Enable tiling non-PANDA WSI datasets (#621)

* Add basic dataset and environment changes

* Add loading/preproc utils

* Back-up PANDA tiling scripts

* Refactor and generalise tiling scripts

* Remove Azure scripts

* Add test WSI file

* Add preprocessing tests

* Update changelog

* Add Linux condition for cuCIM in environment.yml

* Use PANDA instead of TCGA-PRAD in test

* Leave TcgaPradDataset as an example

* Fix skipped InnerEye dataset tests

* Create and test mock slides dataset

* Remove Tests/ML/datasets from pytest discovery
This commit is contained in:
Daniel Coelho de Castro 2021-12-16 16:11:55 +00:00 коммит произвёл GitHub
Родитель 276e0f5253
Коммит 6a4d334a99
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: 4AEE18F83AFDEB23
20 изменённых файлов: 913 добавлений и 262 удалений

1
.gitattributes поставляемый
Просмотреть файл

@ -15,3 +15,4 @@
*.dcm filter=lfs diff=lfs merge=lfs -text *.dcm filter=lfs diff=lfs merge=lfs -text
*.zip filter=lfs diff=lfs merge=lfs -text *.zip filter=lfs diff=lfs merge=lfs -text
*.jpg filter=lfs diff=lfs merge=lfs -text *.jpg filter=lfs diff=lfs merge=lfs -text
*.tiff filter=lfs diff=lfs merge=lfs -text

Просмотреть файл

@ -38,6 +38,7 @@ jobs that run in AzureML.
- ([#614](https://github.com/microsoft/InnerEye-DeepLearning/pull/614)) Checkpoint downloading falls back to looking into AzureML if no checkpoints on disk - ([#614](https://github.com/microsoft/InnerEye-DeepLearning/pull/614)) Checkpoint downloading falls back to looking into AzureML if no checkpoints on disk
- ([#613](https://github.com/microsoft/InnerEye-DeepLearning/pull/613)) Add additional tests for histopathology datasets - ([#613](https://github.com/microsoft/InnerEye-DeepLearning/pull/613)) Add additional tests for histopathology datasets
- ([#616](https://github.com/microsoft/InnerEye-DeepLearning/pull/616)) Add more histopathology configs and tests - ([#616](https://github.com/microsoft/InnerEye-DeepLearning/pull/616)) Add more histopathology configs and tests
- ([#621](https://github.com/microsoft/InnerEye-DeepLearning/pull/621)) Add WSI preprocessing functions and enable tiling more generic slide datasets
### Changed ### Changed
- ([#588](https://github.com/microsoft/InnerEye-DeepLearning/pull/588)) Replace SciPy with PIL.PngImagePlugin.PngImageFile to load png files. - ([#588](https://github.com/microsoft/InnerEye-DeepLearning/pull/588)) Replace SciPy with PIL.PngImagePlugin.PngImageFile to load png files.

Просмотреть файл

@ -4,7 +4,7 @@
# ------------------------------------------------------------------------------------------ # ------------------------------------------------------------------------------------------
from pathlib import Path from pathlib import Path
from typing import Any, Dict, Optional, Union from typing import Any, Dict, Optional, Tuple, Union
import numpy as np import numpy as np
import pandas as pd import pandas as pd
@ -12,6 +12,8 @@ import torch
from sklearn.utils.class_weight import compute_class_weight from sklearn.utils.class_weight import compute_class_weight
from torch.utils.data import Dataset from torch.utils.data import Dataset
from InnerEye.ML.Histopathology.utils.naming import SlideKey
class TilesDataset(Dataset): class TilesDataset(Dataset):
"""Base class for datasets of WSI tiles, iterating dictionaries of image paths and metadata. """Base class for datasets of WSI tiles, iterating dictionaries of image paths and metadata.
@ -71,7 +73,7 @@ class TilesDataset(Dataset):
self.dataset_csv = dataset_csv or self.root_dir / self.DEFAULT_CSV_FILENAME self.dataset_csv = dataset_csv or self.root_dir / self.DEFAULT_CSV_FILENAME
dataset_df = pd.read_csv(self.dataset_csv) dataset_df = pd.read_csv(self.dataset_csv)
columns = [self.SLIDE_ID_COLUMN, self.IMAGE_COLUMN, self.LABEL_COLUMN, self.LABEL_COLUMN, columns = [self.SLIDE_ID_COLUMN, self.IMAGE_COLUMN, self.LABEL_COLUMN,
self.SPLIT_COLUMN, self.TILE_X_COLUMN, self.TILE_Y_COLUMN] self.SPLIT_COLUMN, self.TILE_X_COLUMN, self.TILE_Y_COLUMN]
for column in columns: for column in columns:
if column is not None and column not in dataset_df.columns: if column is not None and column not in dataset_df.columns:
@ -110,3 +112,109 @@ class TilesDataset(Dataset):
classes = np.unique(slide_labels) classes = np.unique(slide_labels)
class_weights = compute_class_weight(class_weight='balanced', classes=classes, y=slide_labels) class_weights = compute_class_weight(class_weight='balanced', classes=classes, y=slide_labels)
return torch.as_tensor(class_weights) return torch.as_tensor(class_weights)
class SlidesDataset(Dataset):
"""Base class for datasets of WSIs, iterating dictionaries of image paths and metadata.
The output dictionaries are indexed by `..utils.naming.SlideKey`.
:param SLIDE_ID_COLUMN: CSV column name for slide ID.
:param IMAGE_COLUMN: CSV column name for relative path to image file.
:param LABEL_COLUMN: CSV column name for tile label.
:param SPLIT_COLUMN: CSV column name for train/test split (optional).
:param TRAIN_SPLIT_LABEL: Value used to indicate the training split in `SPLIT_COLUMN`.
:param TEST_SPLIT_LABEL: Value used to indicate the test split in `SPLIT_COLUMN`.
:param DEFAULT_CSV_FILENAME: Default name of the dataset CSV at the dataset rood directory.
:param N_CLASSES: Number of classes indexed in `LABEL_COLUMN`.
"""
SLIDE_ID_COLUMN: str = 'slide_id'
IMAGE_COLUMN: str = 'image'
LABEL_COLUMN: str = 'label'
MASK_COLUMN: Optional[str] = None
SPLIT_COLUMN: Optional[str] = None
TRAIN_SPLIT_LABEL: str = 'train'
TEST_SPLIT_LABEL: str = 'test'
METADATA_COLUMNS: Tuple[str, ...] = ()
DEFAULT_CSV_FILENAME: str = "dataset.csv"
N_CLASSES: int = 1 # binary classification by default
def __init__(self,
root: Union[str, Path],
dataset_csv: Optional[Union[str, Path]] = None,
dataset_df: Optional[pd.DataFrame] = None,
train: Optional[bool] = None,
validate_columns: bool = True) -> None:
"""
:param root: Root directory of the dataset.
:param dataset_csv: Full path to a dataset CSV file, containing at least
`TILE_ID_COLUMN`, `SLIDE_ID_COLUMN`, and `IMAGE_COLUMN`. If omitted, the CSV will be read
from `"{root}/{DEFAULT_CSV_FILENAME}"`.
:param dataset_df: A potentially pre-processed dataframe in the same format as would be read
from the dataset CSV file, e.g. after some filtering. If given, overrides `dataset_csv`.
:param train: If `True`, loads only the training split (resp. `False` for test split). By
default (`None`), loads the entire dataset as-is.
:param validate_columns: Whether to call `validate_columns()` at the end of `__init__()`.
"""
if self.SPLIT_COLUMN is None and train is not None:
raise ValueError("Train/test split was specified but dataset has no split column")
self.root_dir = Path(root)
if dataset_df is not None:
self.dataset_csv = None
else:
self.dataset_csv = dataset_csv or self.root_dir / self.DEFAULT_CSV_FILENAME
dataset_df = pd.read_csv(self.dataset_csv)
dataset_df = dataset_df.set_index(self.SLIDE_ID_COLUMN)
if train is None:
self.dataset_df = dataset_df
else:
split = self.TRAIN_SPLIT_LABEL if train else self.TEST_SPLIT_LABEL
self.dataset_df = dataset_df[dataset_df[self.SPLIT_COLUMN] == split]
if validate_columns:
self.validate_columns()
def validate_columns(self) -> None:
"""Check that loaded dataframe contains expected columns, raises `ValueError` otherwise.
If the constructor is overloaded in a subclass, you can pass `validate_columns=False` and
call `validate_columns()` after creating derived columns, for example.
"""
columns = [self.IMAGE_COLUMN, self.LABEL_COLUMN, self.MASK_COLUMN,
self.SPLIT_COLUMN] + list(self.METADATA_COLUMNS)
for column in columns:
if column is not None and column not in self.dataset_df.columns:
raise ValueError(f"Expected column '{column}' not found in the dataframe")
def __len__(self) -> int:
return self.dataset_df.shape[0]
def __getitem__(self, index: int) -> Dict[SlideKey, Any]:
slide_id = self.dataset_df.index[index]
slide_row = self.dataset_df.loc[slide_id]
sample = {SlideKey.SLIDE_ID: slide_id}
rel_image_path = slide_row[self.IMAGE_COLUMN]
sample[SlideKey.IMAGE] = str(self.root_dir / rel_image_path)
# we're replicating this column because we want to propagate the path to the batch
sample[SlideKey.IMAGE_PATH] = sample[SlideKey.IMAGE]
if self.MASK_COLUMN:
rel_mask_path = slide_row[self.MASK_COLUMN]
sample[SlideKey.MASK] = str(self.root_dir / rel_mask_path)
sample[SlideKey.MASK_PATH] = sample[SlideKey.MASK]
sample[SlideKey.LABEL] = slide_row[self.LABEL_COLUMN]
sample[SlideKey.METADATA] = {col: slide_row[col] for col in self.METADATA_COLUMNS}
return sample
@classmethod
def has_mask(cls) -> bool:
return cls.MASK_COLUMN is not None

