зеркало из https://github.com/microsoft/INMT-lite.git
compiled stats plots
This commit is contained in:
Родитель
0c00d7c2af
Коммит
521854ef44
Двоичный файл не отображается.
После Ширина: | Высота: | Размер: 15 KiB |
|
@ -1,16 +0,0 @@
|
|||
{"B": [46.879629629629626, 21.412037037037038, 0.08333333333333333, 0.0]}
|
||||
{"PE": [10.66820987654321, 4.932098765432099, 0.007716049382716049, 0.0]}
|
||||
{"B": [46.879629629629626, 21.412037037037038, 0.08333333333333333, 0.0]}
|
||||
{"PE": [10.66820987654321, 4.932098765432099, 0.007716049382716049, 0.0]}
|
||||
{"B": [46.879629629629626, 21.412037037037038, 0.08333333333333333, 0.0]}
|
||||
{"PE": [10.66820987654321, 4.932098765432099, 0.007716049382716049, 0.0]}
|
||||
{"B": [46.879629629629626, 21.412037037037038, 0.08333333333333333, 0.0]}
|
||||
{"PE": [10.66820987654321, 4.932098765432099, 0.007716049382716049, 0.0]}
|
||||
{"B": [46.879629629629626, 21.412037037037038, 0.08333333333333333, 0.0]}
|
||||
{"PE": [10.66820987654321, 4.932098765432099, 0.007716049382716049, 0.0]}
|
||||
{"B": [1.786899809989142, 15.986970684039088, 92.68078175895765, 0.0]}
|
||||
{"PE": [1.786899809989142, 15.986970684039088, 92.68078175895765, 0.0]}
|
||||
{"SBOW": [1.786899809989142, 15.986970684039088, 92.68078175895765, 0.9084078711985689]}
|
||||
{"DBOW": [1.786899809989142, 15.986970684039088, 92.68078175895765, 0.11167697344488905]}
|
||||
{"NWBOW": [1.786899809989142, 15.986970684039088, 92.68078175895765, 0.05794667226537896]}
|
||||
{"NWD": [1.786899809989142, 15.986970684039088, 92.68078175895765, 0.0]}
|
Различия файлов скрыты, потому что одна или несколько строк слишком длинны
|
@ -1,12 +1,30 @@
|
|||
import json
|
||||
from utils import get_interface_mapping
|
||||
from sklearn.metrics import cohen_kappa_score, f1_score
|
||||
import numpy as np
|
||||
analysis_path = '/home/t-hdiddee/INMT-lite/user-study/data/validation_score.dsv'
|
||||
with open(analysis_path,'r') as file:
|
||||
records = file.read().strip().split('\n')
|
||||
print(f'{len(records)} are the number of records being analysed.')
|
||||
|
||||
def compute_cohens_cappa(paired_score_for_interface):
|
||||
|
||||
rater1, rater2 = [], []
|
||||
for ele in paired_score_for_interface:
|
||||
try:
|
||||
rater1.append(ele[0])
|
||||
rater2.append(ele[1])
|
||||
except:
|
||||
print(ele)
|
||||
k = cohen_kappa_score(rater1, rater2)
|
||||
f1 = f1_score(rater1, rater2, average = "weighted")
|
||||
return k, f1
|
||||
|
||||
def print_and_dump(instance):
|
||||
print(instance)
|
||||
with open('./results/interannotator_analysis.txt', 'a') as file:
|
||||
file.write(instance + '\n')
|
||||
|
||||
interfacewise_clusters = {} # interface: scores of all sentences (multiple)
|
||||
sentencewise_clusters = {} # sentence - scores of all formats
|
||||
|
||||
|
@ -25,73 +43,120 @@ for record in records:
|
|||
except:
|
||||
print(record)
|
||||
|
||||
# Generating sentence wise - interface wise mapping to compute the average IAA per interface
|
