зеркало из https://github.com/microsoft/LightGBM.git
[python-package] adapt to scikit-learn 1.6 testing changes, pin more packages in R 3.6 CI jobs (#6718)
This commit is contained in:
Родитель
5151fe85f0
Коммит
4531ff548d
|
@ -0,0 +1,79 @@
|
|||
# [description]
|
||||
#
|
||||
# Installs a pinned set of packages that worked together
|
||||
# as of the last R 3.6 release.
|
||||
#
|
||||
|
||||
.install_packages <- function(packages) {
|
||||
install.packages( # nolint: undesirable_function
|
||||
pkgs = paste( # nolint: paste
|
||||
"https://cran.r-project.org/src/contrib/Archive"
|
||||
, packages
|
||||
, sep = "/"
|
||||
)
|
||||
, dependencies = FALSE
|
||||
, lib = Sys.getenv("R_LIBS")
|
||||
, repos = NULL
|
||||
)
|
||||
}
|
||||
|
||||
# when confronted with a bunch of URLs like this, install.packages() sometimes
|
||||
# struggles to determine install order... so install packages in batches here,
|
||||
# starting from the root of the dependency graph and working up
|
||||
|
||||
# there was only a single release of {praise}, so there is no contrib/Archive URL for it
|
||||
install.packages( # nolint: undesirable_function
|
||||
pkgs = "https://cran.r-project.org/src/contrib/praise_1.0.0.tar.gz"
|
||||
, dependencies = FALSE
|
||||
, lib = Sys.getenv("R_LIBS")
|
||||
, repos = NULL
|
||||
)
|
||||
|
||||
.install_packages(c(
|
||||
"brio/brio_1.1.4.tar.gz" # nolint: non_portable_path
|
||||
, "cli/cli_3.6.2.tar.gz" # nolint: non_portable_path
|
||||
, "crayon/crayon_1.5.2.tar.gz" # nolint: non_portable_path
|
||||
, "digest/digest_0.6.36.tar.gz" # nolint: non_portable_path
|
||||
, "evaluate/evaluate_0.23.tar.gz" # nolint: non_portable_path
|
||||
, "fansi/fansi_1.0.5.tar.gz" # nolint: non_portable_path
|
||||
, "fs/fs_1.6.4.tar.gz" # nolint: non_portable_path
|
||||
, "glue/glue_1.7.0.tar.gz" # nolint: non_portable_path
|
||||
, "jsonlite/jsonlite_1.8.8.tar.gz" # nolint: non_portable_path
|
||||
, "lattice/lattice_0.20-41.tar.gz" # nolint: non_portable_path
|
||||
, "magrittr/magrittr_2.0.2.tar.gz" # nolint: non_portable_path
|
||||
, "pkgconfig/pkgconfig_2.0.2.tar.gz" # nolint: non_portable_path
|
||||
, "ps/ps_1.8.0.tar.gz" # nolint: non_portable_path
|
||||
, "R6/R6_2.5.0.tar.gz" # nolint: non_portable_path
|
||||
, "rlang/rlang_1.1.3.tar.gz" # nolint: non_portable_path
|
||||
, "rprojroot/rprojroot_2.0.3.tar.gz" # nolint: non_portable_path
|
||||
, "utf8/utf8_1.2.3.tar.gz" # nolint: non_portable_path
|
||||
, "withr/withr_3.0.1.tar.gz" # nolint: non_portable_path
|
||||
))
|
||||
|
||||
.install_packages(c(
|
||||
"desc/desc_1.4.2.tar.gz" # nolint: non_portable_path
|
||||
, "diffobj/diffobj_0.3.4.tar.gz" # nolint: non_portable_path
|
||||
, "lifecycle/lifecycle_1.0.3.tar.gz" # nolint: non_portable_path
|
||||
, "processx/processx_3.8.3.tar.gz" # nolint: non_portable_path
|
||||
))
|
||||
|
||||
.install_packages(c(
|
||||
"callr/callr_3.7.5.tar.gz" # nolint: non_portable_path
|
||||
, "vctrs/vctrs_0.6.4.tar.gz" # nolint: non_portable_path
|
||||
))
|
||||
|
||||
.install_packages(c(
|
||||
"pillar/pillar_1.8.1.tar.gz" # nolint: non_portable_path
|
||||
, "tibble/tibble_3.2.0.tar.gz" # nolint: non_portable_path
|
||||
))
|
||||
|
||||
.install_packages(c(
|
||||
"pkgbuild/pkgbuild_1.4.4.tar.gz" # nolint: non_portable_path
|
||||
, "rematch2/rematch2_2.1.1.tar.gz" # nolint: non_portable_path
|
||||
, "waldo/waldo_0.5.3.tar.gz" # nolint: non_portable_path
|
||||
))
|
||||
|
||||
.install_packages(c(
|
||||
"pkgload/pkgload_1.3.4.tar.gz" # nolint: non_portable_path
|
||||
, "testthat/testthat_3.2.1.tar.gz" # nolint: non_portable_path
|
||||
))
|
|
@ -108,10 +108,10 @@ if [[ $OS_NAME == "macos" ]]; then
|
|||
export R_TIDYCMD=/usr/local/bin/tidy
|
||||
fi
|
||||
|
||||
# fix for issue where CRAN was not returning {lattice} and {evaluate} when using R 3.6
|
||||
# fix for issue where CRAN was not returning {evaluate}, {lattice}, or {waldo} when using R 3.6
|
||||
# "Warning: dependency ‘lattice’ is not available"
|
||||
if [[ "${R_MAJOR_VERSION}" == "3" ]]; then
|
||||
Rscript --vanilla -e "install.packages(c('https://cran.r-project.org/src/contrib/Archive/lattice/lattice_0.20-41.tar.gz', 'https://cran.r-project.org/src/contrib/Archive/evaluate/evaluate_0.23.tar.gz'), repos = NULL, lib = '${R_LIB_PATH}')"
