* Fix docs for HellowWorld

* Fix docs for HellowWorld

* Add more details
This commit is contained in:
Javier 2021-01-15 13:11:23 +00:00 коммит произвёл GitHub
Родитель 787c6d8a80
Коммит 0c424abdd6
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: 4AEE18F83AFDEB23
2 изменённых файлов: 14 добавлений и 7 удалений

Просмотреть файл

@ -26,9 +26,13 @@ class HelloWorld(SegmentationModelBase):
2) Configure the UNet3D implemented in this package
3) Configure Azure HyperDrive based parameter search
- This model can be trained from the commandline: ../InnerEye/runner.py --model=HelloWorld
- If you have set up AzureML then parameter search can be performed for this model by running:
../InnerEye/runner.py --model=HelloWorld --hyperdrive=True
* This model can be trained from the commandline: python InnerEye/runner.py --model=HelloWorld
* If you want to test that your AzureML workspace is working:
- Upload to datasets storage account for your AzureML workspace: Test/ML/test_data/dataset.csv and
Test/ML/test_data/train_and_test_data and name the folder "hello_world"
- If you have set up AzureML then parameter search can be performed for this model by running:
python InnerEye/ML/ runner.py --model=HelloWorld --azureml=True --hyperdrive=True
In this example, the model is trained on 2 input image channels channel1 and channel2, and
predicts 2 foreground classes region, region_1.
@ -39,7 +43,7 @@ class HelloWorld(SegmentationModelBase):
super().__init__(
# Data definition - in this section we define where to load the dataset from
local_dataset=full_ml_test_data_path(),
azure_dataset_id="hello_world",
# Model definition - in this section we define what model to use and some related configurations
architecture="UNet3D",
feature_channels=[4],

Просмотреть файл

@ -7,6 +7,9 @@ We have created this file to demonstrate how to:
1. Configure the UNet3D implemented in this package
1. Configure Azure HyperDrive based parameter search
- This model can be trained from the commandline: ../InnerEye/runner.py --model=HelloWorld
- If you have set up AzureML then parameter search can be performed for this model by running:
../InnerEye/runner.py --model=HelloWorld --hyperdrive=True
* This model can be trained from the commandline, from the root of the repo: `python InnerEye/runner.py --model=HelloWorld`
* If you want to test your AzureML workspace with the HelloWorld model:
* Upload to datasets storage account for your AzureML workspace: `Test/ML/test_data/dataset.csv` and
`Test/ML/test_data/train_and_test_data` and name the folder "hello_world"
* If you have set up AzureML then parameter search can be performed for this model by running:
`python InnerEye/ML/ runner.py --model=HelloWorld --azureml=True --hyperdrive=True`