||||
|
||||
DBOW, SBOW, NWD, NWBOW, PE, B = [],[],[],[],[],[]
|
||||
for sid in sentencewise_clusters:
|
||||
# print(sentencewise_clusters[sid])
|
||||
dbow, sbow, nwd, nwbow, pe, b = [],[],[],[],[],[]
|
||||
for mappings in sentencewise_clusters[sid]:
|
||||
if mappings[0] == 'NWD':
|
||||
nwd.append(mappings[1])
|
||||
if mappings[0] == 'NWBOW':
|
||||
nwbow.append(mappings[1])
|
||||
if mappings[0] == 'DBOW':
|
||||
dbow.append(mappings[1])
|
||||
if mappings[0] == 'SBOW':
|
||||
sbow.append(mappings[1])
|
||||
if mappings[0] == 'B':
|
||||
b.append(mappings[1])
|
||||
if mappings[0] == 'PE':
|
||||
pe.append(mappings[1])
|
||||
|
||||
# print(dbow, nwbow, b, pe, sbow, nwd)
|
||||
|
||||
# dbow.sort(reverse = True)
|
||||
# nwbow.sort(reverse = True)
|
||||
# sbow.sort(reverse = True)
|
||||
# b.sort(reverse = True)
|
||||
# pe.sort(reverse = True)
|
||||
# nwd.sort(reverse = True)
|
||||
|
||||
dbow.sort()
|
||||
nwbow.sort()
|
||||
sbow.sort()
|
||||
b.sort()
|
||||
pe.sort()
|
||||
nwd.sort()
|
||||
# print(dbow[:3], nwbow[:3], b[:3], pe[:3], sbow[:3], nwd[:3])
|
||||
|
||||
DBOW.append(dbow[:3])
|
||||
NWBOW.append(nwbow[:3])
|
||||
SBOW.append(sbow[:3])
|
||||
B.append(b[:3])
|
||||
PE.append(pe[:3])
|
||||
NWD.append(nwd[:3])
|
||||
|
||||
|
||||
# print(len(DBOW), len(NWBOW), len(SBOW), len(PE), len(B), len(NWD))
|
||||
# print(B)
|
||||
|
||||
for interface in interfacewise_clusters:
|
||||
try:
|
||||
print(f'Average sentence quality for {interface} is {np.average(interfacewise_clusters[interface])}')
|
||||
print_and_dump(f'Average sentence quality for {interface} is {np.average(interfacewise_clusters[interface])}')
|
||||
except:
|
||||
print(interface)
|
||||
|
||||
# NORMALIZE THE SCORES - In order to stabilize the range across the inter annotator agreement was being calculated.
|
||||
|
||||
def normalize_score_per_instruction(raw_score):
|
||||
if raw_score < 10:
|
||||
return 10
|
||||
elif raw_score < 29:
|
||||
return 25
|
||||
elif raw_score < 50:
|
||||
return 35
|
||||
elif raw_score < 69:
|
||||
return 60
|
||||
elif raw_score < 90:
|
||||
return 80
|
||||
return 90
|
||||
|
||||
# Generating sentence wise - interface wise mapping to compute the average IAA per interface
|
||||
|
||||
DBOW3, SBOW3, NWD3, NWBOW3, PE3, B3 = [],[],[],[],[],[]
|
||||
DBOW2, SBOW2, NWD2, NWBOW2, PE2, B2 = [],[],[],[],[],[]
|
||||
DBOW, SBOW, NWD, NWBOW, PE, B = [],[],[],[],[],[]
|
||||
print(len(sentencewise_clusters))
|
||||
negated = 0
|
||||
for sid in sentencewise_clusters:
|
||||
if len(sentencewise_clusters[sid]) == 21 or len(sentencewise_clusters[sid]) == 27 or len(sentencewise_clusters[sid]) == 24:
|
||||
dbow, sbow, nwd, nwbow, pe, b = [],[],[],[],[],[]
|
||||
for mappings in sentencewise_clusters[sid]:
|
||||
if mappings[0] == 'NWD':
|
||||
nwd.append(normalize_score_per_instruction(mappings[1]))
|
||||
if mappings[0] == 'NWBOW':
|
||||
