Generalize SSL functionality to work on other datasets (#555)

This PR contains some changes needed to make the SSLContainer compatible with new datasets and allow a user to run by simply creating a new augmentation config or defining a child class

* _get_transforms has been changed to accept new datasets without the need to touch the class
* get_cxr_ssl_transform has been changed to avoid the hidden channel expansion and make that optional. It has been also renamed to get_ssl_transform because it has nothing specific to cxr
* drop_last is now set as parameter of the InnerEyeVisionDataModule and the SSLContainer - that means it can be changed when initializing a new SSLContainer
* documentation about bringing your own SSL model has been updated
This commit is contained in:
vale-salvatelli 2021-09-15 11:48:29 +01:00 коммит произвёл GitHub
Родитель 5b7d571209
Коммит 521c004357
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: 4AEE18F83AFDEB23
9 изменённых файлов: 114 добавлений и 66 удалений

Просмотреть файл

@ -25,6 +25,7 @@ jobs that run in AzureML.
### Changed
- ([#531](https://github.com/microsoft/InnerEye-DeepLearning/pull/531)) Updated PL to 1.3.8, torchmetrics and pl-bolts and changed relevant metrics and SSL code API.
- ([#555](https://github.com/microsoft/InnerEye-DeepLearning/pull/555)) Make the SSLContainer compatible with new datasets
- ([#533](https://github.com/microsoft/InnerEye-DeepLearning/pull/533)) Better defaults for inference on ensemble children.
- ([#536](https://github.com/microsoft/InnerEye-DeepLearning/pull/536)) Inference will not run on the validation set by default, this can be turned on
via the `--inference_on_val_set` flag.

Просмотреть файл

@ -29,6 +29,7 @@ class InnerEyeVisionDataModule(VisionDataModule):
num_workers: int = 6,
batch_size: int = 32,
seed: int = 42,
drop_last: bool = True,
*args: Any, **kwargs: Any) -> None:
"""
Wrapper around VisionDatamodule to load torchvision dataset into a pytorch-lightning module.
@ -42,16 +43,17 @@ class InnerEyeVisionDataModule(VisionDataModule):
:param val_transforms: transforms to use at validation time
:param data_dir: data directory where to find the data
:param val_split: proportion of training dataset to use for validation
:param num_workers: number of processes for dataloaders.
:param batch_size: batch size for training & validation.
:param num_workers: number of processes for dataloaders
:param batch_size: batch size for training & validation
:param seed: random seed for dataset splitting
:param drop_last: bool, if true it drops the last incomplete batch
"""
data_dir = data_dir if data_dir is not None else os.getcwd()
super().__init__(data_dir=data_dir,
val_split=val_split,
num_workers=num_workers,
batch_size=batch_size,
drop_last=True,
drop_last=drop_last,
train_transforms=train_transforms,
val_transforms=val_transforms,
seed=seed,