|
||||
Rscript --vanilla ./.ci/install-old-r-packages.R
|
||||
else
|
||||
# {Matrix} needs {lattice}, so this needs to run before manually installing {Matrix}.
|
||||
# This should be unnecessary on R >=4.4.0
|
||||
|
|
|
@ -14,6 +14,14 @@ try:
|
|||
from sklearn.utils.multiclass import check_classification_targets
|
||||
from sklearn.utils.validation import assert_all_finite, check_array, check_X_y
|
||||
|
||||
# sklearn.utils Tags types can be imported unconditionally once
|
||||
# lightgbm's minimum scikit-learn version is 1.6 or higher
|
||||
try:
|
||||
from sklearn.utils import ClassifierTags as _sklearn_ClassifierTags
|
||||
from sklearn.utils import RegressorTags as _sklearn_RegressorTags
|
||||
except ImportError:
|
||||
_sklearn_ClassifierTags = None
|
||||
_sklearn_RegressorTags = None
|
||||
try:
|
||||
from sklearn.exceptions import NotFittedError
|
||||
from sklearn.model_selection import BaseCrossValidator, GroupKFold, StratifiedKFold
|
||||
|
@ -140,6 +148,8 @@ except ImportError:
|
|||
_LGBMCheckClassificationTargets = None
|
||||
_LGBMComputeSampleWeight = None
|
||||
_LGBMValidateData = None
|
||||
_sklearn_ClassifierTags = None
|
||||
_sklearn_RegressorTags = None
|
||||
_sklearn_version = None
|
||||
|
||||
# additional scikit-learn imports only for type hints
|
||||
|
|
|
@ -40,6 +40,8 @@ from .compat import (
|
|||
_LGBMModelBase,
|
||||
_LGBMRegressorBase,
|
||||
_LGBMValidateData,
|
||||
_sklearn_ClassifierTags,
|
||||
_sklearn_RegressorTags,
|
||||
_sklearn_version,
|
||||
dt_DataTable,
|
||||
pd_DataFrame,
|
||||
|
@ -703,7 +705,6 @@ class LGBMModel(_LGBMModelBase):
|
|||
tags.input_tags.allow_nan = tags_dict["allow_nan"]
|
||||
tags.input_tags.sparse = "sparse" in tags_dict["X_types"]
|
||||
tags.target_tags.one_d_labels = "1dlabels" in tags_dict["X_types"]
|
||||
tags._xfail_checks = tags_dict["_xfail_checks"]
|
||||
return tags
|
||||
|
||||
def __sklearn_tags__(self) -> Optional["_sklearn_Tags"]:
|
||||
|
@ -1291,7 +1292,10 @@ class LGBMRegressor(_LGBMRegressorBase, LGBMModel):
|
|||
return tags
|
||||
|
||||
def __sklearn_tags__(self) -> "_sklearn_Tags":
|
||||
return LGBMModel.__sklearn_tags__(self)
|
||||
tags = LGBMModel.__sklearn_tags__(self)
|
||||
tags.estimator_type = "regressor"
|
||||
tags.regressor_tags = _sklearn_RegressorTags(multi_label=False)
|
||||
return tags
|
||||
|
||||
def fit( # type: ignore[override]
|
||||
self,
|
||||
|
@ -1350,7 +1354,10 @@ class LGBMClassifier(_LGBMClassifierBase, LGBMModel):
|
|||
return tags
|
||||
|
||||
def __sklearn_tags__(self) -> "_sklearn_Tags":
|
||||
return LGBMModel.__sklearn_tags__(self)
|
||||
tags = LGBMModel.__sklearn_tags__(self)
|
||||
tags.estimator_type = "classifier"
|
||||
tags.classifier_tags = _sklearn_ClassifierTags(multi_class=True, multi_label=False)
|
||||
return tags
|
||||
|
||||
def fit( # type: ignore[override]
|
||||
self,
|
||||
|
|
|
@ -17,11 +17,18 @@ from sklearn.ensemble import StackingClassifier, StackingRegressor
|
|||
from sklearn.metrics import accuracy_score, log_loss, mean_squared_error, r2_score
|
||||
from sklearn.model_selection import GridSearchCV, RandomizedSearchCV, train_test_split