nwbow.append(normalize_score_per_instruction(mappings[1]))
|
||||
if mappings[0] == 'DBOW':
|
||||
dbow.append(normalize_score_per_instruction(mappings[1]))
|
||||
if mappings[0] == 'SBOW':
|
||||
sbow.append(normalize_score_per_instruction(mappings[1]))
|
||||
if mappings[0] == 'B':
|
||||
b.append(normalize_score_per_instruction(mappings[1]))
|
||||
if mappings[0] == 'PE':
|
||||
pe.append(normalize_score_per_instruction(mappings[1]))
|
||||
|
||||
|
||||
dbow.sort(reverse = True)
|
||||
nwbow.sort(reverse = True)
|
||||
sbow.sort(reverse = True)
|
||||
b.sort(reverse = True)
|
||||
pe.sort(reverse = True)
|
||||
nwd.sort(reverse = True)
|
||||
|
||||
DBOW.append(dbow[:2])
|
||||
NWBOW.append(nwbow[:2])
|
||||
SBOW.append(sbow[:2])
|
||||
B.append(b[:2])
|
||||
PE.append(pe[:2])
|
||||
NWD.append(nwd[:2])
|
||||
|
||||
|
||||
DBOW2.append(dbow[1:3])
|
||||
NWBOW2.append(nwbow[1:3])
|
||||
SBOW2.append(sbow[1:3])
|
||||
B2.append(b[1:3])
|
||||
PE2.append(pe[1:3])
|
||||
NWD2.append(nwd[1:3])
|
||||
|
||||
DBOW3.append(dbow[::2])
|
||||
NWBOW3.append(nwbow[::2])
|
||||
SBOW3.append(sbow[::2])
|
||||
B3.append(b[::2])
|
||||
PE3.append(pe[::2])
|
||||
NWD3.append(nwd[::2])
|
||||
else:
|
||||
negated += 1
|
||||
print(f'{negated} are negated samples.')
|
||||
|
||||
# Compute Pair-Wise Cohen's Kappa
|
||||
interface_score_pairs = [B, B2, B3, PE, PE2, PE3, SBOW, SBOW2, SBOW3, DBOW, DBOW2, DBOW3, NWBOW, NWBOW2, NWBOW3, NWD, NWD2, NWD3]
|
||||
interface_identifiers = ['B','B','B','PE','PE','PE','SBOW','SBOW','SBOW','DBOW','DBOW','DBOW','NWBOW','NWBOW','NWBOW','NWD','NWD','NWD']
|
||||
for idx, interface in enumerate(interface_score_pairs):
|
||||
iaa, f1 = compute_cohens_cappa(interface)
|
||||
print_and_dump(f'For interface {interface_identifiers[idx]} the pair wise inter-annotator agreement is {iaa} and F1-Score is {f1}.')
|
||||
idx +=1
|
||||
|
||||
|
||||
B_STD, PE_STD, SBOW_STD, DBOW_STD, NWD_STD, NWBOW_STD = [],[],[],[],[],[]
|
||||
for sentence_stats in zip(B, PE, SBOW, DBOW, NWD, NWBOW):
|
||||
B_STD.append(np.std(sentence_stats[0]))
|
||||
PE_STD.append(np.std(sentence_stats[1]))
|
||||
SBOW_STD.append(np.std(sentence_stats[2]))
|
||||
DBOW_STD.append(np.std(sentence_stats[3]))
|
||||
NWD_STD.append(np.std(sentence_stats[4]))
|
||||
NWBOW_STD.append(np.std(sentence_stats[5]))
|
||||
B_STD.append(np.nanstd(sentence_stats[0]))
|
||||
PE_STD.append(np.nanstd(sentence_stats[1]))
|
||||
SBOW_STD.append(np.nanstd(sentence_stats[2]))
|
||||
DBOW_STD.append(np.nanstd(sentence_stats[3]))
|
||||
NWD_STD.append(np.nanstd(sentence_stats[4]))
|
||||
NWBOW_STD.append(np.nanstd(sentence_stats[5]))
|
||||
|
||||
print(f'Average standard deviation in interface quality assesement of B is {np.nanmean(B_STD)}')
|
||||
print(f'Average standard deviation in interface quality assesement of PE is {np.nanmean(PE_STD)}')
|
||||
print(f'Average standard deviation in interface quality assesement of SBOW is {np.nanmean(SBOW_STD)}')
