# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. # please use 4 GPU task=tacred GPU='0,1,2,3' CUDA_VISIBLE_DEVICES=$GPU python examples/run_finetune_TACRED_adapter.py \ --model_type roberta \ --model_name_or_path roberta-large \ --config_name roberta-large \ --do_train \ --do_eval \ --task_name=$task \ --data_dir=data/TACRED \ --output_dir=./proc_data \ --comment 'combine-adapter-dif-trf' \ --max_seq_length=184 \ --per_gpu_eval_batch_size=8 \ --per_gpu_train_batch_size=8 \ --learning_rate=5e-6 \ --gradient_accumulation_steps=1 \ --max_steps=12000 \ --model_name=roberta-large \ --overwrite_output_dir \ --overwrite_cache \ --warmup_steps=1000 \ --negative_sample=45000 \ --save_steps=500 \ --freeze_bert="" \ --freeze_adapter="True" \ --adapter_size 768 \ --adapter_list "0,11,22" \ --adapter_skip_layers 0 \ --meta_fac_adaptermodel="./pretrained_models/fac-adapter/pytorch_model.bin" \ --meta_lin_adaptermodel="./pretrained_models/lin-adapter/pytorch_model.bin"