Просмотреть файл

@ -10,16 +10,17 @@ import torch
from pl_bolts.models.self_supervised.simclr import SimCLRTrainDataTransform
from yacs.config import CfgNode
from InnerEye.ML.augmentations.transform_pipeline import create_cxr_transforms_from_config
from InnerEye.ML.augmentations.transform_pipeline import create_transforms_from_config
def get_cxr_ssl_transforms(config: CfgNode,
return_two_views_per_sample: bool,
use_training_augmentations_for_validation: bool = False) -> Tuple[Any, Any]:
def get_ssl_transforms_from_config(config: CfgNode,
return_two_views_per_sample: bool,
use_training_augmentations_for_validation: bool = False,
expand_channels: bool = True) -> Tuple[Any, Any]:
"""
Returns training and validation transforms for CXR.
Transformations are constructed in the following way:
1. Construct the pipeline of augmentations in create_chest_xray_transform (e.g. resize, flip, affine) as defined
1. Construct the pipeline of augmentations in create_transform_from_config (e.g. resize, flip, affine) as defined
by the config.
2. If we just want to construct the transformation pipeline for a classification model or for the linear evaluator
of the SSL module, return this pipeline.
@ -29,14 +30,18 @@ def get_cxr_ssl_transforms(config: CfgNode,
:param config: configuration defining which augmentations to apply as well as their intensities.
:param return_two_views_per_sample: if True the resulting transforms will return two versions of each sample they
are called on. If False, simply return one transformed version of the sample.
are called on. If False, simply return one transformed version of the sample centered and cropped.
:param use_training_augmentations_for_validation: If True, use augmentation at validation time too.
This is required for SSL validation loss to be meaningful. If False, only apply basic processing step
(no augmentations)
:param expand_channels: if True the expand channel transformation from InnerEye.ML.augmentations.image_transforms
will be added to the transformation passed through the config. This is needed for single channel images as CXR.
"""
train_transforms = create_cxr_transforms_from_config(config, apply_augmentations=True)
val_transforms = create_cxr_transforms_from_config(config,
apply_augmentations=use_training_augmentations_for_validation)
train_transforms = create_transforms_from_config(config, apply_augmentations=True,
expand_channels=expand_channels)
val_transforms = create_transforms_from_config(config,
apply_augmentations=use_training_augmentations_for_validation,
expand_channels=expand_channels)
if return_two_views_per_sample:
train_transforms = DualViewTransformWrapper(train_transforms) # type: ignore
val_transforms = DualViewTransformWrapper(val_transforms) # type: ignore

