DOC: Add part of the API to the Sphinx docs (#718)
* Add part of the API to the Sphinx docs * Improve layout of landing page * Remove redundant caption * Include all documentation in Sphinx and fix docstrings * Remove redundant options
This commit is contained in:
Родитель
c5b16e5d62
Коммит
a15a1a2ce3
|
@ -114,8 +114,9 @@ def random_crop(sample: Sample,
|
|||
:param class_weights: A weighting vector with values [0, 1] to influence the class the center crop
|
||||
voxel belongs to (must sum to 1), uniform distribution assumed if none provided.
|
||||
:return: Tuple item 1: The cropped images, labels, and mask. Tuple item 2: The center that was chosen for the crop,
|
||||
before shifting to be inside of the image. Tuple item 3: The slicers that convert the input image to the chosen
|
||||
crop.
|
||||
before shifting to be inside of the image. Tuple item 3: The slicers that convert the input image to the chosen
|
||||
crop.
|
||||
|
||||
:raises ValueError: If there are shape mismatches among the arguments or if the crop size is larger than the image.
|
||||
"""
|
||||
slicers, center = slicers_for_random_crop(sample, crop_size, class_weights)
|
||||
|
|
|
@ -76,6 +76,7 @@ class AddGaussianNoise:
|
|||
|
||||
class ElasticTransform:
|
||||
"""Elastic deformation of images as described in [Simard2003]_.
|
||||
|
||||
.. [Simard2003] Simard, Steinkraus and Platt, "Best Practices for
|
||||
Convolutional Neural Networks applied to Visual Document Analysis", in
|
||||
Proc. of the International Conference on Document Analysis and
|
||||
|
|
|
@ -239,6 +239,7 @@ class InferencePipeline(FullImageInferencePipelineBase):
|
|||
patient_id: int = 0) -> InferencePipeline.Result:
|
||||
"""
|
||||
Performs a single inference pass through the pipeline for the provided image
|
||||
|
||||
:param image_channels: The input image channels to perform inference on in format: Channels x Z x Y x X.
|
||||
:param voxel_spacing_mm: Voxel spacing to use for each dimension in (Z x Y x X) order
|
||||
:param mask: A binary image used to ignore results outside it in format: Z x Y x X.
|
||||
|
|
|
@ -75,6 +75,7 @@ class ScalarInferencePipeline(ScalarInferencePipelineBase):
|
|||
pipeline_id: int = 0) -> Optional[ScalarInferencePipeline]:
|
||||
"""
|
||||
Creates an inference pipeline from a single checkpoint.
|
||||
|
||||
:param path_to_checkpoint: Path to the checkpoint to recover.
|
||||
:param config: Model configuration information.
|
||||
:param pipeline_id: ID for the pipeline to be created.
|
||||
|
@ -95,11 +96,12 @@ class ScalarInferencePipeline(ScalarInferencePipelineBase):
|
|||
def predict(self, sample: Dict[str, Any]) -> ScalarInferencePipelineBase.Result:
|
||||
"""
|
||||
Runs the forward pass on a single batch.
|
||||
|
||||
:param sample: Single batch of input data.
|
||||
In the form of a dict containing at least the fields:
|
||||
metadata, label, images, numerical_non_image_features,
|
||||
categorical_non_image_features and segmentations.
|
||||
:return: Returns ScalarInferencePipelineBase.Result with the subject ids, ground truth labels and predictions.
|
||||
In the form of a dictionary containing at least the fields:
|
||||
metadata, label, images, numerical_non_image_features,
|
||||
categorical_non_image_features and segmentations.
|
||||
:return: ScalarInferencePipelineBase.Result with the subject ids, ground truth labels and predictions.
|
||||
"""
|
||||
assert isinstance(self.model_config, ScalarModelBase)
|
||||
model_inputs_and_labels = get_scalar_model_inputs_and_labels(self.model.model,
|
||||
|
@ -158,10 +160,11 @@ class ScalarEnsemblePipeline(ScalarInferencePipelineBase):
|
|||
"""
|
||||
Performs inference on a single batch. First does the forward pass on all of the single inference pipelines,
|
||||
and then aggregates the results.
|
||||
|
||||
:param sample: single batch of input data.
|
||||
In the form of a dict containing at least the fields:
|
||||
metadata, label, images, numerical_non_image_features,
|
||||
categorical_non_image_features and segmentations.