Просмотреть файл

@ -3,11 +3,13 @@
# Licensed under the MIT License (MIT). See LICENSE in the repo root for license information. # Licensed under the MIT License (MIT). See LICENSE in the repo root for license information.
# ------------------------------------------------------------------------------------------ # ------------------------------------------------------------------------------------------
PANDA_DATASET_ID = "PANDA"
PANDA_TILES_DATASET_ID = "PANDA_tiles" PANDA_TILES_DATASET_ID = "PANDA_tiles"
TCGA_CRCK_DATASET_ID = "TCGA-CRCk" TCGA_CRCK_DATASET_ID = "TCGA-CRCk"
TCGA_PRAD_DATASET_ID = "TCGA-PRAD" TCGA_PRAD_DATASET_ID = "TCGA-PRAD"
DEFAULT_DATASET_LOCATION = "/tmp/datasets/" DEFAULT_DATASET_LOCATION = "/tmp/datasets/"
PANDA_DATASET_DIR = DEFAULT_DATASET_LOCATION + PANDA_DATASET_ID
PANDA_TILES_DATASET_DIR = DEFAULT_DATASET_LOCATION + PANDA_TILES_DATASET_ID PANDA_TILES_DATASET_DIR = DEFAULT_DATASET_LOCATION + PANDA_TILES_DATASET_ID
TCGA_CRCK_DATASET_DIR = DEFAULT_DATASET_LOCATION + TCGA_CRCK_DATASET_ID TCGA_CRCK_DATASET_DIR = DEFAULT_DATASET_LOCATION + TCGA_CRCK_DATASET_ID
TCGA_PRAD_DATASET_DIR = DEFAULT_DATASET_LOCATION + TCGA_PRAD_DATASET_ID TCGA_PRAD_DATASET_DIR = DEFAULT_DATASET_LOCATION + TCGA_PRAD_DATASET_ID

Просмотреть файл

@ -7,50 +7,42 @@ from pathlib import Path
from typing import Any, Dict, Union, Optional from typing import Any, Dict, Union, Optional
import pandas as pd import pandas as pd
from cucim import CuImage
from health_ml.utils import box_utils
from monai.config import KeysCollection from monai.config import KeysCollection
from monai.data.image_reader import ImageReader, WSIReader from monai.data.image_reader import ImageReader, WSIReader
from monai.transforms import MapTransform from monai.transforms import MapTransform
from openslide import OpenSlide
from torch.utils.data import Dataset
from health_ml.utils import box_utils from InnerEye.ML.Histopathology.datasets.base_dataset import SlidesDataset
class PandaDataset(Dataset): class PandaDataset(SlidesDataset):
"""Dataset class for loading files from the PANDA challenge dataset. """Dataset class for loading files from the PANDA challenge dataset.
Iterating over this dataset returns a dictionary containing the `'image_id'`, paths to the `'image'` Iterating over this dataset returns a dictionary following the `SlideKey` schema plus meta-data
and `'mask'` files, and the remaining meta-data from the original dataset (`'data_provider'`, from the original dataset (`'data_provider'`, `'isup_grade'`, and `'gleason_score'`).
`'isup_grade'`, and `'gleason_score'`).
Ref.: https://www.kaggle.com/c/prostate-cancer-grade-assessment/overview Ref.: https://www.kaggle.com/c/prostate-cancer-grade-assessment/overview
""" """
def __init__(self, root_dir: Union[str, Path], n_slides: Optional[int] = None, SLIDE_ID_COLUMN = 'image_id'
frac_slides: Optional[float] = None) -> None: IMAGE_COLUMN = 'image'
super().__init__() MASK_COLUMN = 'mask'
self.root_dir = Path(root_dir) LABEL_COLUMN = 'isup_grade'
self.train_df = pd.read_csv(self.root_dir / "train.csv", index_col='image_id')
if n_slides or frac_slides:
self.train_df = self.train_df.sample(n=n_slides, frac=frac_slides, replace=False,
random_state=1234)
def __len__(self) -> int: METADATA_COLUMNS = ('data_provider', 'isup_grade', 'gleason_score')
return self.train_df.shape[0]
def _get_image_path(self, image_id: str) -> Path: DEFAULT_CSV_FILENAME = "train.csv"
return self.root_dir / "train_images" / f"{image_id}.tiff"
def _get_mask_path(self, image_id: str) -> Path: def __init__(self,
return self.root_dir / "train_label_masks" / f"{image_id}_mask.tiff" root: Union[str, Path],
dataset_csv: Optional[Union[str, Path]] = None,
def __getitem__(self, index: int) -> Dict: dataset_df: Optional[pd.DataFrame] = None) -> None:
image_id = self.train_df.index[index] super().__init__(root, dataset_csv, dataset_df, validate_columns=False)
return { # PANDA CSV does not come with paths for image and mask files
'image_id': image_id, slide_ids = self.dataset_df.index
'image': str(self._get_image_path(image_id).absolute()), self.dataset_df[self.IMAGE_COLUMN] = "train_images/" + slide_ids + ".tiff"
'mask': str(self._get_mask_path(image_id).absolute()), self.dataset_df[self.MASK_COLUMN] = "train_label_masks/" + slide_ids + "_mask.tiff"
**self.train_df.loc[image_id].to_dict() self.validate_columns()
}
# MONAI's convention is that dictionary transforms have a 'd' suffix in the class name # MONAI's convention is that dictionary transforms have a 'd' suffix in the class name
@ -96,10 +88,10 @@ class LoadPandaROId(MapTransform):
self.margin = margin self.margin = margin
self.kwargs = kwargs self.kwargs = kwargs
def _get_bounding_box(self, mask_obj: OpenSlide) -> box_utils.Box: def _get_bounding_box(self, mask_obj: CuImage) -> box_utils.Box:
# Estimate bounding box at the lowest resolution (i.e. highest level) # Estimate bounding box at the lowest resolution (i.e. highest level)
highest_level = mask_obj.level_count - 1 highest_level = mask_obj.resolutions['level_count'] - 1
scale = mask_obj.level_downsamples[highest_level] scale = mask_obj.resolutions['level_downsamples'][highest_level]
mask, _ = self.reader.get_data(mask_obj, level=highest_level) # loaded as RGB PIL image mask, _ = self.reader.get_data(mask_obj, level=highest_level) # loaded as RGB PIL image
foreground_mask = mask[0] > 0 # PANDA segmentation mask is in 'R' channel foreground_mask = mask[0] > 0 # PANDA segmentation mask is in 'R' channel
@ -107,14 +99,14 @@ class LoadPandaROId(MapTransform):
return bbox return bbox
def __call__(self, data: Dict) -> Dict: def __call__(self, data: Dict) -> Dict:
mask_obj: OpenSlide = self.reader.read(data[self.mask_key]) mask_obj: CuImage = self.reader.read(data[self.mask_key])
image_obj: OpenSlide = self.reader.read(data[self.image_key]) image_obj: CuImage = self.reader.read(data[self.image_key])
level0_bbox = self._get_bounding_box(mask_obj) level0_bbox = self._get_bounding_box(mask_obj)
# OpenSlide takes absolute location coordinates in the level 0 reference frame, # cuCIM/OpenSlide take absolute location coordinates in the level 0 reference frame,
# but relative region size in pixels at the chosen level # but relative region size in pixels at the chosen level
scale = mask_obj.level_downsamples[self.level] scale = mask_obj.resolutions['level_downsamples'][self.level]
scaled_bbox = level0_bbox / scale scaled_bbox = level0_bbox / scale
get_data_kwargs = dict(location=(level0_bbox.x, level0_bbox.y), get_data_kwargs = dict(location=(level0_bbox.x, level0_bbox.y),
size=(scaled_bbox.w, scaled_bbox.h), size=(scaled_bbox.w, scaled_bbox.h),

