LQ-Nets/learned_quantization.py

381 строка
15 KiB
Python
Исходник Обычный вид История

2018-07-25 21:45:28 +03:00
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# File: learned_quantization.py
import tensorflow as tf
from tensorflow.contrib.framework import add_model_variable
from tensorflow.python.training import moving_averages
from tensorpack.models import *
from tensorpack.tfutils.tower import get_current_tower_context
MOVING_AVERAGES_FACTOR = 0.9
EPS = 0.0001
NORM_PPF_0_75 = 0.6745
@layer_register()
def QuantizedActiv(x, nbit=2):
"""
Quantize activation.
Args:
x (tf.Tensor): a 4D tensor.
nbit (int): number of bits of quantized activation. Defaults to 2.
Returns:
tf.Tensor with attribute `variables`.
Variable Names:
* ``basis``: basis of quantized activation.
Note:
About multi-GPU training: moving averages across GPUs are not aggregated.
Batch statistics are computed by main training tower. This is consistent with most frameworks.
"""
init_basis = [(NORM_PPF_0_75 * 2 / (2 ** nbit - 1)) * (2. ** i) for i in range(nbit)]
init_basis = tf.constant_initializer(init_basis)
bit_dims = [nbit, 1]
num_levels = 2 ** nbit
# initialize level multiplier
init_level_multiplier = []
for i in range(0, num_levels):
level_multiplier_i = [0. for j in range(nbit)]
level_number = i
for j in range(nbit):
level_multiplier_i[j] = float(level_number % 2)
level_number = level_number // 2
init_level_multiplier.append(level_multiplier_i)
# initialize threshold multiplier
init_thrs_multiplier = []
for i in range(1, num_levels):
thrs_multiplier_i = [0. for j in range(num_levels)]
thrs_multiplier_i[i - 1] = 0.5
thrs_multiplier_i[i] = 0.5
init_thrs_multiplier.append(thrs_multiplier_i)
with tf.variable_scope('ActivationQuantization'):
basis = tf.get_variable(
'basis', bit_dims, tf.float32,
initializer=init_basis,
trainable=False)
ctx = get_current_tower_context() # current tower context
# calculate levels and sort
level_codes = tf.constant(init_level_multiplier)
levels = tf.matmul(level_codes, basis)
levels, sort_id = tf.nn.top_k(tf.transpose(levels, [1, 0]), num_levels)
levels = tf.reverse(levels, [-1])
sort_id = tf.reverse(sort_id, [-1])
levels = tf.transpose(levels, [1, 0])
sort_id = tf.transpose(sort_id, [1, 0])
# calculate threshold
thrs_multiplier = tf.constant(init_thrs_multiplier)
thrs = tf.matmul(thrs_multiplier, levels)
# calculate output y and its binary code
y = tf.zeros_like(x) # output
reshape_x = tf.reshape(x, [-1])
zero_dims = tf.stack([tf.shape(reshape_x)[0], nbit])
bits_y = tf.fill(zero_dims, 0.)
zero_y = tf.zeros_like(x)
zero_bits_y = tf.fill(zero_dims, 0.)