|
||||
print(f'Average standard deviation in interface quality assesement of DBOW is {np.nanmean(DBOW_STD)}')
|
||||
print(f'Average standard deviation in interface quality assesement of NWD is {np.nanmean(NWD_STD)}')
|
||||
print(f'Average standard deviation in interface quality assesement of NWBOW is {np.nanmean(NWBOW_STD)}')
|
||||
interface_std = [B_STD, PE_STD, SBOW_STD, DBOW_STD, NWD_STD, NWBOW_STD]
|
||||
interface_identifiers = ['B','PE','SBOW','DBOW','NWD','NWBOW']
|
||||
idx = 0
|
||||
for interface in interface_std:
|
||||
obj = {interface_identifiers[idx]: ('Avg STD',np.nanmean(interface))}
|
||||
idx += 1
|
||||
with open('./results/analysis_stats.json', 'a') as f:
|
||||
f.write(json.dumps(obj, ensure_ascii=False) + '\n')
|
||||
|
||||
|
||||
for interface in interfacewise_clusters:
|
||||
try:
|
||||
print_and_dump(f'Average sentence quality for {interface} is {np.average(interfacewise_clusters[interface])}')
|
||||
obj = {interface: ('Avg SQ',np.average(interfacewise_clusters[interface]))}
|
||||
with open('./results/analysis_stats.json', 'a') as f:
|
||||
f.write(json.dumps(obj, ensure_ascii=False) + '\n')
|
||||
except:
|
||||
print(interface)
|
||||
|
||||
|
||||
|
|
|
@ -17,9 +17,10 @@ for record in records:
|
|||
interface = get_interface_mapping(i)
|
||||
if interface is None:
|
||||
continue
|
||||
interface_cluster[interface].append((t,log))
|
||||
except:
|
||||
print(s)
|
||||
interface_cluster[interface].append((t,log))
|
||||
|
||||
|
||||
for key in interface_cluster.keys():
|
||||
print(f'Computing Keystroke stats for {key} which has {len(interface_cluster[key])} records.')
|
||||
|
@ -54,6 +55,9 @@ for key in interface_cluster.keys():
|
|||
print(f'For interface {key}: the average number of backspaces is {nobp/len(time_taken)}')
|
||||
print(f'For interface {key}: the average number of keystrokes is {tok/len(time_taken)}')
|
||||
|
||||
with open('./results/analysis_stats.json', 'a') as f:
|
||||
obj = {key: [np.average(time_taken), nobp/len(time_taken), tok/len(time_taken)]}
|
||||
f.write(json.dumps(obj, ensure_ascii=False) + '\n')
|
||||
|
||||
for key in interface_cluster.keys():
|
||||
if key not in ['B','PE']:
|
||||
|
@ -87,6 +91,9 @@ for key in interface_cluster.keys():
|
|||
for sample in samples:
|
||||
record = json.loads(sample)
|
||||
total_suggestions += len(record['BOW'])
|
||||
if key == 'NWD': ## Specific computation for SBOW which does not have the total number of suggestions shown
|
||||
total_suggestions = 648
|
||||
tapped_suggestions = 28
|
||||
|
||||
print(f'{total_suggestions} are total suggestions.')
|
||||
# print(f'{tidx} are tapped indices from earlier method.')
|
||||
|
@ -96,11 +103,10 @@ for key in interface_cluster.keys():
|
|||
print('*******************************************************************************************************************')
|
||||
else:
|
||||
print('Not Applicable for this interface.')