Просмотреть файл

@ -4,13 +4,14 @@
# ------------------------------------------------------------------------------------------ # ------------------------------------------------------------------------------------------
from pathlib import Path from pathlib import Path
from typing import Any, Dict, Optional, Union from typing import Optional, Union
import pandas as pd import pandas as pd
from torch.utils.data import Dataset
from InnerEye.ML.Histopathology.datasets.base_dataset import SlidesDataset
class TcgaPradDataset(Dataset): class TcgaPradDataset(SlidesDataset):
"""Dataset class for loading TCGA-PRAD slides. """Dataset class for loading TCGA-PRAD slides.
Iterating over this dataset returns a dictionary containing: Iterating over this dataset returns a dictionary containing:
@ -19,16 +20,14 @@ class TcgaPradDataset(Dataset):
- `'image_path'` (str): absolute slide image path - `'image_path'` (str): absolute slide image path
- `'label'` (int, 0 or 1): label for predicting positive or negative - `'label'` (int, 0 or 1): label for predicting positive or negative
""" """
SLIDE_ID_COLUMN: str = 'slide_id'
CASE_ID_COLUMN: str = 'case_id'
IMAGE_COLUMN: str = 'image_path' IMAGE_COLUMN: str = 'image_path'
LABEL_COLUMN: str = 'label' LABEL_COLUMN: str = 'label'
DEFAULT_CSV_FILENAME: str = "dataset.csv" DEFAULT_CSV_FILENAME: str = "dataset.csv"
def __init__(self, root_dir: Union[str, Path], def __init__(self, root: Union[str, Path],
dataset_csv: Optional[Union[str, Path]] = None, dataset_csv: Optional[Union[str, Path]] = None,
dataset_df: Optional[pd.DataFrame] = None,) -> None: dataset_df: Optional[pd.DataFrame] = None) -> None:
""" """
:param root: Root directory of the dataset. :param root: Root directory of the dataset.
:param dataset_csv: Full path to a dataset CSV file. If omitted, the CSV will be read from :param dataset_csv: Full path to a dataset CSV file. If omitted, the CSV will be read from
@ -36,27 +35,8 @@ class TcgaPradDataset(Dataset):
:param dataset_df: A potentially pre-processed dataframe in the same format as would be read :param dataset_df: A potentially pre-processed dataframe in the same format as would be read
from the dataset CSV file, e.g. after some filtering. If given, overrides `dataset_csv`. from the dataset CSV file, e.g. after some filtering. If given, overrides `dataset_csv`.
""" """
self.root_dir = Path(root_dir) super().__init__(root, dataset_csv, dataset_df, validate_columns=False)
# Example of how to define a custom label column from existing columns:
if dataset_df is not None: self.dataset_df[self.LABEL_COLUMN] = (self.dataset_df['label1']
self.dataset_csv = None | self.dataset_df['label2']).astype(int)
else: self.validate_columns()
self.dataset_csv = dataset_csv or self.root_dir / self.DEFAULT_CSV_FILENAME
dataset_df = pd.read_csv(self.dataset_csv)
dataset_df = dataset_df.set_index(self.SLIDE_ID_COLUMN)
dataset_df[self.LABEL_COLUMN] = (dataset_df['label1_mutation']
| dataset_df['label2_mutation']).astype(int)
self.dataset_df = dataset_df
def __len__(self) -> int:
return self.dataset_df.shape[0]
def __getitem__(self, index: int) -> Dict[str, Any]:
slide_id = self.dataset_df.index[index]
sample = {
self.SLIDE_ID_COLUMN: slide_id,
**self.dataset_df.loc[slide_id].to_dict()
}
sample[self.IMAGE_COLUMN] = str(self.root_dir / sample.pop(self.IMAGE_COLUMN))
return sample

Просмотреть файл

@ -0,0 +1,230 @@
# ------------------------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License (MIT). See LICENSE in the repo root for license information.
# ------------------------------------------------------------------------------------------
"""This script is specific to PANDA and is kept only for retrocompatibility.
`create_tiles_dataset.py` is the new supported way to process slide datasets.
"""
import functools
import os
import logging
import shutil
import traceback
import warnings
from pathlib import Path
from typing import Sequence, Tuple, Union
import numpy as np
import PIL
from monai.data import Dataset
from monai.data.image_reader import WSIReader
from tqdm import tqdm
from InnerEye.ML.Histopathology.preprocessing import tiling
from InnerEye.ML.Histopathology.datasets.panda_dataset import PandaDataset, LoadPandaROId
CSV_COLUMNS = ['slide_id', 'tile_id', 'image', 'mask', 'tile_x', 'tile_y', 'occupancy',
'data_provider', 'slide_isup_grade', 'slide_gleason_score']
TMP_SUFFIX = "_tmp"
logging.basicConfig(format='%(asctime)s %(message)s', filemode='w')
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
def select_tile(mask_tile: np.ndarray, occupancy_threshold: float) \
-> Union[Tuple[bool, float], Tuple[np.ndarray, np.ndarray]]:
if occupancy_threshold < 0. or occupancy_threshold > 1.:
raise ValueError("Tile occupancy threshold must be between 0 and 1")
foreground_mask = mask_tile > 0
occupancy = foreground_mask.mean(axis=(-2, -1))
return (occupancy > occupancy_threshold).squeeze(), occupancy.squeeze()
def get_tile_descriptor(tile_location: Sequence[int]) -> str:
return f"{tile_location[0]:05d}x_{tile_location[1]:05d}y"
def get_tile_id(slide_id: str, tile_location: Sequence[int]) -> str:
return f"{slide_id}.{get_tile_descriptor(tile_location)}"
def save_image(array_chw: np.ndarray, path: Path) -> PIL.Image:
path.parent.mkdir(parents=True, exist_ok=True)
array_hwc = np.moveaxis(array_chw, 0, -1).astype(np.uint8).squeeze()
pil_image = PIL.Image.fromarray(array_hwc)
pil_image.convert('RGB').save(path)
return pil_image
def generate_tiles(sample: dict, tile_size: int, occupancy_threshold: float) \
-> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, int]:
image_tiles, tile_locations = tiling.tile_array_2d(sample['image'], tile_size=tile_size,
constant_values=255)
mask_tiles, _ = tiling.tile_array_2d(sample['mask'], tile_size=tile_size, constant_values=0)
selected: np.ndarray
occupancies: np.ndarray
selected, occupancies = select_tile(mask_tiles, occupancy_threshold)
n_discarded = (~selected).sum()
logging.info(f"Percentage tiles discarded: {round(selected.sum() / n_discarded * 100, 2)}")
image_tiles = image_tiles[selected]
mask_tiles = mask_tiles[selected]
tile_locations = tile_locations[selected]
occupancies = occupancies[selected]
abs_tile_locations = (sample['scale'] * tile_locations + sample['location']).astype(int)
return image_tiles, mask_tiles, abs_tile_locations, occupancies, n_discarded
# TODO refactor this to separate metadata identification from saving. We might want the metadata
# even if the saving fails
def save_tile(sample: dict, image_tile: np.ndarray, mask_tile: np.ndarray,
tile_location: Sequence[int], output_dir: Path) -> dict:
slide_id = sample['image_id']
descriptor = get_tile_descriptor(tile_location)
image_tile_filename = f"train_images/{descriptor}.png"
mask_tile_filename = f"train_label_masks/{descriptor}_mask.png"
save_image(image_tile, output_dir / image_tile_filename)
save_image(mask_tile, output_dir / mask_tile_filename)
tile_metadata = {
'slide_id': slide_id,
'tile_id': get_tile_id(slide_id, tile_location),
'image': image_tile_filename,
'mask': mask_tile_filename,
'tile_x': tile_location[0],
'tile_y': tile_location[1],
'data_provider': sample['data_provider'],
'slide_isup_grade': sample['isup_grade'],
'slide_gleason_score': sample['gleason_score'],
}
return tile_metadata
def process_slide(sample: dict, level: int, margin: int, tile_size: int, occupancy_threshold: int,
output_dir: Path, tile_progress: bool = False) -> None:
slide_id = sample['image_id']
slide_dir: Path = output_dir / (slide_id + "/")
logging.info(f">>> Slide dir {slide_dir}")
if slide_dir.exists(): # already processed slide - skip
logging.info(f">>> Skipping {slide_dir} - already processed")
return
else:
try:
slide_dir.mkdir(parents=True)
dataset_csv_path = slide_dir / "dataset.csv"
dataset_csv_file = dataset_csv_path.open('w')
dataset_csv_file.write(','.join(CSV_COLUMNS) + '\n') # write CSV header
tiles_failure = 0
failed_tiles_csv_path = slide_dir / "failed_tiles.csv"
failed_tiles_file = failed_tiles_csv_path.open('w')
failed_tiles_file.write('tile_id' + '\n')
logging.info(f"Loading slide {slide_id} ...")
loader = LoadPandaROId(WSIReader(), level=level, margin=margin)
sample = loader(sample) # load 'image' and 'mask' from disk
logging.info(f"Tiling slide {slide_id} ...")
image_tiles, mask_tiles, tile_locations, occupancies, _ = \
generate_tiles(sample, tile_size, occupancy_threshold)
n_tiles = image_tiles.shape[0]
for i in tqdm(range(n_tiles), f"Tiles ({slide_id[:6]}…)", unit="img", disable=not tile_progress):
try:
tile_metadata = save_tile(sample, image_tiles[i], mask_tiles[i], tile_locations[i],
slide_dir)
tile_metadata['occupancy'] = occupancies[i]
tile_metadata['image'] = os.path.join(slide_dir.name, tile_metadata['image'])
tile_metadata['mask'] = os.path.join(slide_dir.name, tile_metadata['mask'])
dataset_row = ','.join(str(tile_metadata[column]) for column in CSV_COLUMNS)
dataset_csv_file.write(dataset_row + '\n')
except Exception as e:
tiles_failure += 1
descriptor = get_tile_descriptor(tile_locations[i]) + '\n'
failed_tiles_file.write(descriptor)
traceback.print_exc()
warnings.warn(f"An error occurred while saving tile "
f"{get_tile_id(slide_id, tile_locations[i])}: {e}")
dataset_csv_file.close()
failed_tiles_file.close()
if tiles_failure > 0:
# TODO what we want to do with slides that have some failed tiles?
logging.warning(f"{slide_id} is incomplete. {tiles_failure} tiles failed.")
except Exception as e:
traceback.print_exc()
warnings.warn(f"An error occurred while processing slide {slide_id}: {e}")
def merge_dataset_csv_files(dataset_dir: Path) -> Path:
full_csv = dataset_dir / "dataset.csv"
# TODO change how we retrieve these filenames, probably because mounted, the operation is slow
# and it seems to find many more files
# print("List of files")
# print([str(file) + '\n' for file in dataset_dir.glob("*/dataset.csv")])
with full_csv.open('w') as full_csv_file:
# full_csv_file.write(','.join(CSV_COLUMNS) + '\n') # write CSV header
first_file = True
for slide_csv in tqdm(dataset_dir.glob("*/dataset.csv"), desc="Merging dataset.csv", unit='file'):
logging.info(f"Merging slide {slide_csv}")
content = slide_csv.read_text()
if not first_file:
content = content[content.index('\n') + 1:] # discard header row for all but the first file
full_csv_file.write(content)
first_file = False
return full_csv
def main(panda_dir: Union[str, Path], root_output_dir: Union[str, Path], level: int, tile_size: int,
margin: int, occupancy_threshold: float, parallel: bool = False, overwrite: bool = False) -> None:
# Ignoring some types here because mypy is getting confused with the MONAI Dataset class
# to select a subsample use keyword n_slides
dataset = Dataset(PandaDataset(panda_dir)) # type: ignore
output_dir = Path(root_output_dir) / f"panda_tiles_level{level}_{tile_size}"
logging.info(f"Creating dataset of level-{level} {tile_size}x{tile_size} PANDA tiles at: {output_dir}")
if overwrite and output_dir.exists():
shutil.rmtree(output_dir)
output_dir.mkdir(parents=True, exist_ok=not overwrite)
func = functools.partial(process_slide, level=level, margin=margin, tile_size=tile_size,
occupancy_threshold=occupancy_threshold, output_dir=output_dir,
tile_progress=not parallel)
if parallel:
import multiprocessing
pool = multiprocessing.Pool()
map_func = pool.imap_unordered # type: ignore
else:
map_func = map # type: ignore
list(tqdm(map_func(func, dataset), desc="Slides", unit="img", total=len(dataset))) # type: ignore
if parallel:
pool.close()
logging.info("Merging slide files in a single file")
merge_dataset_csv_files(output_dir)
if __name__ == '__main__':
main(panda_dir="/tmp/datasets/PANDA",
root_output_dir="/datadrive",
level=1,
tile_size=224,
margin=64,
occupancy_threshold=0.05,
parallel=True,
overwrite=False)