Просмотреть файл

@ -17,7 +17,7 @@ from InnerEye.ML.SSL.datamodules_and_datasets.cxr_datasets import CheXpert, Covi
from InnerEye.ML.SSL.datamodules_and_datasets.datamodules import CombinedDataModule, InnerEyeVisionDataModule
from InnerEye.ML.SSL.datamodules_and_datasets.transforms_utils import InnerEyeCIFARLinearHeadTransform, \
InnerEyeCIFARTrainTransform, \
get_cxr_ssl_transforms
get_ssl_transforms_from_config
from InnerEye.ML.SSL.encoders import get_encoder_output_dim
from InnerEye.ML.SSL.lightning_modules.byol.byol_module import BYOLInnerEye
from InnerEye.ML.SSL.lightning_modules.simclr_module import SimCLRInnerEye
@ -96,6 +96,7 @@ class SSLContainer(LightningContainer):
learning_rate_linear_head_during_ssl_training = param.Number(default=1e-4,
doc="Learning rate for linear head training during "
"SSL training.")
drop_last = param.Boolean(default=True, doc="If True drops the last incomplete batch")
def setup(self) -> None:
from InnerEye.ML.SSL.lightning_containers.ssl_image_classifier import SSLClassifierContainer
@ -166,8 +167,8 @@ class SSLContainer(LightningContainer):
f"Found {self.ssl_training_type.value}")
model.hparams.update({'ssl_type': self.ssl_training_type.value,
"num_classes": self.data_module.num_classes})
self.encoder_output_dim = get_encoder_output_dim(model, self.data_module)
self.encoder_output_dim = get_encoder_output_dim(model, self.data_module)
return model
def get_data_module(self) -> InnerEyeDataModuleTypes:
@ -186,7 +187,7 @@ class SSLContainer(LightningContainer):
"""
Returns torch lightning data module for encoder or linear head
:param is_ssl_encoder_module: whether to return the data module for SSL training or for linear heard. If true,
:param is_ssl_encoder_module: whether to return the data module for SSL training or for linear head. If true,
:return transforms with two views per sample (batch like (img_v1, img_v2, label)). If False, return only one
view per sample but also return the index of the sample in the dataset (to make sure we don't use twice the same
batch in one training epoch (batch like (index, img_v1, label), as classifier dataloader expected to be shorter
@ -209,7 +210,8 @@ class SSLContainer(LightningContainer):
data_dir=str(datamodule_args.dataset_path),
batch_size=batch_size_per_gpu,
num_workers=self.num_workers,
seed=self.random_seed)
seed=self.random_seed,
drop_last=self.drop_last)
dm.prepare_data()
dm.setup()
return dm
@ -223,8 +225,10 @@ class SSLContainer(LightningContainer):
examples.
:param dataset_name: name of the dataset, value has to be in SSLDatasetName, determines which transformation
pipeline to return.
:param is_ssl_encoder_module: if True the transformation pipeline will yield two version of the image it is
applied on. If False, return only one transformation.
:param is_ssl_encoder_module: if True the transformation pipeline will yield two versions of the image it is
applied on and it applies the training transformations also at validation time. Note that if your transformation
does not contain any randomness, the pipeline will return two identical copies. If False, it will return only one
transformation.
:return: training transformation pipeline and validation transformation pipeline.
"""
if dataset_name in [SSLDatasetName.RSNAKaggleCXR.value,
@ -232,16 +236,28 @@ class SSLContainer(LightningContainer):
SSLDatasetName.CheXpert.value,
SSLDatasetName.Covid.value]:
assert augmentation_config is not None
train_transforms, val_transforms = get_cxr_ssl_transforms(augmentation_config,
return_two_views_per_sample=is_ssl_encoder_module,
use_training_augmentations_for_validation=is_ssl_encoder_module)
train_transforms, val_transforms = get_ssl_transforms_from_config(
augmentation_config,
return_two_views_per_sample=is_ssl_encoder_module,
use_training_augmentations_for_validation=is_ssl_encoder_module
)
elif dataset_name in [SSLDatasetName.CIFAR10.value, SSLDatasetName.CIFAR100.value]:
train_transforms = \
InnerEyeCIFARTrainTransform(32) if is_ssl_encoder_module else InnerEyeCIFARLinearHeadTransform(32)
val_transforms = \
InnerEyeCIFARTrainTransform(32) if is_ssl_encoder_module else InnerEyeCIFARLinearHeadTransform(32)
elif augmentation_config:
train_transforms, val_transforms = get_ssl_transforms_from_config(
augmentation_config,
return_two_views_per_sample=is_ssl_encoder_module,
use_training_augmentations_for_validation=is_ssl_encoder_module,
expand_channels=False,
)
logging.warning(f"Dataset {dataset_name} unknown. The config will be consumed by "
f"get_ssl_transforms() to create the augmentation pipeline, make sure "
f"the transformations in your configs are compatible. ")
else:
raise ValueError(f"Dataset {dataset_name} unknown.")
raise ValueError(f"Dataset {dataset_name} unknown and no config has been passed.")
return train_transforms, val_transforms

Просмотреть файл

@ -86,16 +86,22 @@ class ImageTransformationPipeline:
return self.transform_image(data)
def create_cxr_transforms_from_config(config: CfgNode,
apply_augmentations: bool) -> ImageTransformationPipeline:
def create_transforms_from_config(config: CfgNode,
apply_augmentations: bool,
expand_channels: bool = True) -> ImageTransformationPipeline:
"""
Defines the image transformations pipeline used in Chest-Xray datasets. Can be used for other types of
images data, type of augmentations to use and strength are expected to be defined in the config.
Defines the image transformations pipeline from a config file. It has been designed for Chest X-Ray
images but it can be used for other types of images data, type of augmentations to use and strength are
expected to be defined in the config. The channel expansion is needed for gray images.
:param config: config yaml file fixing strength and type of augmentation to apply
:param apply_augmentations: if True return transformation pipeline with augmentations. Else,
disable augmentations i.e. only resize and center crop the image.
:param expand_channels: if True the expand channel transformation from InnerEye.ML.augmentations.image_transforms
will be added to the transformation passed through the config. This is needed for single channel images as CXR.
"""
transforms: List[Any] = [ExpandChannels()]
transforms: List[Any] = []
if expand_channels:
transforms.append(ExpandChannels())
if apply_augmentations:
if config.augmentation.use_random_affine:
transforms.append(RandomAffine(