for i in range(num_levels - 1):
g = tf.greater(x, thrs[i])
y = tf.where(g, zero_y + levels[i + 1], y)
bits_y = tf.where(tf.reshape(g, [-1]), zero_bits_y + level_codes[sort_id[i + 1][0]], bits_y)
# training
if ctx.is_main_training_tower:
BT = tf.matrix_transpose(bits_y)
# calculate BTxB
BTxB = []
for i in range(nbit):
for j in range(nbit):
BTxBij = tf.multiply(BT[i], BT[j])
BTxBij = tf.reduce_sum(BTxBij)
BTxB.append(BTxBij)
BTxB = tf.reshape(tf.stack(values=BTxB), [nbit, nbit])
BTxB_inv = tf.matrix_inverse(BTxB)
# calculate BTxX
BTxX = []
for i in range(nbit):
BTxXi0 = tf.multiply(BT[i], reshape_x)
BTxXi0 = tf.reduce_sum(BTxXi0)
BTxX.append(BTxXi0)
BTxX = tf.reshape(tf.stack(values=BTxX), [nbit, 1])
new_basis = tf.matmul(BTxB_inv, BTxX) # calculate new basis
# create moving averages op
updata_moving_basis = moving_averages.assign_moving_average(
basis, new_basis, MOVING_AVERAGES_FACTOR)
add_model_variable(basis)
tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, updata_moving_basis)
for i in range(nbit):
tf.summary.scalar('basis%d' % i, new_basis[i][0])
x_clip = tf.minimum(x, levels[num_levels - 1]) # gradient clip
y = x_clip + tf.stop_gradient(-x_clip) + tf.stop_gradient(y) # gradient: y=clip(x)
y.variables = VariableHolder(basis=basis)
return y
def QuantizedWeight(name, x, n, nbit=2):
"""
Quantize weight.
Args:
x (tf.Tensor): a 4D tensor.
Must have known number of channels, but can have other unknown dimensions.
name (str): operator's name.
n (int or double): variance of weight initialization.
nbit (int): number of bits of quantized weight. Defaults to 2.
Returns:
tf.Tensor with attribute `variables`.
Variable Names:
* ``basis``: basis of quantized weight.
Note:
About multi-GPU training: moving averages across GPUs are not aggregated.
Batch statistics are computed by main training tower. This is consistent with most frameworks.
"""
num_filters = x.get_shape().as_list()[-1]
init_basis = []
base = NORM_PPF_0_75 * ((2. / n) ** 0.5) / (2 ** (nbit - 1))
for j in range(nbit):
init_basis.append([(2 ** j) * base for i in range(num_filters)])
init_basis = tf.constant_initializer(init_basis)
bit_dims = [nbit, num_filters]
num_levels = 2 ** nbit
delta = EPS
# initialize level multiplier
init_level_multiplier = []
for i in range(num_levels):
level_multiplier_i = [0. for j in range(nbit)]
level_number = i
for j in range(nbit):
binary_code = level_number % 2
if binary_code == 0:
binary_code = -1
level_multiplier_i[j] = float(binary_code)
level_number = level_number // 2
init_level_multiplier.append(level_multiplier_i)
# initialize threshold multiplier
init_thrs_multiplier = []
for i in range(1, num_levels):
thrs_multiplier_i = [0. for j in range(num_levels)]
thrs_multiplier_i[i - 1] = 0.5
thrs_multiplier_i[i] = 0.5
init_thrs_multiplier.append(thrs_multiplier_i)
with tf.variable_scope(name):
basis = tf.get_variable(
'basis', bit_dims, tf.float32,
initializer=init_basis,
trainable=False)
level_codes = tf.constant(init_level_multiplier)
thrs_multiplier = tf.constant(init_thrs_multiplier)
sum_multiplier = tf.constant(1., shape=[1, tf.reshape(x, [-1, num_filters]).get_shape()[0]])
sum_multiplier_basis = tf.constant(1., shape=[1, nbit])
ctx = get_current_tower_context() # current tower context
# calculate levels and sort
levels = tf.matmul(level_codes, basis)
levels, sort_id = tf.nn.top_k(tf.transpose(levels, [1, 0]), num_levels)
levels = tf.reverse(levels, [-1])
sort_id = tf.reverse(sort_id, [-1])
levels = tf.transpose(levels, [1, 0])
sort_id = tf.transpose(sort_id, [1, 0])
# calculate threshold
thrs = tf.matmul(thrs_multiplier, levels)
# calculate level codes per channel
reshape_x = tf.reshape(x, [-1, num_filters])
level_codes_channelwise_dims = tf.stack([num_levels * num_filters, nbit])
level_codes_channelwise = tf.fill(level_codes_channelwise_dims, 0.)