Просмотреть файл

@ -4,13 +4,12 @@
# ------------------------------------------------------------------------------------------ # ------------------------------------------------------------------------------------------
import functools import functools
import os
import logging import logging
import shutil import shutil
import traceback import traceback
import warnings import warnings
from pathlib import Path from pathlib import Path
from typing import Sequence, Tuple, Union from typing import Any, Dict, Iterable, Optional, Sequence, Tuple, Union
import numpy as np import numpy as np
import PIL import PIL
@ -18,37 +17,43 @@ from monai.data import Dataset
from monai.data.image_reader import WSIReader from monai.data.image_reader import WSIReader
from tqdm import tqdm from tqdm import tqdm
from InnerEye.ML.Histopathology.datasets.base_dataset import SlidesDataset
from InnerEye.ML.Histopathology.preprocessing import tiling from InnerEye.ML.Histopathology.preprocessing import tiling
from InnerEye.ML.Histopathology.datasets.panda_dataset import PandaDataset, LoadPandaROId from InnerEye.ML.Histopathology.preprocessing.loading import LoadROId, segment_foreground
from InnerEye.ML.Histopathology.utils.naming import SlideKey, TileKey
CSV_COLUMNS = ['slide_id', 'tile_id', 'image', 'mask', 'tile_x', 'tile_y', 'occupancy',
'data_provider', 'slide_isup_grade', 'slide_gleason_score']
TMP_SUFFIX = "_tmp"
logging.basicConfig(format='%(asctime)s %(message)s', filemode='w') logging.basicConfig(format='%(asctime)s %(message)s', filemode='w')
logger = logging.getLogger() logger = logging.getLogger()
logger.setLevel(logging.DEBUG) logger.setLevel(logging.DEBUG)
def select_tile(mask_tile: np.ndarray, occupancy_threshold: float) \ def select_tiles(foreground_mask: np.ndarray, occupancy_threshold: float) \
-> Union[Tuple[bool, float], Tuple[np.ndarray, np.ndarray]]: -> Tuple[np.ndarray, np.ndarray]:
"""Exclude tiles that are mostly background based on estimated occupancy.
:param foreground_mask: Boolean array of shape (*, H, W).
:param occupancy_threshold: Tiles with lower occupancy (between 0 and 1) will be discarded.
:return: A tuple containing which tiles were selected and the estimated occupancies. These will
be boolean and float arrays of shape (*,), or scalars if `foreground_mask` is a single tile.
"""
if occupancy_threshold < 0. or occupancy_threshold > 1.: if occupancy_threshold < 0. or occupancy_threshold > 1.:
raise ValueError("Tile occupancy threshold must be between 0 and 1") raise ValueError("Tile occupancy threshold must be between 0 and 1")
foreground_mask = mask_tile > 0
occupancy = foreground_mask.mean(axis=(-2, -1)) occupancy = foreground_mask.mean(axis=(-2, -1))
return (occupancy > occupancy_threshold).squeeze(), occupancy.squeeze() return (occupancy > occupancy_threshold).squeeze(), occupancy.squeeze() # type: ignore
def get_tile_descriptor(tile_location: Sequence[int]) -> str: def get_tile_descriptor(tile_location: Sequence[int]) -> str:
"""Format the XY tile coordinates into a tile descriptor."""
return f"{tile_location[0]:05d}x_{tile_location[1]:05d}y" return f"{tile_location[0]:05d}x_{tile_location[1]:05d}y"
def get_tile_id(slide_id: str, tile_location: Sequence[int]) -> str: def get_tile_id(slide_id: str, tile_location: Sequence[int]) -> str:
"""Format the slide ID and XY tile coordinates into a unique tile ID."""
return f"{slide_id}.{get_tile_descriptor(tile_location)}" return f"{slide_id}.{get_tile_descriptor(tile_location)}"
def save_image(array_chw: np.ndarray, path: Path) -> PIL.Image: def save_image(array_chw: np.ndarray, path: Path) -> PIL.Image:
"""Save an image array in (C, H, W) format to disk."""
path.parent.mkdir(parents=True, exist_ok=True) path.parent.mkdir(parents=True, exist_ok=True)
array_hwc = np.moveaxis(array_chw, 0, -1).astype(np.uint8).squeeze() array_hwc = np.moveaxis(array_chw, 0, -1).astype(np.uint8).squeeze()
pil_image = PIL.Image.fromarray(array_hwc) pil_image = PIL.Image.fromarray(array_hwc)
@ -56,59 +61,102 @@ def save_image(array_chw: np.ndarray, path: Path) -> PIL.Image:
return pil_image return pil_image
def generate_tiles(sample: dict, tile_size: int, occupancy_threshold: float) \ def generate_tiles(slide_image: np.ndarray, tile_size: int, foreground_threshold: float,
-> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, int]: occupancy_threshold: float) -> Tuple[np.ndarray, np.ndarray, np.ndarray, int]:
image_tiles, tile_locations = tiling.tile_array_2d(sample['image'], tile_size=tile_size, """Split the foreground of an input slide image into tiles.
constant_values=255)
mask_tiles, _ = tiling.tile_array_2d(sample['mask'], tile_size=tile_size, constant_values=0)
selected: np.ndarray :param slide_image: The RGB image array in (C, H, W) format.
occupancies: np.ndarray :param tile_size: Lateral dimensions of each tile, in pixels.
selected, occupancies = select_tile(mask_tiles, occupancy_threshold) :param foreground_threshold: Luminance threshold (0 to 255) to determine tile occupancy.
:param occupancy_threshold: Threshold (between 0 and 1) to determine empty tiles to discard.
:return: A tuple containing the image tiles (N, C, H, W), tile coordinates (N, 2), occupancies
(N,), and total number of discarded empty tiles.
"""
image_tiles, tile_locations = tiling.tile_array_2d(slide_image, tile_size=tile_size,
constant_values=255)
foreground_mask, _ = segment_foreground(image_tiles, foreground_threshold)
selected, occupancies = select_tiles(foreground_mask, occupancy_threshold)
n_discarded = (~selected).sum() n_discarded = (~selected).sum()
logging.info(f"Percentage tiles discarded: {round(selected.sum() / n_discarded * 100, 2)}") logging.info(f"Percentage tiles discarded: {n_discarded / len(selected) * 100:.2f}")
image_tiles = image_tiles[selected] image_tiles = image_tiles[selected]
mask_tiles = mask_tiles[selected]
tile_locations = tile_locations[selected] tile_locations = tile_locations[selected]
occupancies = occupancies[selected] occupancies = occupancies[selected]
abs_tile_locations = (sample['scale'] * tile_locations + sample['location']).astype(int) return image_tiles, tile_locations, occupancies, n_discarded
return image_tiles, mask_tiles, abs_tile_locations, occupancies, n_discarded
# TODO refactor this to separate metadata identification from saving. We might want the metadata def get_tile_info(sample: Dict[SlideKey, Any], occupancy: float, tile_location: Sequence[int],
# even if the saving fails rel_slide_dir: Path) -> Dict[TileKey, Any]:
def save_tile(sample: dict, image_tile: np.ndarray, mask_tile: np.ndarray, """Map slide information and tiling outputs into tile-specific information dictionary.
tile_location: Sequence[int], output_dir: Path) -> dict:
slide_id = sample['image_id'] :param sample: Slide dictionary.
:param occupancy: Estimated tile foreground occuppancy.
:param tile_location: Tile XY coordinates.
:param rel_slide_dir: Directory where tiles are saved, relative to dataset root.
:return: Tile information dictionary.
"""
slide_id = sample[SlideKey.SLIDE_ID]
descriptor = get_tile_descriptor(tile_location) descriptor = get_tile_descriptor(tile_location)
image_tile_filename = f"train_images/{descriptor}.png" rel_image_path = f"{rel_slide_dir}/{descriptor}.png"
mask_tile_filename = f"train_label_masks/{descriptor}_mask.png"
save_image(image_tile, output_dir / image_tile_filename) tile_info = {
save_image(mask_tile, output_dir / mask_tile_filename) TileKey.SLIDE_ID: slide_id,
TileKey.TILE_ID: get_tile_id(slide_id, tile_location),
tile_metadata = { TileKey.IMAGE: rel_image_path,
'slide_id': slide_id, TileKey.LABEL: sample[SlideKey.LABEL],
'tile_id': get_tile_id(slide_id, tile_location), TileKey.TILE_X: tile_location[0],
'image': image_tile_filename, TileKey.TILE_Y: tile_location[1],
'mask': mask_tile_filename, TileKey.OCCUPANCY: occupancy,
'tile_x': tile_location[0], TileKey.SLIDE_METADATA: {TileKey.from_slide_metadata_key(key): value
'tile_y': tile_location[1], for key, value in sample[SlideKey.METADATA].items()}
'data_provider': sample['data_provider'],
'slide_isup_grade': sample['isup_grade'],
'slide_gleason_score': sample['gleason_score'],
} }
return tile_metadata return tile_info
def process_slide(sample: dict, level: int, margin: int, tile_size: int, occupancy_threshold: int, def format_csv_row(tile_info: Dict[TileKey, Any], keys_to_save: Iterable[TileKey],
output_dir: Path, tile_progress: bool = False) -> None: metadata_keys: Iterable[str]) -> str:
slide_id = sample['image_id'] """Format tile information dictionary as a row to write to a dataset CSV tile.
slide_dir: Path = output_dir / (slide_id + "/")
:param tile_info: Tile information dictionary.
:param keys_to_save: Which main keys to include in the row, and in which order.
:param metadata_keys: Likewise for metadata keys.
:return: The formatted CSV row.
"""
tile_slide_metadata = tile_info.pop(TileKey.SLIDE_METADATA)
fields = [str(tile_info[key]) for key in keys_to_save]
fields.extend(str(tile_slide_metadata[key]) for key in metadata_keys)
dataset_row = ','.join(fields)
return dataset_row
def process_slide(sample: Dict[SlideKey, Any], level: int, margin: int, tile_size: int,
foreground_threshold: Optional[float], occupancy_threshold: float, output_dir: Path,
tile_progress: bool = False) -> None:
"""Load and process a slide, saving tile images and information to a CSV file.
:param sample: Slide information dictionary, returned by the input slide dataset.
:param level: Magnification level at which to process the slide.