Просмотреть файл

@ -23,7 +23,8 @@ from InnerEye.ML.SSL.encoders import SSLEncoder
from InnerEye.ML.SSL.lightning_containers.ssl_container import EncoderName
from InnerEye.ML.SSL.lightning_modules.ssl_classifier_module import SSLClassifier
from InnerEye.ML.SSL.utils import create_ssl_image_classifier, load_yaml_augmentation_config
from InnerEye.ML.augmentations.transform_pipeline import create_cxr_transforms_from_config
from InnerEye.ML.augmentations.transform_pipeline import create_transforms_from_config
from InnerEye.ML.common import ModelExecutionMode
from InnerEye.ML.configs.ssl.CXR_SSL_configs import path_linear_head_augmentation_cxr
@ -137,9 +138,9 @@ class CovidModel(ScalarModelBase):
def get_image_transform(self) -> ModelTransformsPerExecutionMode:
config = load_yaml_augmentation_config(path_linear_head_augmentation_cxr)
train_transforms = Compose(
[DicomPreparation(), create_cxr_transforms_from_config(config, apply_augmentations=True)])
[DicomPreparation(), create_transforms_from_config(config, apply_augmentations=True)])
val_transforms = Compose(
[DicomPreparation(), create_cxr_transforms_from_config(config, apply_augmentations=False)])
[DicomPreparation(), create_transforms_from_config(config, apply_augmentations=False)])
return ModelTransformsPerExecutionMode(train=train_transforms,
val=val_transforms,