for i in range(num_levels):
eq = tf.equal(sort_id, i)
level_codes_channelwise = tf.where(tf.reshape(eq, [-1]), level_codes_channelwise + level_codes[i], level_codes_channelwise)
level_codes_channelwise = tf.reshape(level_codes_channelwise, [num_levels, num_filters, nbit])
# calculate output y and its binary code
y = tf.zeros_like(x) + levels[0] # output
zero_dims = tf.stack([tf.shape(reshape_x)[0] * num_filters, nbit])
bits_y = tf.fill(zero_dims, -1.)
zero_y = tf.zeros_like(x)
zero_bits_y = tf.fill(zero_dims, 0.)
zero_bits_y = tf.reshape(zero_bits_y, [-1, num_filters, nbit])
for i in range(num_levels - 1):
g = tf.greater(x, thrs[i])
y = tf.where(g, zero_y + levels[i + 1], y)
bits_y = tf.where(tf.reshape(g, [-1]), tf.reshape(zero_bits_y + level_codes_channelwise[i + 1], [-1, nbit]), bits_y)
bits_y = tf.reshape(bits_y, [-1, num_filters, nbit])
# training
if ctx.is_main_training_tower:
BT = tf.transpose(bits_y, [2, 0, 1])
# calculate BTxB
BTxB = []
for i in range(nbit):
for j in range(nbit):
BTxBij = tf.multiply(BT[i], BT[j])
BTxBij = tf.matmul(sum_multiplier, BTxBij)
if i == j:
mat_one = tf.ones([1, num_filters])
BTxBij = BTxBij + (delta * mat_one) # + E
BTxB.append(BTxBij)
BTxB = tf.reshape(tf.stack(values=BTxB), [nbit, nbit, num_filters])
# calculate inverse of BTxB
if nbit > 2:
BTxB_transpose = tf.transpose(BTxB, [2, 0, 1])
BTxB_inv = tf.matrix_inverse(BTxB_transpose)
BTxB_inv = tf.transpose(BTxB_inv, [1, 2, 0])
elif nbit == 2:
det = tf.multiply(BTxB[0][0], BTxB[1][1]) - tf.multiply(BTxB[0][1], BTxB[1][0])
inv = []
inv.append(BTxB[1][1] / det)
inv.append(-BTxB[0][1] / det)
inv.append(-BTxB[1][0] / det)
inv.append(BTxB[0][0] / det)
BTxB_inv = tf.reshape(tf.stack(values=inv), [nbit, nbit, num_filters])
elif nbit == 1:
BTxB_inv = tf.reciprocal(BTxB)
# calculate BTxX
BTxX = []
for i in range(nbit):
BTxXi0 = tf.multiply(BT[i], reshape_x)
BTxXi0 = tf.matmul(sum_multiplier, BTxXi0)
BTxX.append(BTxXi0)
BTxX = tf.reshape(tf.stack(values=BTxX), [nbit, num_filters])
BTxX = BTxX + (delta * basis) # + basis
# calculate new basis
new_basis = []
for i in range(nbit):
new_basis_i = tf.multiply(BTxB_inv[i], BTxX)
new_basis_i = tf.matmul(sum_multiplier_basis, new_basis_i)
new_basis.append(new_basis_i)
new_basis = tf.reshape(tf.stack(values=new_basis), [nbit, num_filters])
# create moving averages op
updata_moving_basis = moving_averages.assign_moving_average(
basis, new_basis, MOVING_AVERAGES_FACTOR)
add_model_variable(basis)
tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, updata_moving_basis)
y = x + tf.stop_gradient(-x) + tf.stop_gradient(y) # gradient: y=x
y.variables = VariableHolder(basis=basis)
return y
@layer_register()
def Conv2DQuant(x, out_channel, kernel_shape,
padding='SAME', stride=1,
W_init=None, b_init=None,
nl=tf.identity, split=1, use_bias=True,
data_format='NHWC', is_quant=True, nbit=1, fc=False):
"""
2D convolution on 4D inputs.
Args:
x (tf.Tensor): a 4D tensor.