|
||||
from sklearn.multioutput import ClassifierChain, MultiOutputClassifier, MultiOutputRegressor, RegressorChain
|
||||
from sklearn.utils.estimator_checks import parametrize_with_checks
|
||||
from sklearn.utils.estimator_checks import parametrize_with_checks as sklearn_parametrize_with_checks
|
||||
from sklearn.utils.validation import check_is_fitted
|
||||
|
||||
import lightgbm as lgb
|
||||
from lightgbm.compat import DATATABLE_INSTALLED, PANDAS_INSTALLED, dt_DataTable, pd_DataFrame, pd_Series
|
||||
from lightgbm.compat import (
|
||||
DATATABLE_INSTALLED,
|
||||
PANDAS_INSTALLED,
|
||||
_sklearn_version,
|
||||
dt_DataTable,
|
||||
pd_DataFrame,
|
||||
pd_Series,
|
||||
)
|
||||
|
||||
from .utils import (
|
||||
assert_silent,
|
||||
|
@ -35,6 +42,9 @@ from .utils import (
|
|||
softmax,
|
||||
)
|
||||
|
||||
SKLEARN_MAJOR, SKLEARN_MINOR, *_ = _sklearn_version.split(".")
|
||||
SKLEARN_VERSION_GTE_1_6 = (int(SKLEARN_MAJOR), int(SKLEARN_MINOR)) >= (1, 6)
|
||||
|
||||
decreasing_generator = itertools.count(0, -1)
|
||||
estimator_classes = (lgb.LGBMModel, lgb.LGBMClassifier, lgb.LGBMRegressor, lgb.LGBMRanker)
|
||||
task_to_model_factory = {
|
||||
|
@ -1432,7 +1442,28 @@ def test_getting_feature_names_in_pd_input(estimator_class):
|
|||
np.testing.assert_array_equal(model.feature_names_in_, X.columns)
|
||||
|
||||
|
||||
@parametrize_with_checks([lgb.LGBMClassifier(), lgb.LGBMRegressor()])
|
||||
# Starting with scikit-learn 1.6 (https://github.com/scikit-learn/scikit-learn/pull/30149),
|
||||
# the only API for marking estimator tests as expected to fail is to pass a keyword argument
|
||||
# to parametrize_with_checks(). That function didn't accept additional arguments in earlier
|
||||
# versions.
|
||||
#
|
||||
# This block defines a patched version of parametrize_with_checks() so lightgbm's tests
|
||||
# can be compatible with scikit-learn <1.6 and >=1.6.
|
||||
#
|
||||
# This should be removed once minimum supported scikit-learn version is at least 1.6.
|
||||
if SKLEARN_VERSION_GTE_1_6:
|
||||
parametrize_with_checks = sklearn_parametrize_with_checks
|
||||
else:
|
||||
|
||||
def parametrize_with_checks(estimator, *args, **kwargs):
|
||||
return sklearn_parametrize_with_checks(estimator)
|
||||
|
||||
|
||||
def _get_expected_failed_tests(estimator):
|
||||
return estimator._more_tags()["_xfail_checks"]
|
||||
|
||||
|
||||
@parametrize_with_checks([lgb.LGBMClassifier(), lgb.LGBMRegressor()], expected_failed_checks=_get_expected_failed_tests)
|
||||
def test_sklearn_integration(estimator, check):
|
||||
estimator.set_params(min_child_samples=1, min_data_in_bin=1)
|
||||
check(estimator)
|
||||
|
@ -1457,7 +1488,6 @@ def test_sklearn_tags_should_correctly_reflect_lightgbm_specific_values(estimato
|
|||
assert sklearn_tags.input_tags.allow_nan is True
|
||||
assert sklearn_tags.input_tags.sparse is True
|
||||
assert sklearn_tags.target_tags.one_d_labels is True
|
||||
assert sklearn_tags._xfail_checks == more_tags["_xfail_checks"]
|
||||
|
||||
|
||||
@pytest.mark.parametrize("task", all_tasks)
|
||||
|
|
Загрузка…
Ссылка в новой задаче