|
||||
|
||||
# with open('analysis_stats.json', 'a') as f:
|
||||
# obj = {key: [np.average(time_taken), nobp/len(time_taken), tok/len(time_taken), (tapped_suggestions/total_suggestions)]}
|
||||
# f.write(json.dumps(obj, ensure_ascii=False) + '\n')
|
||||
|
||||
with open('./results/analysis_stats.json', 'a') as f:
|
||||
obj = {key: [(tapped_suggestions/total_suggestions)]}
|
||||
f.write(json.dumps(obj, ensure_ascii=False) + '\n')
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
|
@ -1,16 +1,24 @@
|
|||
{"B": [46.879629629629626, 21.412037037037038, 0.08333333333333333, 0.0]}
|
||||
{"PE": [10.66820987654321, 4.932098765432099, 0.007716049382716049, 0.0]}
|
||||
{"B": [46.879629629629626, 21.412037037037038, 0.08333333333333333, 0.0]}
|
||||
{"PE": [10.66820987654321, 4.932098765432099, 0.007716049382716049, 0.0]}
|
||||
{"B": [46.879629629629626, 21.412037037037038, 0.08333333333333333, 0.0]}
|
||||
{"PE": [10.66820987654321, 4.932098765432099, 0.007716049382716049, 0.0]}
|
||||
{"B": [46.879629629629626, 21.412037037037038, 0.08333333333333333, 0.0]}
|
||||
{"PE": [10.66820987654321, 4.932098765432099, 0.007716049382716049, 0.0]}
|
||||
{"B": [46.879629629629626, 21.412037037037038, 0.08333333333333333, 0.0]}
|
||||
{"PE": [10.66820987654321, 4.932098765432099, 0.007716049382716049, 0.0]}
|
||||
{"B": [1.786899809989142, 15.986970684039088, 92.68078175895765, 0.0]}
|
||||
{"PE": [1.786899809989142, 15.986970684039088, 92.68078175895765, 0.0]}
|
||||
{"SBOW": [1.786899809989142, 15.986970684039088, 92.68078175895765, 0.9084078711985689]}
|
||||
{"DBOW": [1.786899809989142, 15.986970684039088, 92.68078175895765, 0.11167697344488905]}
|
||||
{"NWBOW": [1.786899809989142, 15.986970684039088, 92.68078175895765, 0.05794667226537896]}
|
||||
{"NWD": [1.786899809989142, 15.986970684039088, 92.68078175895765, 0.0]}
|
||||
{"B": ["Avg STD", 2.2966507177033493]}
|
||||
{"PE": ["Avg STD", 2.3444976076555024]}
|
||||
{"SBOW": ["Avg STD", 3.5526315789473686]}
|
||||
{"DBOW": ["Avg STD", 6.471291866028708]}
|
||||
{"NWD": ["Avg STD", 5.490430622009569]}
|
||||
{"NWBOW": ["Avg STD", 5.956937799043062]}
|
||||
{"B": ["Avg SQ", 80.25507246376812]}
|
||||
{"PE": ["Avg SQ", 81.18192918192918]}
|
||||
{"SBOW": ["Avg SQ", 77.46735751295337]}
|
||||
{"DBOW": ["Avg SQ", 68.50671140939598]}
|
||||
{"NWD": ["Avg SQ", 61.758893280632414]}
|
||||
{"NWBOW": ["Avg SQ", 73.99876084262701]}
|
||||
{"B": [4.738776594650206, 21.412037037037038, 94.14660493827161]}
|
||||
{"PE": [1.101664531893004, 4.932098765432099, 13.358024691358025]}
|
||||
{"SBOW": [1.7898406378600824, 6.0092592592592595, 33.99074074074074]}
|
||||
{"DBOW": [3.9208554353426073, 17.216383307573416, 86.98145285935085]}
|
||||
{"NWBOW": [2.1982777777777778, 17.395061728395063, 99.62345679012346]}
|
||||
{"NWD": [1.7862921840958605, 16.029411764705884, 92.81372549019608]}
|
||||
{"B": [0.0]}
|
||||
{"PE": [0.0]}
|
||||
{"SBOW": [0.9084078711985689]}
|
||||
{"DBOW": [0.11167697344488905]}
|
||||
{"NWBOW": [0.05794667226537896]}
|
||||
{"NWD": [0.043209876543209874]}
|
||||
|
|
|
@ -1,30 +1,60 @@
|
|||
For interface B the pair wise inter-annotator agreement is 0.19919168591224012 and F1-Score is 0.377275902302409.
|
||||
For interface B the pair wise inter-annotator agreement is 0.0796677139864801 and F1-Score is 0.15677195365862867.
|
||||
For interface B the pair wise inter-annotator agreement is 0.04538534039005304 and F1-Score is 0.15751365541770757.
|
||||
For interface PE the pair wise inter-annotator agreement is 0.16880247459125064 and F1-Score is 0.33806880121143407.
|
||||
For interface PE the pair wise inter-annotator agreement is 0.11038451477896927 and F1-Score is 0.18849304107644468.
|
||||
For interface PE the pair wise inter-annotator agreement is 0.04123810903471925 and F1-Score is 0.1506961506961507.
|
||||
For interface SBOW the pair wise inter-annotator agreement is 0.18787532947474272 and F1-Score is 0.39927470190628084.
|
||||
For interface SBOW the pair wise inter-annotator agreement is 0.11557128170798758 and F1-Score is 0.19791690538217319.
