зеркало из https://github.com/microsoft/LightGBM.git
[docs][python] fix shape description of returned result for predict_proba (#3933)
* Update dask.py * Update sklearn.py
This commit is contained in:
Родитель
18d57934b0
Коммит
15916a9504
|
@ -630,7 +630,7 @@ class DaskLGBMClassifier(LGBMClassifier, _DaskLGBMModel):
|
|||
fit.__doc__ = (
|
||||
_base_doc[:_base_doc.find('callbacks :')]
|
||||
+ '**kwargs\n'
|
||||
+ ' ' * 12 + 'Other parameters passed through to ``LGBMClassifier.fit()``\n'
|
||||
+ ' ' * 12 + 'Other parameters passed through to ``LGBMClassifier.fit()``.\n'
|
||||
)
|
||||
|
||||
def predict(self, X: _DaskMatrixLike, **kwargs: Any) -> dask_Array:
|
||||
|
@ -664,7 +664,7 @@ class DaskLGBMClassifier(LGBMClassifier, _DaskLGBMModel):
|
|||
description="Return the predicted probability for each class for each sample.",
|
||||
X_shape="Dask Array or Dask DataFrame of shape = [n_samples, n_features]",
|
||||
output_name="predicted_probability",
|
||||
predicted_result_shape="Dask Array of shape = [n_samples, n_classes]",
|
||||
predicted_result_shape="Dask Array of shape = [n_samples] or shape = [n_samples, n_classes]",
|
||||
X_leaves_shape="Dask Array of shape = [n_samples, n_trees] or shape = [n_samples, n_trees * n_classes]",
|
||||
X_SHAP_values_shape="Dask Array of shape = [n_samples, n_features + 1] or shape = [n_samples, (n_features + 1) * n_classes]"
|
||||
)
|
||||
|
@ -781,7 +781,7 @@ class DaskLGBMRegressor(LGBMRegressor, _DaskLGBMModel):
|
|||
fit.__doc__ = (
|
||||
_base_doc[:_base_doc.find('callbacks :')]
|
||||
+ '**kwargs\n'
|
||||
+ ' ' * 12 + 'Other parameters passed through to ``LGBMRegressor.fit()``\n'
|
||||
+ ' ' * 12 + 'Other parameters passed through to ``LGBMRegressor.fit()``.\n'
|
||||
)
|
||||
|
||||
def predict(self, X: _DaskMatrixLike, **kwargs) -> dask_Array:
|
||||
|
@ -922,7 +922,7 @@ class DaskLGBMRanker(LGBMRanker, _DaskLGBMModel):
|
|||
fit.__doc__ = (
|
||||
_base_doc[:_base_doc.find('callbacks :')]
|
||||
+ '**kwargs\n'
|
||||
+ ' ' * 12 + 'Other parameters passed through to ``LGBMRanker.fit()``\n'
|
||||
+ ' ' * 12 + 'Other parameters passed through to ``LGBMRanker.fit()``.\n'
|
||||
)
|
||||
|
||||
def predict(self, X: _DaskMatrixLike, **kwargs: Any) -> dask_Array:
|
||||
|
|
|
@ -933,7 +933,7 @@ class LGBMClassifier(LGBMModel, _LGBMClassifierBase):
|
|||
description="Return the predicted probability for each class for each sample.",
|
||||
X_shape="array-like or sparse matrix of shape = [n_samples, n_features]",
|
||||
output_name="predicted_probability",
|
||||
predicted_result_shape="array-like of shape = [n_samples, n_classes]",
|
||||
predicted_result_shape="array-like of shape = [n_samples] or shape = [n_samples, n_classes]",
|
||||
X_leaves_shape="array-like of shape = [n_samples, n_trees] or shape = [n_samples, n_trees * n_classes]",
|
||||
X_SHAP_values_shape="array-like of shape = [n_samples, n_features + 1] or shape = [n_samples, (n_features + 1) * n_classes] or list with n_classes length of such objects"
|
||||
)
|
||||
|
|
Загрузка…
Ссылка в новой задаче