number_pathogens_tested = n()) %>%
filter(present == TRUE | number_pathogens_found==0) %>%
group_by(sample,number_pathogens_found,number_pathogens_tested) %>%
tidyr::nest()
for (k in which(db3$number_pathogens_found==0)){
db3$data[[k]] <- tibble(pathogen='undetected',present=TRUE)
}
# count pathogens found and tests performed
db2 <- db2 %>% group_by(sample) %>%
mutate(number_pathogens_found = sum(present), number_pathogens_tested = n())
names(db3)[names(db3) == 'data'] <- 'pathogens_found'
# add in "undetected" pathogen for samples that were tested but had no detections
db3 <- db2 %>% group_by(sample) %>% filter(all(present == FALSE) & all(number_pathogens_tested>0)) %>%
summarize(pathogen = 'undetected') %>% mutate(present=TRUE)
# join undetecteds with positives
db4 <- bind_rows(db2 %>% filter(present == TRUE), db3)
# join with encounter list, using nice formatting
db <- db %>% left_join(db3)
db <- db %>% left_join(db4)
# put in "not_yet_tested" for samples with no test results
idx<-is.na(db$number_pathogens_tested)
db$number_pathogens_tested[idx] <- 0
for (k in which(idx)){
db$pathogens_found[[k]] <- tibble(pathogen='not_yet_tested',present=TRUE)
}
db <- db %>% tidyr::unnest() # nice flat file like simulated data, but with repeated encounters for multiple positives
db$pathogen[idx] <- 'not_yet_tested'
db$present[idx] <- TRUE
## wacky thing in census tract
db$residence_census_tract <- sub('\\.0','',db$residence_census_tract)
db$work_census_tract <- sub('\\.0','',db$work_census_tract)
DBI::dbDisconnect(rawData)
} else {
print('unknown source database!')
}

Просмотреть файл

@ -10,7 +10,7 @@ selectFromDB(queryIn = jsonlite::toJSON(list(SELECT = list(COLUMN =
"residence_census_tract")), GROUP_BY = list(COLUMN =
c("encountered_week", "residence_puma", "residence_census_tract")),
SUMMARIZE = list(COLUMN = "pathogen", IN = c("h1n1pdm")))),
source = "simulated_data",
source = "production",
credentials_path = "/home/rstudio/seattle_flu", na.rm = FALSE)
}
\arguments{