зеркало из https://github.com/microsoft/LightGBM.git
Add Feature Importance Plot Function (#328)
This commit is contained in:
Родитель
8e190f5934
Коммит
1bf7bbd05e
|
@ -20,6 +20,7 @@ export(lgb.importance)
|
|||
export(lgb.interprete)
|
||||
export(lgb.load)
|
||||
export(lgb.model.dt.tree)
|
||||
export(lgb.plot.importance)
|
||||
export(lgb.save)
|
||||
export(lgb.train)
|
||||
export(lightgbm)
|
||||
|
|
|
@ -0,0 +1,50 @@
|
|||
#' Plot feature importance as a bar graph
|
||||
#'
|
||||
#' Plot previously calculated feature importance: Gain, Cover and Frequency, as a bar graph.
|
||||
#'
|
||||
#' @param tree_imp a \code{data.table} returned by \code{\link{lgb.importance}}.
|
||||
#' @param top_n maximal number of top features to include into the plot.
|
||||
#' @param measure the name of importance measure to plot, can be "Gain", "Cover" or "Frequency".
|
||||
#' @param left_margin (base R barplot) allows to adjust the left margin size to fit feature names.
|
||||
#' @param cex (base R barplot) passed as \code{cex.names} parameter to \code{barplot}.
|
||||
#'
|
||||
#' @details
|
||||
#' The graph represents each feature as a horizontal bar of length proportional to the defined importance of a feature.
|
||||
#' Features are shown ranked in a decreasing importance order.
|
||||
#'
|
||||
#' @return
|
||||
#' The \code{lgb.plot.importance} function creates a \code{barplot}
|
||||
#' and silently returns a processed data.table with \code{top_n} features sorted by defined importance.
|
||||
#'
|
||||
#' @examples
|
||||
#'
|
||||
#' data(agaricus.train, package = 'lightgbm')
|
||||
#' train <- agaricus.train
|
||||
#' dtrain <- lgb.Dataset(train$data, label = train$label)
|
||||
#'
|
||||
#' params = list(objective = "binary",
|
||||
#' learning_rate = 0.01, num_leaves = 63, max_depth = -1,
|
||||
#' min_data_in_leaf = 1, min_sum_hessian_in_leaf = 1)
|
||||
#' model <- lgb.train(params, dtrain, 20)
|
||||
#' model <- lgb.train(params, dtrain, 20)
|
||||
#'
|
||||
#' tree_imp <- lgb.importance(model, percentage = TRUE)
|
||||
#' lgb.plot.importance(tree_imp, top_n = 10, measure = "Gain")
|
||||
#'
|
||||
#' @export
|
||||
|
||||
lgb.plot.importance <- function(tree_imp, top_n = 10, measure = "Gain", left_margin = 10, cex = NULL) {
|
||||
measure <- match.arg(measure, choices = c("Gain", "Cover", "Frequency"), several.ok = FALSE)
|
||||
top_n <- min(top_n, nrow(tree_imp))
|
||||
tree_imp <- tree_imp[order(abs(get(measure)), decreasing = TRUE),][1:top_n,]
|
||||
if (is.null(cex)) {
|
||||
cex <- 2.5 / log2(1 + top_n)
|
||||
}
|
||||
op <- par(no.readonly = TRUE)
|
||||
on.exit(par(op))
|
||||
par(mar = op$mar %>% magrittr::inset(., 2, left_margin))
|
||||
tree_imp[.N:1,
|
||||
barplot(height = get(measure), names.arg = Feature, horiz = TRUE,
|
||||
main = "Feature Importance", xlab = measure, cex.names = cex, las = 1)]
|
||||
invisible(tree_imp)
|
||||
}
|
|
@ -0,0 +1,48 @@
|
|||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/lgb.plot.importance.R
|
||||
\name{lgb.plot.importance}
|
||||
\alias{lgb.plot.importance}
|
||||
\title{Plot feature importance as a bar graph}
|
||||
\usage{
|
||||
lgb.plot.importance(tree_imp, top_n = 10, measure = "Gain",
|
||||
left_margin = 10, cex = NULL)
|
||||
}
|
||||
\arguments{
|
||||
\item{tree_imp}{a \code{data.table} returned by \code{\link{lgb.importance}}.}
|
||||
|
||||
\item{top_n}{maximal number of top features to include into the plot.}
|
||||
|
||||
\item{measure}{the name of importance measure to plot, can be "Gain", "Cover" or "Frequency".}
|
||||
|
||||
\item{left_margin}{(base R barplot) allows to adjust the left margin size to fit feature names.}
|
||||
|
||||
\item{cex}{(base R barplot) passed as \code{cex.names} parameter to \code{barplot}.}
|
||||
}
|
||||
\value{
|
||||
The \code{lgb.plot.importance} function creates a \code{barplot}
|
||||
and silently returns a processed data.table with \code{top_n} features sorted by defined importance.
|
||||
}
|
||||
\description{
|
||||
Plot previously calculated feature importance: Gain, Cover and Frequency, as a bar graph.
|
||||
}
|
||||
\details{
|
||||
The graph represents each feature as a horizontal bar of length proportional to the defined importance of a feature.
|
||||
Features are shown ranked in a decreasing importance order.
|
||||
}
|
||||
\examples{
|
||||
|
||||
data(agaricus.train, package = 'lightgbm')
|
||||
train <- agaricus.train
|
||||
dtrain <- lgb.Dataset(train$data, label = train$label)
|
||||
|
||||
params = list(objective = "binary",
|
||||
learning_rate = 0.01, num_leaves = 63, max_depth = -1,
|
||||
min_data_in_leaf = 1, min_sum_hessian_in_leaf = 1)
|
||||
model <- lgb.train(params, dtrain, 20)
|
||||
model <- lgb.train(params, dtrain, 20)
|
||||
|
||||
tree_imp <- lgb.importance(model, percentage = TRUE)
|
||||
lgb.plot.importance(tree_imp, top_n = 10, measure = "Gain")
|
||||
|
||||
}
|
||||
|
Загрузка…
Ссылка в новой задаче