:param margin: Margin around the foreground bounding box, in pixels at lowest resolution.
:param tile_size: Lateral dimensions of each tile, in pixels.
:param foreground_threshold: Luminance threshold (0 to 255) to determine tile occupancy.
If `None` (default), an optimal threshold will be estimated automatically.
:param occupancy_threshold: Threshold (between 0 and 1) to determine empty tiles to discard.
:param output_dir: Root directory for the output dataset; outputs for a single slide will be
saved inside `output_dir/slide_id/`.
:param tile_progress: Whether to display a progress bar in the terminal.
"""
slide_metadata: Dict[str, Any] = sample[SlideKey.METADATA]
keys_to_save = (TileKey.SLIDE_ID, TileKey.TILE_ID, TileKey.IMAGE, TileKey.LABEL,
TileKey.TILE_X, TileKey.TILE_Y, TileKey.OCCUPANCY)
metadata_keys = tuple(TileKey.from_slide_metadata_key(key) for key in slide_metadata)
csv_columns: Tuple[str, ...] = (*keys_to_save, *metadata_keys)
slide_id: str = sample[SlideKey.SLIDE_ID]
rel_slide_dir = Path(slide_id)
slide_dir = output_dir / rel_slide_dir
logging.info(f">>> Slide dir {slide_dir}") logging.info(f">>> Slide dir {slide_dir}")
if slide_dir.exists(): # already processed slide - skip if slide_dir.exists(): # already processed slide - skip
logging.info(f">>> Skipping {slide_dir} - already processed") logging.info(f">>> Skipping {slide_dir} - already processed")
@ -119,50 +167,57 @@ def process_slide(sample: dict, level: int, margin: int, tile_size: int, occupan
dataset_csv_path = slide_dir / "dataset.csv" dataset_csv_path = slide_dir / "dataset.csv"
dataset_csv_file = dataset_csv_path.open('w') dataset_csv_file = dataset_csv_path.open('w')
dataset_csv_file.write(','.join(CSV_COLUMNS) + '\n') # write CSV header dataset_csv_file.write(','.join(csv_columns) + '\n') # write CSV header
tiles_failure = 0 n_failed_tiles = 0
failed_tiles_csv_path = slide_dir / "failed_tiles.csv" failed_tiles_csv_path = slide_dir / "failed_tiles.csv"
failed_tiles_file = failed_tiles_csv_path.open('w') failed_tiles_file = failed_tiles_csv_path.open('w')
failed_tiles_file.write('tile_id' + '\n') failed_tiles_file.write('tile_id' + '\n')
logging.info(f"Loading slide {slide_id} ...") logging.info(f"Loading slide {slide_id} ...")
loader = LoadPandaROId(WSIReader(), level=level, margin=margin) loader = LoadROId(WSIReader('cuCIM'), level=level, margin=margin,
sample = loader(sample) # load 'image' and 'mask' from disk foreground_threshold=foreground_threshold)
sample = loader(sample) # load 'image' from disk
logging.info(f"Tiling slide {slide_id} ...") logging.info(f"Tiling slide {slide_id} ...")
image_tiles, mask_tiles, tile_locations, occupancies, _ = \ image_tiles, rel_tile_locations, occupancies, _ = \
generate_tiles(sample, tile_size, occupancy_threshold) generate_tiles(sample[SlideKey.IMAGE], tile_size,
sample[SlideKey.FOREGROUND_THRESHOLD],
occupancy_threshold)
tile_locations = (sample[SlideKey.SCALE] * rel_tile_locations
+ sample[SlideKey.ORIGIN]).astype(int)
n_tiles = image_tiles.shape[0] n_tiles = image_tiles.shape[0]
logging.info(f"Saving tiles for slide {slide_id} ...")
for i in tqdm(range(n_tiles), f"Tiles ({slide_id[:6]}…)", unit="img", disable=not tile_progress): for i in tqdm(range(n_tiles), f"Tiles ({slide_id[:6]}…)", unit="img", disable=not tile_progress):
try: try:
tile_metadata = save_tile(sample, image_tiles[i], mask_tiles[i], tile_locations[i], tile_info = get_tile_info(sample, occupancies[i], tile_locations[i], rel_slide_dir)
slide_dir) save_image(image_tiles[i], output_dir / tile_info[TileKey.IMAGE])
tile_metadata['occupancy'] = occupancies[i] dataset_row = format_csv_row(tile_info, keys_to_save, metadata_keys)
tile_metadata['image'] = os.path.join(slide_dir.name, tile_metadata['image'])
tile_metadata['mask'] = os.path.join(slide_dir.name, tile_metadata['mask'])
dataset_row = ','.join(str(tile_metadata[column]) for column in CSV_COLUMNS)
dataset_csv_file.write(dataset_row + '\n') dataset_csv_file.write(dataset_row + '\n')
except Exception as e: except Exception as e:
tiles_failure += 1 n_failed_tiles += 1
descriptor = get_tile_descriptor(tile_locations[i]) + '\n' descriptor = get_tile_descriptor(tile_locations[i])
failed_tiles_file.write(descriptor) failed_tiles_file.write(descriptor + '\n')
traceback.print_exc() traceback.print_exc()
warnings.warn(f"An error occurred while saving tile " warnings.warn(f"An error occurred while saving tile "
f"{get_tile_id(slide_id, tile_locations[i])}: {e}") f"{get_tile_id(slide_id, tile_locations[i])}: {e}")
dataset_csv_file.close() dataset_csv_file.close()
failed_tiles_file.close() failed_tiles_file.close()
if tiles_failure > 0: if n_failed_tiles > 0:
# TODO what we want to do with slides that have some failed tiles? # TODO what we want to do with slides that have some failed tiles?
logging.warning(f"{slide_id} is incomplete. {tiles_failure} tiles failed.") logging.warning(f"{slide_id} is incomplete. {n_failed_tiles} tiles failed.")
logging.info(f"Finished processing slide {slide_id}")
except Exception as e: except Exception as e:
traceback.print_exc() traceback.print_exc()
warnings.warn(f"An error occurred while processing slide {slide_id}: {e}") warnings.warn(f"An error occurred while processing slide {slide_id}: {e}")
def merge_dataset_csv_files(dataset_dir: Path) -> Path: def merge_dataset_csv_files(dataset_dir: Path) -> Path:
"""Combines all "*/dataset.csv" files into a single "dataset.csv" file in the given directory."""
full_csv = dataset_dir / "dataset.csv" full_csv = dataset_dir / "dataset.csv"
# TODO change how we retrieve these filenames, probably because mounted, the operation is slow # TODO change how we retrieve these filenames, probably because mounted, the operation is slow
# and it seems to find many more files # and it seems to find many more files
@ -181,21 +236,40 @@ def merge_dataset_csv_files(dataset_dir: Path) -> Path:
return full_csv return full_csv
def main(panda_dir: Union[str, Path], root_output_dir: Union[str, Path], level: int, tile_size: int, def main(slides_dataset: SlidesDataset, root_output_dir: Union[str, Path],
margin: int, occupancy_threshold: float, parallel: bool = False, overwrite: bool = False) -> None: level: int, tile_size: int, margin: int, foreground_threshold: Optional[float],
occupancy_threshold: float, parallel: bool = False, overwrite: bool = False,
n_slides: Optional[int] = None) -> None:
"""Process a slides dataset to produce a tiles dataset.
:param slides_dataset: Input tiles dataset object.
:param root_output_dir: The root directory of the output tiles dataset.
:param level: Magnification level at which to process the slide.
:param tile_size: Lateral dimensions of each tile, in pixels.
:param margin: Margin around the foreground bounding box, in pixels at lowest resolution.
:param foreground_threshold: Luminance threshold (0 to 255) to determine tile occupancy.
If `None` (default), an optimal threshold will be estimated automatically.
:param occupancy_threshold: Threshold (between 0 and 1) to determine empty tiles to discard.
:param parallel: Whether slides should be processed in parallel with multiprocessing.
:param overwrite: Whether to overwrite an existing output tiles dataset. If `True`, will delete
and recreate `root_output_dir`, otherwise will resume by skipping already processed slides.
:param n_slides: If given, limit the total number of slides for debugging.
"""
# Ignoring some types here because mypy is getting confused with the MONAI Dataset class # Ignoring some types here because mypy is getting confused with the MONAI Dataset class
# to select a subsample use keyword n_slides # to select a subsample use keyword n_slides
dataset = Dataset(PandaDataset(panda_dir)) # type: ignore dataset = Dataset(slides_dataset)[:n_slides] # type: ignore
output_dir = Path(root_output_dir) / f"panda_tiles_level{level}_{tile_size}" output_dir = Path(root_output_dir)
logging.info(f"Creating dataset of level-{level} {tile_size}x{tile_size} PANDA tiles at: {output_dir}") logging.info(f"Creating dataset of level-{level} {tile_size}x{tile_size} "
f"{slides_dataset.__class__.__name__} tiles at: {output_dir}")
if overwrite and output_dir.exists(): if overwrite and output_dir.exists():
shutil.rmtree(output_dir) shutil.rmtree(output_dir)
output_dir.mkdir(parents=True, exist_ok=not overwrite) output_dir.mkdir(parents=True, exist_ok=not overwrite)
func = functools.partial(process_slide, level=level, margin=margin, tile_size=tile_size, func = functools.partial(process_slide, level=level, margin=margin, tile_size=tile_size,
foreground_threshold=foreground_threshold,
occupancy_threshold=occupancy_threshold, output_dir=output_dir, occupancy_threshold=occupancy_threshold, output_dir=output_dir,
tile_progress=not parallel) tile_progress=not parallel)
@ -217,11 +291,16 @@ def main(panda_dir: Union[str, Path], root_output_dir: Union[str, Path], level:
if __name__ == '__main__': if __name__ == '__main__':
main(panda_dir="/tmp/datasets/PANDA", from InnerEye.ML.Histopathology.datasets.tcga_prad_dataset import TcgaPradDataset
root_output_dir="/datadrive",
level=1, # Example set up for an existing slides dataset:
main(slides_dataset=TcgaPradDataset("/tmp/datasets/TCGA-PRAD"),
root_output_dir="/datadrive/TCGA-PRAD_tiles",
n_slides=5,
level=3,
tile_size=224, tile_size=224,
margin=64, margin=64,
foreground_threshold=None,
occupancy_threshold=0.05, occupancy_threshold=0.05,
parallel=True, parallel=False,
overwrite=False) overwrite=True)