Must have known number of channels, but can have other unknown dimensions.
out_channel (int): number of output channel.
kernel_shape: (h, w) tuple or a int.
stride: (h, w) tuple or a int.
padding (str): 'valid' or 'same'. Case insensitive.
split (int): Split channels as used in Alexnet. Defaults to 1 (no split).
W_init: initializer for W. Defaults to `variance_scaling_initializer`.
b_init: initializer for b. Defaults to zero.
nl: a nonlinearity function.
use_bias (bool): whether to use bias.
data_format (str): 'NHWC' or 'NCHW'. Defaults to 'NHWC'.
is_quant (bool): whether to quantize weight. Defaults to 'True'.
nbit (int): number of bits of quantized weight. Defaults to 1.
fc (bool): whether to convert Conv2D to FullyConnect. Defaults to 'False'.
Returns:
tf.Tensor named ``output`` with attribute `variables`.
Variable Names:
* ``W``: weights
* ``b``: bias
"""
n = kernel_shape * kernel_shape * out_channel
in_shape = x.get_shape().as_list()
channel_axis = 3 if data_format == 'NHWC' else 1
in_channel = in_shape[channel_axis]
assert in_channel is not None, "[Conv2DQuant] Input cannot have unknown channel!"
assert in_channel % split == 0
assert out_channel % split == 0
if fc:
x = tf.reshape(x, [-1, in_channel, 1, 1])
kernel_shape = [kernel_shape, kernel_shape]
padding = padding.upper()
filter_shape = kernel_shape + [in_channel / split, out_channel]
if data_format == 'NCHW':
stride = [1, 1, stride, stride]
else:
stride = [1, stride, stride, 1]
if W_init is None:
W_init = tf.contrib.layers.variance_scaling_initializer()
if b_init is None:
b_init = tf.constant_initializer()
W = tf.get_variable('W', filter_shape, initializer=W_init)
kernel_in = W * 1
tf.summary.scalar('weight', tf.reduce_mean(tf.abs(W)))
if is_quant:
quantized_weight = QuantizedWeight('weight_quant', kernel_in, n, nbit=nbit)
else:
quantized_weight = kernel_in
if use_bias:
b = tf.get_variable('b', [out_channel], initializer=b_init)
if split == 1:
conv = tf.nn.conv2d(x, quantized_weight, stride, padding, data_format=data_format)
else:
inputs = tf.split(x, split, channel_axis)
kernels = tf.split(quantized_weight, split, 3)
outputs = [tf.nn.conv2d(i, k, stride, padding, data_format=data_format)
for i, k in zip(inputs, kernels)]
conv = tf.concat(outputs, channel_axis)
ret = nl(tf.nn.bias_add(conv, b, data_format=data_format) if use_bias else conv, name='output')
ret.variables = VariableHolder(W=W)
if use_bias:
ret.variables.b = b
if fc:
ret = tf.reshape(ret, [-1, out_channel])
return ret
@layer_register(log_shape=False, use_scope=None)
def BNReLUQuant(x):
"""
A shorthand of BatchNormalization + ReLU + QuantizedActiv.
"""
x = BatchNorm('bn', x)
x = tf.nn.relu(x)
x = QuantizedActiv('quant', x)
return x
def getBNReLUQuant(x, name=None):
"""
A shorthand of BatchNormalization + ReLU + QuantizedActiv.
"""
x = BatchNorm('bn', x)
x = tf.nn.relu(x, name=name)
x = QuantizedActiv('quant', x)
return x
def getfcBNReLUQuant(x, name=None):
"""
A shorthand of BatchNormalization + ReLU + QuantizedActiv after FullyConnect.
"""
x = BatchNorm('bn', x, data_format='NHWC', use_scale=False, use_bias=False)
x = tf.nn.relu(x, name=name)
x = QuantizedActiv('quant', x)
return x
def getfcBNReLU(x, name=None):
"""
A shorthand of BatchNormalization + ReLU after FullyConnect.
"""
x = BatchNorm('bn', x, data_format='NHWC', use_scale=False, use_bias=False)
x = tf.nn.relu(x, name=name)
return x