|
||||
For interface SBOW the pair wise inter-annotator agreement is 0.046546802956746736 and F1-Score is 0.17462260301917584.
|
||||
For interface DBOW the pair wise inter-annotator agreement is 0.14020163031057153 and F1-Score is 0.30006961849067115.
|
||||
For interface DBOW the pair wise inter-annotator agreement is 0.13148271276595735 and F1-Score is 0.18611071336263765.
|
||||
For interface DBOW the pair wise inter-annotator agreement is 0.06782841823056307 and F1-Score is 0.19398264536533938.
|
||||
For interface NWBOW the pair wise inter-annotator agreement is 0.13974810834791607 and F1-Score is 0.2649248952664231.
|
||||
For interface NWBOW the pair wise inter-annotator agreement is 0.06245181187355431 and F1-Score is 0.11039762260414314.
|
||||
For interface NWBOW the pair wise inter-annotator agreement is 0.030584855905066877 and F1-Score is 0.09839111334956212.
|
||||
For interface NWD the pair wise inter-annotator agreement is 0.11998953303042559 and F1-Score is 0.20470083994804888.
|
||||
For interface NWD the pair wise inter-annotator agreement is 0.07811333084391336 and F1-Score is 0.10088277595289638.
|
||||
For interface NWD the pair wise inter-annotator agreement is 0.024640657084188833 and F1-Score is 0.07505126452494874.
|
||||
Average sentence quality for NWD is 61.758893280632414
|
||||
Average sentence quality for NWBOW is 73.99876084262701
|
||||
Average sentence quality for DBOW is 68.50671140939598
|
||||
Average sentence quality for SBOW is 77.46735751295337
|
||||
Average sentence quality for B is 80.25507246376812
|
||||
Average sentence quality for PE is 81.18192918192918
|
||||
Average standard deviation in interface quality assesement of B is 3.3995215311004783
|
||||
Average standard deviation in interface quality assesement of PE is 3.4976076555023923
|
||||
Average standard deviation in interface quality assesement of SBOW is 4.7272727272727275
|
||||
Average standard deviation in interface quality assesement of DBOW is 7.758373205741627
|
||||
Average standard deviation in interface quality assesement of NWD is 7.322966507177034
|
||||
Average standard deviation in interface quality assesement of NWBOW is 7.6746411483253585
|
||||
For interface B the pair wise inter-annotator agreement is 0.4220378642841949 and F1-Score is 0.7276149962717127.
|
||||
For interface B the pair wise inter-annotator agreement is 0.32416574990832425 and F1-Score is 0.5826744106501361.
|
||||
For interface B the pair wise inter-annotator agreement is 0.06654756587762412 and F1-Score is 0.42163163755642735.
|
||||
For interface PE the pair wise inter-annotator agreement is 0.42188919164396 and F1-Score is 0.7254070860713746.
|
||||
For interface PE the pair wise inter-annotator agreement is 0.3946624370733053 and F1-Score is 0.6482301199441644.
|
||||
For interface PE the pair wise inter-annotator agreement is 0.1340945836701698 and F1-Score is 0.49798619102416564.
|
||||
For interface SBOW the pair wise inter-annotator agreement is 0.4310698437558266 and F1-Score is 0.7008819771197202.
|
||||
For interface SBOW the pair wise inter-annotator agreement is 0.4355165428764348 and F1-Score is 0.6195213342627709.
|
||||
For interface SBOW the pair wise inter-annotator agreement is 0.15774323546344282 and F1-Score is 0.4951791403591957.
|
||||
For interface DBOW the pair wise inter-annotator agreement is 0.3258064516129031 and F1-Score is 0.5965457036896417.
|
||||
For interface DBOW the pair wise inter-annotator agreement is 0.38066209465752265 and F1-Score is 0.5153477816253279.
|
||||
For interface DBOW the pair wise inter-annotator agreement is 0.12202682736043091 and F1-Score is 0.40557292805437634.
|
||||
For interface NWBOW the pair wise inter-annotator agreement is 0.34734731444349487 and F1-Score is 0.6099810420550681.
|
||||
For interface NWBOW the pair wise inter-annotator agreement is 0.31869720505697596 and F1-Score is 0.47814694390163004.
|
||||
For interface NWBOW the pair wise inter-annotator agreement is 0.0747577681256264 and F1-Score is 0.33507027828078384.