Просмотреть файл

@ -7,13 +7,14 @@ import random
import PIL
import pytest
import torch
from torchvision.transforms import CenterCrop, ColorJitter, RandomAffine, RandomErasing, RandomHorizontalFlip, \
RandomResizedCrop, Resize, ToTensor
from torchvision.transforms import (CenterCrop, ColorJitter, RandomAffine, RandomErasing, RandomHorizontalFlip,
RandomResizedCrop, Resize, ToTensor)
from torchvision.transforms.functional import to_tensor
from InnerEye.ML.augmentations.image_transforms import AddGaussianNoise, ElasticTransform, ExpandChannels, RandomGamma
from InnerEye.ML.augmentations.image_transforms import (AddGaussianNoise, ElasticTransform,
ExpandChannels, RandomGamma)
from InnerEye.ML.augmentations.transform_pipeline import ImageTransformationPipeline, \
create_cxr_transforms_from_config
create_transforms_from_config
from Tests.SSL.test_data_modules import cxr_augmentation_config
@ -31,7 +32,6 @@ test_2d_image_as_ZCHW_tensor = test_2d_image_as_CHW_tensor.unsqueeze(0)
test_4d_scan_as_tensor = torch.ones([5, 4, *image_size]) * 255.
test_4d_scan_as_tensor[..., 10:15, 10:20] = 1
@pytest.mark.parametrize("use_different_transformation_per_channel", [True, False])
def test_torchvision_on_various_input(use_different_transformation_per_channel: bool) -> None:
"""
@ -107,17 +107,16 @@ def test_custom_tf_on_various_input(use_different_transformation_per_channel: bo
assert torch.isclose(transformed[0, 0], transformed[1, 1]).all() != use_different_transformation_per_channel
def test_create_transform_pipeline_from_config() -> None:
@pytest.mark.parametrize("expand_channels", [True, False])
def test_create_transform_pipeline_from_config(expand_channels: bool) -> None:
"""
Tests that the pipeline returned by create_transform_pipeline_from_config returns the expected transformation.
"""
transformation_pipeline = create_cxr_transforms_from_config(cxr_augmentation_config, apply_augmentations=True)
transformation_pipeline = create_transforms_from_config(cxr_augmentation_config, apply_augmentations=True,
expand_channels=expand_channels)
fake_cxr_as_array = np.ones([256, 256]) * 255.
fake_cxr_as_array[100:150, 100:200] = 1
fake_cxr_image = PIL.Image.fromarray(fake_cxr_as_array).convert("L")
all_transforms = [ExpandChannels(),
RandomAffine(degrees=180, translate=(0, 0), shear=40),
all_transforms = [RandomAffine(degrees=180, translate=(0, 0), shear=40),
RandomResizedCrop(scale=(0.4, 1.0), size=256),
RandomHorizontalFlip(p=0.5),
RandomGamma(scale=(0.5, 1.5)),
@ -128,23 +127,28 @@ def test_create_transform_pipeline_from_config() -> None:
AddGaussianNoise(std=0.05, p_apply=0.5)
]
if expand_channels:
all_transforms.insert(0, ExpandChannels())
# expand channels is used for single-channel input images
fake_image = PIL.Image.fromarray(fake_cxr_as_array).convert("L")
# In the pipeline the image is converted to tensor before applying the transformations. Do the same here.
image = ToTensor()(fake_image).reshape([1, 1, 256, 256])
else:
fake_3d_array = np.dstack([fake_cxr_as_array, fake_cxr_as_array, fake_cxr_as_array])
fake_image = PIL.Image.fromarray(fake_3d_array.astype(np.uint8)).convert("RGB")
# In the pipeline the image is converted to tensor before applying the transformations. Do the same here.
image = ToTensor()(fake_image).reshape([1, 3, 256, 256])
np.random.seed(3)
torch.manual_seed(3)
random.seed(3)
transformed_image = transformation_pipeline(fake_cxr_image)
transformed_image = transformation_pipeline(fake_image)
assert isinstance(transformed_image, torch.Tensor)
# Expected pipeline
image = np.ones([256, 256]) * 255.
image[100:150, 100:200] = 1
image = PIL.Image.fromarray(image).convert("L")
# In the pipeline the image is converted to tensor before applying the transformations. Do the same here.
image = ToTensor()(image).reshape([1, 1, 256, 256])
# Expected pipeline
np.random.seed(3)
torch.manual_seed(3)
random.seed(3)
expected_transformed = image
for t in all_transforms:
expected_transformed = t(expected_transformed)
@ -154,10 +158,14 @@ def test_create_transform_pipeline_from_config() -> None:
assert torch.isclose(expected_transformed, transformed_image).all()
# Test the evaluation pipeline
transformation_pipeline = create_cxr_transforms_from_config(cxr_augmentation_config, apply_augmentations=False)
transformation_pipeline = create_transforms_from_config(cxr_augmentation_config, apply_augmentations=False,
expand_channels=expand_channels)
transformed_image = transformation_pipeline(image)
assert isinstance(transformed_image, torch.Tensor)
all_transforms = [ExpandChannels(), Resize(size=256), CenterCrop(size=224)]
all_transforms = [Resize(size=256), CenterCrop(size=224)]
if expand_channels:
all_transforms.insert(0, ExpandChannels())
expected_transformed = image
for t in all_transforms:
expected_transformed = t(expected_transformed)