|
||||
In the form of a dictionary containing at least the fields:
|
||||
metadata, label, images, numerical_non_image_features,
|
||||
categorical_non_image_features and segmentations.
|
||||
:return: Returns ScalarInferencePipelineBase.Result with the subject ids, ground truth labels and predictions.
|
||||
"""
|
||||
results = [pipeline.predict(sample) for pipeline in self.pipelines]
|
||||
|
|
|
@ -77,3 +77,10 @@ source_suffix = {
|
|||
'.rst': 'restructuredtext',
|
||||
'.md': 'markdown',
|
||||
}
|
||||
|
||||
# Autodoc options
|
||||
|
||||
autodoc_default_options = {
|
||||
'members': True,
|
||||
'undoc-members': True,
|
||||
}
|
||||
|
|
|
@ -8,7 +8,6 @@ InnerEye-DeepLearning Documentation
|
|||
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
:caption: Contents
|
||||
|
||||
md/README.md
|
||||
md/docs/WSL.md
|
||||
|
@ -19,12 +18,6 @@ InnerEye-DeepLearning Documentation
|
|||
md/docs/sample_tasks.md
|
||||
md/docs/debugging_and_monitoring.md
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
:caption: About Model Configs
|
||||
|
||||
rst/configs.rst
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
:caption: Further reading for contributors
|
||||
|
@ -33,6 +26,21 @@ InnerEye-DeepLearning Documentation
|
|||
md/docs/testing.md
|
||||
md/docs/contributing.md
|
||||
|
||||
md/docs/hello_world_model.md
|
||||
md/docs/deploy_on_aml.md
|
||||
md/docs/bring_your_own_model.md
|
||||
md/docs/fastmri.md
|
||||
md/docs/innereye_as_submodule.md
|
||||
md/docs/model_diagnostics.md
|
||||
md/docs/move_model.md
|
||||
md/docs/releases.md
|
||||
md/docs/self_supervised_models.md
|
||||
md/CHANGELOG.md
|
||||
|
||||
.. toctree::
|
||||
:caption: API documentation
|
||||
|
||||
rst/api/index
|
||||
|
||||
|
||||
Indices and tables
|
||||
|
@ -40,4 +48,3 @@ Indices and tables
|
|||
|
||||
* :ref:`genindex`
|
||||
* :ref:`modindex`
|
||||
* :ref:`search`
|
||||
|
|
|
@ -0,0 +1,8 @@
|
|||
Data augmentation
|
||||
=================
|
||||
|
||||
.. automodule:: InnerEye.ML.augmentations.augmentation_for_segmentation_utils
|
||||
|
||||
.. automodule:: InnerEye.ML.augmentations.image_transforms
|
||||
|
||||
.. automodule:: InnerEye.ML.augmentations.transform_pipeline
|
|
@ -40,6 +40,4 @@ Segmentation Model Configuration
|
|||
.. autoattribute:: is_plotting_enabled
|
||||
|
||||
.. automodule:: InnerEye.ML.config
|
||||
:members:
|
||||
:undoc-members:
|
||||
:exclude-members: SegmentationModelBase
|
|
@ -0,0 +1,10 @@
|
|||
Machine learning
|
||||
================
|
||||
|
||||
.. toctree::
|
||||
|
||||
configs
|
||||
runner
|
||||
augmentations
|
||||
photometric_normalization
|
||||
pipelines
|
|
@ -0,0 +1,4 @@
|
|||
Photometric normalization
|
||||
=========================
|
||||
|
||||
.. automodule:: InnerEye.ML.photometric_normalization
|
|
@ -0,0 +1,8 @@
|
|||
Pipelines
|
||||
=========
|
||||
|
||||
.. automodule:: InnerEye.ML.pipelines.inference
|
||||
|
||||
.. automodule:: InnerEye.ML.pipelines.ensemble
|
||||
|
||||
.. automodule:: InnerEye.ML.pipelines.scalar_inference
|
|
@ -0,0 +1,4 @@
|
|||
Runner
|
||||
======
|
||||
|
||||
.. automodule:: InnerEye.ML.runner
|
|
@ -0,0 +1,3 @@
|
|||
.. toctree::
|
||||
|
||||
ML/index
|
Загрузка…
Ссылка в новой задаче