Просмотреть файл

@ -0,0 +1,108 @@
from typing import Dict, Optional, Tuple
import numpy as np
import skimage.filters
from cucim import CuImage
from health_ml.utils import box_utils
from monai.data.image_reader import WSIReader
from monai.transforms import MapTransform
from InnerEye.ML.Histopathology.utils.naming import SlideKey
def get_luminance(slide: np.ndarray) -> np.ndarray:
"""Compute a grayscale version of the input slide.
:param slide: The RGB image array in (*, C, H, W) format.
:return: The single-channel luminance array as (*, H, W).
"""
# TODO: Consider more sophisticated luminance calculation if necessary
return slide.mean(axis=-3) # type: ignore
def segment_foreground(slide: np.ndarray, threshold: Optional[float] = None) \
-> Tuple[np.ndarray, float]:
"""Segment the given slide by thresholding its luminance.
:param slide: The RGB image array in (*, C, H, W) format.
:param threshold: Pixels with luminance below this value will be considered foreground.
If `None` (default), an optimal threshold will be estimated automatically using Otsu's method.
:return: A tuple containing the boolean output array in (*, H, W) format and the threshold used.
"""
luminance = get_luminance(slide)
if threshold is None:
threshold = skimage.filters.threshold_otsu(luminance)
return luminance < threshold, threshold
def load_slide_at_level(reader: WSIReader, slide_obj: CuImage, level: int) -> np.ndarray:
"""Load full slide array at the given magnification level.
This is a manual workaround for a MONAI bug (https://github.com/Project-MONAI/MONAI/issues/3415)
fixed in a currently unreleased PR (https://github.com/Project-MONAI/MONAI/pull/3417).
:param reader: A MONAI `WSIReader` using cuCIM backend.
:param slide_obj: The cuCIM image object returned by `reader.read(<image_file>)`.
:param level: Index of the desired magnification level as defined in the `slide_obj` headers.
:return: The loaded image array in (C, H, W) format.
"""
size = slide_obj.resolutions['level_dimensions'][level][::-1]
slide, _ = reader.get_data(slide_obj, size=size, level=level) # loaded as RGB PIL image
return slide
class LoadROId(MapTransform):
"""Transform that loads a pathology slide, cropped to an estimated bounding box (ROI).
Operates on dictionaries, replacing the file path in `image_key` with the loaded array in
(C, H, W) format. Also adds the following entries:
- `SlideKey.ORIGIN` (tuple): top-right coordinates of the bounding box
- `SlideKey.SCALE` (float): corresponding scale, loaded from the file
- `SlideKey.FOREGROUND_THRESHOLD` (float): threshold used to segment the foreground
"""
def __init__(self, reader: WSIReader, image_key: str = SlideKey.IMAGE, level: int = 0,
margin: int = 0, foreground_threshold: Optional[float] = None) -> None:
"""
:param reader: And instance of MONAI's `WSIReader`.
:param image_key: Image key in the input and output dictionaries.
:param level: Magnification level to load from the raw multi-scale file.
:param margin: Amount in pixels by which to enlarge the estimated bounding box for cropping.
:param foreground_threshold: Pixels with luminance below this value will be considered foreground.
If `None` (default), an optimal threshold will be estimated automatically using Otsu's method.
"""
super().__init__([image_key], allow_missing_keys=False)
self.reader = reader
self.image_key = image_key
self.level = level
self.margin = margin
self.foreground_threshold = foreground_threshold
def _get_bounding_box(self, slide_obj: CuImage) -> Tuple[box_utils.Box, float]:
# Estimate bounding box at the lowest resolution (i.e. highest level)
highest_level = slide_obj.resolutions['level_count'] - 1
scale = slide_obj.resolutions['level_downsamples'][highest_level]
slide = load_slide_at_level(self.reader, slide_obj, level=highest_level)
foreground_mask, threshold = segment_foreground(slide, self.foreground_threshold)
bbox = scale * box_utils.get_bounding_box(foreground_mask).add_margin(self.margin)
return bbox, threshold
def __call__(self, data: Dict) -> Dict:
image_obj: CuImage = self.reader.read(data[self.image_key])
level0_bbox, threshold = self._get_bounding_box(image_obj)
# cuCIM/OpenSlide takes absolute location coordinates in the level 0 reference frame,
# but relative region size in pixels at the chosen level
origin = (level0_bbox.x, level0_bbox.y)
scale = image_obj.resolutions['level_downsamples'][self.level]
scaled_bbox = level0_bbox / scale
data[self.image_key], _ = self.reader.get_data(image_obj, location=origin, level=self.level,
size=(scaled_bbox.w, scaled_bbox.h))
data[SlideKey.ORIGIN] = origin
data[SlideKey.SCALE] = scale
data[SlideKey.FOREGROUND_THRESHOLD] = threshold
image_obj.close()
return data

Просмотреть файл

@ -1,61 +0,0 @@
# ------------------------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License (MIT). See LICENSE in the repo root for license information.
# ------------------------------------------------------------------------------------------
"""
This script is an example of how to use the submit_to_azure_if_needed function from the hi-ml package to run the
main pre-processing function that creates tiles from slides in the PANDA dataset. The advantage of using this script
is the ability to submit to a cluster on azureml and to have the output files directly saved as a registered dataset.
To run execute, from inside the pre-processing folder,
python azure_tiles_creation.py --azureml
A json configuration file containing the credentials to the Azure workspace and an environment.yml file are expected
in input.
This has been tested on hi-mlv0.1.4.
"""
from pathlib import Path
import sys
import time
current_file = Path(__file__)
radiomics_root = current_file.absolute().parent.parent.parent.parent.parent
sys.path.append(str(radiomics_root))
from health_azure.himl import submit_to_azure_if_needed, DatasetConfig # noqa
from InnerEye.ML.Histopathology.preprocessing.create_tiles_dataset import main # noqa
# Pre-built environment file that contains all the requirements (RadiomicsNN + histo)
# Assuming ENV_NAME is a complete environment, `conda env export -n ENV_NAME -f ENV_NAME.yml` will create the desired file
ENVIRONMENT_FILE = radiomics_root.joinpath(Path("/envs/innereyeprivatetiles.yml"))
DATASET_NAME = "PANDA_tiles"
timestr = time.strftime("%Y%m%d-%H%M%S")
folder_name = DATASET_NAME + '_' + timestr
if __name__ == '__main__':
print(f"Running {str(current_file)}")
input_dataset = DatasetConfig(name="PANDA", datastore="innereyedatasets", local_folder=Path("/tmp/datasets/PANDA"), use_mounting=True)
output_dataset = DatasetConfig(name=DATASET_NAME, datastore="innereyedatasets", local_folder=Path("/datadrive/"), use_mounting=True)
run_info = submit_to_azure_if_needed(entry_script=current_file,
snapshot_root_directory=radiomics_root,
workspace_config_file=Path("config.json"),
compute_cluster_name='training-pr-nc12', # training-nd24
default_datastore="innereyedatasets",
conda_environment_file=Path(ENVIRONMENT_FILE),
input_datasets=[input_dataset],
output_datasets=[output_dataset],
)
input_folder = run_info.input_datasets[0]
output_folder = Path(run_info.output_datasets[0], folder_name)
print(f'This will be the final ouput folder {str(output_folder)}')
main(panda_dir=str(input_folder),
root_output_dir=str(output_folder),
level=1,
tile_size=224,
margin=64,
occupancy_threshold=0.05,
parallel=True,
overwrite=False)