Просмотреть файл

@ -16,7 +16,7 @@ from InnerEye.ML.SSL.datamodules_and_datasets.cifar_datasets import InnerEyeCIFA
from InnerEye.ML.SSL.datamodules_and_datasets.cxr_datasets import RSNAKaggleCXR
from InnerEye.ML.SSL.datamodules_and_datasets.datamodules import CombinedDataModule, InnerEyeVisionDataModule
from InnerEye.ML.SSL.datamodules_and_datasets.transforms_utils import InnerEyeCIFARLinearHeadTransform, \
InnerEyeCIFARTrainTransform, get_cxr_ssl_transforms
InnerEyeCIFARTrainTransform, get_ssl_transforms_from_config
from InnerEye.ML.SSL.lightning_containers.ssl_container import SSLContainer, SSLDatasetName
from InnerEye.ML.SSL.utils import SSLDataModuleType, load_yaml_augmentation_config
from InnerEye.ML.configs.ssl.CXR_SSL_configs import path_encoder_augmentation_cxr
@ -32,8 +32,8 @@ def test_weights_innereye_module() -> None:
"""
Tests if weights in CXR data module are correctly initialized
"""
transforms = get_cxr_ssl_transforms(cxr_augmentation_config,
return_two_views_per_sample=True)
transforms = get_ssl_transforms_from_config(cxr_augmentation_config,
return_two_views_per_sample=True)
data_module = InnerEyeVisionDataModule(dataset_cls=RSNAKaggleCXR,
return_index=False,
train_transforms=transforms[0],
@ -70,7 +70,8 @@ def test_innereye_vision_module() -> None:
data_dir=None,
batch_size=5,
shuffle=False,
num_workers=0)
num_workers=0,
drop_last=True)
data_module.prepare_data()
data_module.setup()
assert len(data_module.dataset_train) == 45000
@ -179,8 +180,8 @@ def test_combined_data_module() -> None:
"""
Tests the behavior of CombinedDataModule
"""
_, val_transform = get_cxr_ssl_transforms(cxr_augmentation_config,
return_two_views_per_sample=False)
_, val_transform = get_ssl_transforms_from_config(cxr_augmentation_config,
return_two_views_per_sample=False)
# Datamodule expected to have 12 training batches - 3 val
long_data_module = InnerEyeVisionDataModule(dataset_cls=RSNAKaggleCXR,

Просмотреть файл

@ -117,21 +117,29 @@ with the following available arguments:
* `random_seed`: seed for the run,
* `num_epochs`: number of epochs to train for.
In case you wish to first test your model locally, here some optional arguments that can be useful:
* `local_dataset`: path to local dataset, if passed the azure dataset will be ignored
* `is_debug_model`: if True it will only run on the first batch of each epoch
* `drop_last`: if False (True by default) it will keep the last batch also if incomplete
### Creating your own datamodules:
To use this code with your own data, you will need to:
1. Create a dataset class that reads your new dataset, inheriting from both `VisionDataset`
1. Define your own Lightening Container that inherits from `SSLContainer` as described in the paragraph above.
2. Create a dataset class that reads your new dataset, inheriting from both `VisionDataset`
and `InnerEyeDataClassBaseWithReturnIndex`. See for example how we constructed `RSNAKaggleCXR`
class. WARNING: the first positional argument of your dataset class constructor MUST be the data directory ("root"),
as VisionDataModule expects this in the prepare_data step.
2. Add a member to the `SSLDatasetName` Enum with your new dataset and update the `_SSLDataClassMappings` member of the
class so that the code knows which data class to associate to your new dataset name.
3. Update the `_get_transforms` methods to add the transform specific to your new dataset. To simplify this step, we
have defined a series of standard transforms parametrized by an augmentation yaml file in `SSL/transforms_utils.py` (
see next paragraph for more details). You could for example construct a transform pipeline similar to the one created
with `get_cxr_ssl_transforms` for our CXR examples.
4. Update all necessary parameters in the model config (cf. previous paragraph)
3. In your own container update the `_SSLDataClassMappings` member of the class so that the code knows which data class
to associate to your new dataset name.
4. Create a yaml configuration file that contains the augmentations specific to your dataset. The yaml file will be
consumed by the `create_transforms_from_config` function defined in the
`InnerEye.ML.augmentations.transform_pipeline` module (see next paragraph for more details). Alternatively, overwrite
the `_get_transforms` method. To simplify this step, we have defined a series of standard operations in
`SSL/transforms_utils.py` . You could for example construct a transform pipeline similar to the one created
inside `create_transform_from_config` inside your own method.
5. Update all necessary parameters in the model config (cf. previous paragraph)
Once all these steps are updated, the code in the base SSLContainer class will take care of creating the corresponding
datamodules for SSL training and linear head monitoring.