|
||||
For interface NWD the pair wise inter-annotator agreement is 0.42106951247958946 and F1-Score is 0.5741516815102509.
|
||||
For interface NWD the pair wise inter-annotator agreement is 0.39270833333333344 and F1-Score is 0.5143480948337901.
|
||||
For interface NWD the pair wise inter-annotator agreement is 0.16710646776886207 and F1-Score is 0.32553382275151876.
|
||||
Average sentence quality for NWD is 61.758893280632414
|
||||
Average sentence quality for NWBOW is 73.99876084262701
|
||||
Average sentence quality for DBOW is 68.50671140939598
|
||||
Average sentence quality for SBOW is 77.46735751295337
|
||||
Average sentence quality for B is 80.25507246376812
|
||||
Average sentence quality for PE is 81.18192918192918
|
||||
Average sentence quality for NWD is 61.758893280632414
|
||||
Average sentence quality for NWBOW is 73.99876084262701
|
||||
Average sentence quality for DBOW is 68.50671140939598
|
||||
Average sentence quality for SBOW is 77.46735751295337
|
||||
Average sentence quality for B is 80.25507246376812
|
||||
Average sentence quality for PE is 81.18192918192918
|
||||
For interface B the pair wise inter-annotator agreement is 0.4220378642841949 and F1-Score is 0.7276149962717127.
|
||||
For interface B the pair wise inter-annotator agreement is 0.32416574990832425 and F1-Score is 0.5826744106501361.
|
||||
For interface B the pair wise inter-annotator agreement is 0.06654756587762412 and F1-Score is 0.42163163755642735.
|
||||
For interface PE the pair wise inter-annotator agreement is 0.42188919164396 and F1-Score is 0.7254070860713746.
|
||||
For interface PE the pair wise inter-annotator agreement is 0.3946624370733053 and F1-Score is 0.6482301199441644.
|
||||
For interface PE the pair wise inter-annotator agreement is 0.1340945836701698 and F1-Score is 0.49798619102416564.
|
||||
For interface SBOW the pair wise inter-annotator agreement is 0.4310698437558266 and F1-Score is 0.7008819771197202.
|
||||
For interface SBOW the pair wise inter-annotator agreement is 0.4355165428764348 and F1-Score is 0.6195213342627709.
|
||||
For interface SBOW the pair wise inter-annotator agreement is 0.15774323546344282 and F1-Score is 0.4951791403591957.
|
||||
For interface DBOW the pair wise inter-annotator agreement is 0.3258064516129031 and F1-Score is 0.5965457036896417.
|
||||
For interface DBOW the pair wise inter-annotator agreement is 0.38066209465752265 and F1-Score is 0.5153477816253279.
|
||||
For interface DBOW the pair wise inter-annotator agreement is 0.12202682736043091 and F1-Score is 0.40557292805437634.
|
||||
For interface NWBOW the pair wise inter-annotator agreement is 0.34734731444349487 and F1-Score is 0.6099810420550681.
|
||||
For interface NWBOW the pair wise inter-annotator agreement is 0.31869720505697596 and F1-Score is 0.47814694390163004.
|
||||
For interface NWBOW the pair wise inter-annotator agreement is 0.0747577681256264 and F1-Score is 0.33507027828078384.
|
||||
For interface NWD the pair wise inter-annotator agreement is 0.42106951247958946 and F1-Score is 0.5741516815102509.
|
||||
For interface NWD the pair wise inter-annotator agreement is 0.39270833333333344 and F1-Score is 0.5143480948337901.
|
||||
For interface NWD the pair wise inter-annotator agreement is 0.16710646776886207 and F1-Score is 0.32553382275151876.
|
||||
Average sentence quality for NWD is 61.758893280632414
|
||||
Average sentence quality for NWBOW is 73.99876084262701
|
||||
Average sentence quality for DBOW is 68.50671140939598
|
||||
Average sentence quality for SBOW is 77.46735751295337
|
||||
Average sentence quality for B is 80.25507246376812
|
||||
Average sentence quality for PE is 81.18192918192918
|
||||
|
|
Двоичный файл не отображается.
После Ширина: | Высота: | Размер: 50 KiB |
Различия файлов скрыты, потому что одна или несколько строк слишком длинны
Загрузка…
Ссылка в новой задаче