Просмотреть файл

@ -5,6 +5,41 @@
from enum import Enum from enum import Enum
class SlideKey(str, Enum):
SLIDE_ID = 'slide_id'
IMAGE = 'image'
IMAGE_PATH = 'image_path'
MASK = 'mask'
MASK_PATH = 'mask_path'
LABEL = 'label'
SPLIT = 'split'
SCALE = 'scale'
ORIGIN = 'origin'
FOREGROUND_THRESHOLD = 'foreground_threshold'
METADATA = 'metadata'
class TileKey(str, Enum):
TILE_ID = 'tile_id'
SLIDE_ID = 'slide_id'
IMAGE = 'image'
IMAGE_PATH = 'image_path'
MASK = 'mask'
MASK_PATH = 'mask_path'
LABEL = 'label'
SPLIT = 'split'
TILE_X = 'tile_x'
TILE_Y = 'tile_y'
OCCUPANCY = 'occupancy'
FOREGROUND_THRESHOLD = 'foreground_threshold'
SLIDE_METADATA = 'slide_metadata'
@staticmethod
def from_slide_metadata_key(slide_metadata_key: str) -> str:
return 'slide_' + slide_metadata_key
class ResultsKey(str, Enum): class ResultsKey(str, Enum):
SLIDE_ID = 'slide_id' SLIDE_ID = 'slide_id'
TILE_ID = 'tile_id' TILE_ID = 'tile_id'

Просмотреть файл

@ -4,29 +4,32 @@
# ------------------------------------------------------------------------------------------ # ------------------------------------------------------------------------------------------
import math import math
import matplotlib.pyplot as plt from typing import Any, Dict
import matplotlib.pyplot as plt
from monai.data.dataset import Dataset
from monai.data.image_reader import WSIReader from monai.data.image_reader import WSIReader
from torch.utils.data import DataLoader from torch.utils.data import DataLoader
from InnerEye.ML.Histopathology.datasets.panda_dataset import PandaDataset, LoadPandaROId from InnerEye.ML.Histopathology.datasets.panda_dataset import PandaDataset, LoadPandaROId
from InnerEye.ML.Histopathology.utils.naming import SlideKey
def load_image_dict(sample: dict, level: int, margin: int) -> dict: def load_image_dict(sample: dict, level: int, margin: int) -> Dict[SlideKey, Any]:
""" """
Load image from metadata dictionary Load image from metadata dictionary
param sample: dict describing image metadata. Example: :param sample: dict describing image metadata. Example:
{'image_id': ['1ca999adbbc948e69783686e5b5414e4'], {'image_id': ['1ca999adbbc948e69783686e5b5414e4'],
'image': ['/tmp/datasets/PANDA/train_images/1ca999adbbc948e69783686e5b5414e4.tiff'], 'image': ['/tmp/datasets/PANDA/train_images/1ca999adbbc948e69783686e5b5414e4.tiff'],
'mask': ['/tmp/datasets/PANDA/train_label_masks/1ca999adbbc948e69783686e5b5414e4_mask.tiff'], 'mask': ['/tmp/datasets/PANDA/train_label_masks/1ca999adbbc948e69783686e5b5414e4_mask.tiff'],
'data_provider': ['karolinska'], 'data_provider': ['karolinska'],
'isup_grade': tensor([0]), 'isup_grade': tensor([0]),
'gleason_score': ['0+0']} 'gleason_score': ['0+0']}
param level: level of resolution to be loaded :param level: level of resolution to be loaded
param margin: margin to be included :param margin: margin to be included
return: a dict containing the image data and metadata :return: a dict containing the image data and metadata
""" """
loader = LoadPandaROId(WSIReader(), level=level, margin=margin) loader = LoadPandaROId(WSIReader('cuCIM'), level=level, margin=margin)
img = loader(sample) img = loader(sample)
return img return img
@ -34,25 +37,25 @@ def load_image_dict(sample: dict, level: int, margin: int) -> dict:
def plot_panda_data_sample(panda_dir: str, nsamples: int, ncols: int, level: int, margin: int, def plot_panda_data_sample(panda_dir: str, nsamples: int, ncols: int, level: int, margin: int,
title_key: str = 'data_provider') -> None: title_key: str = 'data_provider') -> None:
""" """
param panda_dir: path to the dataset, it's expected a file called "train.csv" exists at the path. :param panda_dir: path to the dataset, it's expected a file called "train.csv" exists at the path.
Look at the PandaDataset for more detail Look at the PandaDataset for more detail
param nsamples: number of random samples to be visualized :param nsamples: number of random samples to be visualized
param ncols: number of columns in the figure grid. Nrows is automatically inferred :param ncols: number of columns in the figure grid. Nrows is automatically inferred
param level: level of resolution to be loaded :param level: level of resolution to be loaded
param margin: margin to be included :param margin: margin to be included
param title_key: key in image_dict used to label each subplot :param title_key: metadata key in image_dict used to label each subplot
""" """
panda_dataset = PandaDataset(root_dir=panda_dir, n_slides=nsamples) panda_dataset = Dataset(PandaDataset(root=panda_dir))[:nsamples] # type: ignore
loader = DataLoader(panda_dataset, batch_size=1) loader = DataLoader(panda_dataset, batch_size=1)
nrows = math.ceil(nsamples/ncols) nrows = math.ceil(nsamples/ncols)
fig, axes = plt.subplots(ncols=ncols, nrows=nrows, figsize=(9, 9)) fig, axes = plt.subplots(ncols=ncols, nrows=nrows, figsize=(9, 9))
for dict_images, ax in zip(loader, axes.flat): for dict_images, ax in zip(loader, axes.flat):
slide_id = dict_images['image_id'] slide_id = dict_images[SlideKey.SLIDE_ID]
title = dict_images[title_key] title = dict_images[SlideKey.METADATA][title_key]
print(f">>> Slide {slide_id}") print(f">>> Slide {slide_id}")
img = load_image_dict(dict_images, level=level, margin=margin) img = load_image_dict(dict_images, level=level, margin=margin)
ax.imshow(img['image'].transpose(1, 2, 0)) ax.imshow(img[SlideKey.IMAGE].transpose(1, 2, 0))
ax.set_title(title) ax.set_title(title)
fig.tight_layout() fig.tight_layout()

Просмотреть файл

@ -8,7 +8,7 @@ import numpy as np
import pandas as pd import pandas as pd
import pytest import pytest
import torch import torch
from pytorch_lightning.core.step_result import Result from pytorch_lightning.utilities.data import extract_batch_size
from InnerEye.Common import common_util from InnerEye.Common import common_util
from InnerEye.ML.config import PaddingMode, SegmentationModelBase from InnerEye.ML.config import PaddingMode, SegmentationModelBase
@ -502,7 +502,7 @@ def test_sample_metadata_field() -> None:
assert SAMPLE_METADATA_FIELD in fields assert SAMPLE_METADATA_FIELD in fields
# Lightning attempts to determine the batch size by trying to find a tensor field in the sample. # Lightning attempts to determine the batch size by trying to find a tensor field in the sample.
# This only works if any field other than Metadata is first. # This only works if any field other than Metadata is first.
assert Result.unpack_batch_size(fields) == batch_size assert extract_batch_size(fields) == batch_size
def test_custom_collate() -> None: def test_custom_collate() -> None:

Просмотреть файл

@ -0,0 +1,40 @@
import os
import pandas as pd
from InnerEye.Common.fixed_paths_for_tests import tests_root_directory
from InnerEye.ML.Histopathology.datasets.base_dataset import SlidesDataset
from InnerEye.ML.Histopathology.utils.naming import SlideKey
HISTO_TEST_DATA_DIR = str(tests_root_directory("ML/histopathology/test_data"))
class MockSlidesDataset(SlidesDataset):
DEFAULT_CSV_FILENAME = "test_slides_dataset.csv"
METADATA_COLUMNS = ('meta1', 'meta2')
def __init__(self) -> None:
super().__init__(root=HISTO_TEST_DATA_DIR)
def test_slides_dataset() -> None:
dataset = MockSlidesDataset()
assert isinstance(dataset.dataset_df, pd.DataFrame)
assert dataset.dataset_df.index.name == dataset.SLIDE_ID_COLUMN
assert len(dataset) == len(dataset.dataset_df)
sample = dataset[0]
assert isinstance(sample, dict)
assert all(isinstance(key, SlideKey) for key in sample)
expected_keys = [SlideKey.SLIDE_ID, SlideKey.IMAGE, SlideKey.IMAGE_PATH, SlideKey.LABEL,
SlideKey.METADATA]
assert all(key in sample for key in expected_keys)
image_path = sample[SlideKey.IMAGE_PATH]
assert isinstance(image_path, str)
assert os.path.isfile(image_path)
metadata = sample[SlideKey.METADATA]
assert isinstance(metadata, dict)
assert all(meta_col in metadata for meta_col in type(dataset).METADATA_COLUMNS)

Просмотреть файл

@ -1,34 +0,0 @@
# ------------------------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License (MIT). See LICENSE in the repo root for license information.
# ------------------------------------------------------------------------------------------
import os
import pytest
from InnerEye.ML.Histopathology.datasets.default_paths import TCGA_PRAD_DATASET_DIR
from InnerEye.ML.Histopathology.datasets.tcga_prad_dataset import TcgaPradDataset
@pytest.mark.skipif(not os.path.isdir(TCGA_PRAD_DATASET_DIR),
reason="TCGA-PRAD dataset is unavailable")
def test_dataset() -> None:
dataset = TcgaPradDataset(TCGA_PRAD_DATASET_DIR)
expected_length = 449
assert len(dataset) == expected_length
expected_num_positives = 10
assert dataset.dataset_df[dataset.LABEL_COLUMN].sum() == expected_num_positives
sample = dataset[0]
assert isinstance(sample, dict)
expected_keys = [dataset.SLIDE_ID_COLUMN, dataset.CASE_ID_COLUMN,
dataset.IMAGE_COLUMN, dataset.LABEL_COLUMN]
assert all(key in sample for key in expected_keys)
image_path = sample[dataset.IMAGE_COLUMN]
assert isinstance(image_path, str)
assert os.path.isfile(image_path)

Просмотреть файл

@ -0,0 +1,161 @@
from typing import Optional
import numpy as np
import pytest
from cucim import CuImage
from monai.data.image_reader import WSIReader
from InnerEye.Common.fixed_paths_for_tests import tests_root_directory
from InnerEye.ML.Histopathology.preprocessing.tiling import tile_array_2d
from InnerEye.ML.Histopathology.preprocessing.loading import LoadROId, get_luminance, load_slide_at_level, segment_foreground
from InnerEye.ML.Histopathology.utils.naming import SlideKey
from Tests.ML.histopathology.datasets.test_slides_dataset import MockSlidesDataset
TEST_IMAGE_PATH = str(tests_root_directory("ML/histopathology/test_data/panda_wsi_example.tiff"))
def test_load_slide() -> None:
level = 2
reader = WSIReader('cuCIM')
slide_obj: CuImage = reader.read(TEST_IMAGE_PATH)
dims = slide_obj.resolutions['level_dimensions'][level][::-1]
slide = load_slide_at_level(reader, slide_obj, level)
assert isinstance(slide, np.ndarray)
expected_shape = (3, *dims)
assert slide.shape == expected_shape
frac_empty = (slide == 0).mean()
assert frac_empty == 0.0
larger_dims = (2 * dims[0], 2 * dims[1])
larger_slide, _ = reader.get_data(slide_obj, size=larger_dims, level=level)
assert isinstance(larger_slide, np.ndarray)
assert larger_slide.shape == (3, *larger_dims)
# Overlapping parts match exactly
assert np.array_equal(larger_slide[:, :dims[0], :dims[1]], slide)
# Non-overlapping parts are all empty
empty_fill_value = 0 # fill value seems to depend on the image
assert np.array_equiv(larger_slide[:, dims[0]:, :], empty_fill_value)
assert np.array_equiv(larger_slide[:, :, dims[1]:], empty_fill_value)
def test_get_luminance() -> None:
level = 2 # here we only need to test at a single resolution
reader = WSIReader('cuCIM')
slide_obj: CuImage = reader.read(TEST_IMAGE_PATH)
slide = load_slide_at_level(reader, slide_obj, level)
slide_luminance = get_luminance(slide)
assert isinstance(slide_luminance, np.ndarray)
assert slide_luminance.shape == slide.shape[1:]
assert (slide_luminance <= 255).all() and (slide_luminance >= 0).all()
tiles, _ = tile_array_2d(slide, tile_size=224, constant_values=255)
tiles_luminance = get_luminance(tiles)
assert isinstance(tiles_luminance, np.ndarray)
assert tiles_luminance.shape == (tiles.shape[0], *tiles.shape[2:])
assert (tiles_luminance <= 255).all() and (tiles_luminance >= 0).all()
slide_luminance_tiles, _ = tile_array_2d(np.expand_dims(slide_luminance, axis=0),
tile_size=224, constant_values=255)
assert np.array_equal(slide_luminance_tiles.squeeze(1), tiles_luminance)
def test_segment_foreground() -> None:
level = 2 # here we only need to test at a single resolution
reader = WSIReader('cuCIM')
slide_obj: CuImage = reader.read(TEST_IMAGE_PATH)
slide = load_slide_at_level(reader, slide_obj, level)
auto_mask, auto_threshold = segment_foreground(slide, threshold=None)
assert isinstance(auto_mask, np.ndarray)
assert auto_mask.dtype == bool
assert auto_mask.shape == slide.shape[1:]
assert 0 < auto_mask.sum() < auto_mask.size # auto-seg should not produce trivial mask
luminance = get_luminance(slide)
assert luminance.min() < auto_threshold < luminance.max()
mask, returned_threshold = segment_foreground(slide, threshold=auto_threshold)
assert isinstance(mask, np.ndarray)
assert mask.dtype == bool
assert mask.shape == slide.shape[1:]
assert np.array_equal(mask, auto_mask)
assert returned_threshold == auto_threshold
tiles, _ = tile_array_2d(slide, tile_size=224, constant_values=255)
tiles_mask, _ = segment_foreground(tiles, threshold=auto_threshold)
assert isinstance(tiles_mask, np.ndarray)
assert tiles_mask.dtype == bool
assert tiles_mask.shape == (tiles.shape[0], *tiles.shape[2:])
slide_mask_tiles, _ = tile_array_2d(np.expand_dims(mask, axis=0),
tile_size=224, constant_values=False)
assert np.array_equal(slide_mask_tiles.squeeze(1), tiles_mask)
@pytest.mark.parametrize('level', [1, 2])
@pytest.mark.parametrize('foreground_threshold', [None, 215])
def test_get_bounding_box(level: int, foreground_threshold: Optional[float]) -> None:
margin = 0
reader = WSIReader('cuCIM')
loader = LoadROId(reader, image_key=SlideKey.IMAGE, level=level, margin=margin,
foreground_threshold=foreground_threshold)
slide_obj: CuImage = reader.read(TEST_IMAGE_PATH)
level0_bbox, _ = loader._get_bounding_box(slide_obj)
highest_level = slide_obj.resolutions['level_count'] - 1
# level = highest_level
slide = load_slide_at_level(reader, slide_obj, level=level)
scale = slide_obj.resolutions['level_downsamples'][level]
bbox = level0_bbox / scale
assert bbox.x >= 0 and bbox.y >= 0
assert bbox.x + bbox.w <= slide.shape[1]
assert bbox.y + bbox.h <= slide.shape[2]
# Now with nonzero margin
margin = 42
loader_margin = LoadROId(reader, image_key=SlideKey.IMAGE, level=level, margin=margin,
foreground_threshold=foreground_threshold)
level0_bbox_margin, _ = loader_margin._get_bounding_box(slide_obj)
# Here we test the box differences at the highest resolution, because margin is
# specified in low-res pixels. Otherwise could fail due to rounding error.
level0_scale: float = slide_obj.resolutions['level_downsamples'][highest_level]
level0_margin = int(level0_scale * margin)
assert level0_bbox_margin.x == level0_bbox.x - level0_margin
assert level0_bbox_margin.y == level0_bbox.y - level0_margin
assert level0_bbox_margin.w == level0_bbox.w + 2 * level0_margin
assert level0_bbox_margin.h == level0_bbox.h + 2 * level0_margin
@pytest.mark.parametrize('level', [1, 2])
@pytest.mark.parametrize('margin', [0, 42])
@pytest.mark.parametrize('foreground_threshold', [None, 215])
def test_load_roi(level: int, margin: int, foreground_threshold: Optional[float]) -> None:
dataset = MockSlidesDataset()
sample = dataset[0]
reader = WSIReader('cuCIM')
loader = LoadROId(reader, image_key=SlideKey.IMAGE, level=level, margin=margin,
foreground_threshold=foreground_threshold)
loaded_sample = loader(sample)
assert isinstance(loaded_sample, dict)
# Check that none of the input keys were removed
assert all(key in loaded_sample for key in sample)
# Check that the expected new keys were inserted
additional_keys = [SlideKey.ORIGIN, SlideKey.SCALE, SlideKey.FOREGROUND_THRESHOLD]
assert all(key in loaded_sample for key in additional_keys)
assert isinstance(loaded_sample[SlideKey.IMAGE], np.ndarray)
image_shape = loaded_sample[SlideKey.IMAGE].shape
assert len(image_shape)
assert image_shape[0] == 3
origin = loaded_sample[SlideKey.ORIGIN]
assert isinstance(origin, tuple)
assert len(origin) == 2
assert all(isinstance(coord, int) for coord in origin)
assert isinstance(loaded_sample[SlideKey.SCALE], (int, float))
assert loaded_sample[SlideKey.SCALE] >= 1.0
assert isinstance(loaded_sample[SlideKey.FOREGROUND_THRESHOLD], (int, float))

Просмотреть файл

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:06eb0acaa2883181e9b6ab976863f71cc843a75ed9175fae8fe9b879635af1b0
size 816563

Просмотреть файл

@ -0,0 +1,2 @@
slide_id,image,label,meta1,meta2
foo,panda_wsi_example.tiff,0,bar,baz
1 slide_id image label meta1 meta2
2 foo panda_wsi_example.tiff 0 bar baz

Просмотреть файл

@ -20,6 +20,7 @@ dependencies:
- azureml-tensorboard==1.36.0 - azureml-tensorboard==1.36.0
- conda-merge==0.1.5 - conda-merge==0.1.5
- cryptography==3.3.2 - cryptography==3.3.2
- cucim==21.10.1; platform_system=="Linux"
- dataclasses-json==0.5.2 - dataclasses-json==0.5.2
- docker==4.3.1 - docker==4.3.1
- flake8==3.8.3 - flake8==3.8.3

Просмотреть файл

@ -1,6 +1,6 @@
[pytest] [pytest]
testpaths=Tests TestsOutsidePackage TestSubmodule testpaths=Tests TestsOutsidePackage TestSubmodule
norecursedirs=azure-pipelines docs datasets sphinx-docs InnerEye logs outputs test_data norecursedirs=azure-pipelines docs sphinx-docs InnerEye logs outputs test_data Tests/ML/datasets
addopts=--strict-markers addopts=--strict-markers
markers= markers=
gpu: Test needs a GPU to run gpu: Test needs a GPU to run