[R-package] Add sparse feature contribution predictions (#5108)

* add predcontrib for sparse inputs

* register newly-added function

* comments

* correct wrong types in test

* forcibly take transpose function from Matrix

* keep row names, test comparison to dense inputs

* workaround for passing test while PR for row names is not merged

* Update R-package/R/lgb.Predictor.R

Co-authored-by: James Lamb <jaylamb20@gmail.com>

* Update R-package/R/lgb.Predictor.R

Co-authored-by: James Lamb <jaylamb20@gmail.com>

* Update R-package/R/lgb.Predictor.R

Co-authored-by: James Lamb <jaylamb20@gmail.com>

* proper handling of integer overflow

* add test for CSR contrib row names

* add more tests for predict(<sparse>, predcontrib=TRUE)

* make linter happy

* linter

* linter

* check error messages for bad input shapes

* fix regex

* hard-coded number of columns in regex for tests

Co-authored-by: James Lamb <jaylamb20@gmail.com>
This commit is contained in:
david-cortes 2022-06-17 17:15:44 +03:00 коммит произвёл GitHub
Родитель 688f73d14a
Коммит 6f92d47aad
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: 4AEE18F83AFDEB23
5 изменённых файлов: 312 добавлений и 1 удалений

Просмотреть файл

@ -37,6 +37,10 @@ export(saveRDS.lgb.Booster)
export(set_field) export(set_field)
export(slice) export(slice)
import(methods) import(methods)
importClassesFrom(Matrix,dgCMatrix)
importClassesFrom(Matrix,dgRMatrix)
importClassesFrom(Matrix,dsparseMatrix)
importClassesFrom(Matrix,dsparseVector)
importFrom(Matrix,Matrix) importFrom(Matrix,Matrix)
importFrom(R6,R6Class) importFrom(R6,R6Class)
importFrom(data.table,":=") importFrom(data.table,":=")
@ -51,6 +55,7 @@ importFrom(graphics,barplot)
importFrom(graphics,par) importFrom(graphics,par)
importFrom(jsonlite,fromJSON) importFrom(jsonlite,fromJSON)
importFrom(methods,is) importFrom(methods,is)
importFrom(methods,new)
importFrom(parallel,detectCores) importFrom(parallel,detectCores)
importFrom(stats,quantile) importFrom(stats,quantile)
importFrom(utils,modifyList) importFrom(utils,modifyList)

Просмотреть файл

@ -1,4 +1,5 @@
#' @importFrom methods is #' @importFrom methods is new
#' @importClassesFrom Matrix dsparseMatrix dsparseVector dgCMatrix dgRMatrix
#' @importFrom R6 R6Class #' @importFrom R6 R6Class
#' @importFrom utils read.delim #' @importFrom utils read.delim
Predictor <- R6::R6Class( Predictor <- R6::R6Class(
@ -126,6 +127,113 @@ Predictor <- R6::R6Class(
num_row <- nrow(preds) num_row <- nrow(preds)
preds <- as.vector(t(preds)) preds <- as.vector(t(preds))
} else if (predcontrib && inherits(data, c("dsparseMatrix", "dsparseVector"))) {
ncols <- .Call(LGBM_BoosterGetNumFeature_R, private$handle)
ncols_out <- integer(1L)
.Call(LGBM_BoosterGetNumClasses_R, private$handle, ncols_out)
ncols_out <- (ncols + 1L) * max(ncols_out, 1L)
if (is.na(ncols_out)) {
ncols_out <- as.numeric(ncols + 1L) * as.numeric(max(ncols_out, 1L))
}
if (!inherits(data, "dsparseVector") && ncols_out > .Machine$integer.max) {
stop("Resulting matrix of feature contributions is too large for R to handle.")
}
if (inherits(data, "dsparseVector")) {
if (length(data) > ncols) {
stop(sprintf("Model was fitted to data with %d columns, input data has %.0f columns."
, ncols
, length(data)))
}
res <- .Call(
LGBM_BoosterPredictSparseOutput_R
, private$handle
, c(0L, as.integer(length(data@x)))
, data@i - 1L
, data@x
, TRUE
, 1L
, ncols
, start_iteration
, num_iteration
, private$params
)
out <- methods::new("dsparseVector")
out@i <- res$indices + 1L
out@x <- res$data
out@length <- ncols_out
return(out)
} else if (inherits(data, "dgRMatrix")) {
if (ncol(data) > ncols) {
stop(sprintf("Model was fitted to data with %d columns, input data has %.0f columns."
, ncols
, ncol(data)))
}
res <- .Call(
LGBM_BoosterPredictSparseOutput_R
, private$handle
, data@p
, data@j
, data@x
, TRUE
, nrow(data)
, ncols
, start_iteration
, num_iteration
, private$params
)
out <- methods::new("dgRMatrix")
out@p <- res$indptr
out@j <- res$indices
out@x <- res$data
out@Dim <- as.integer(c(nrow(data), ncols_out))
} else if (inherits(data, "dgCMatrix")) {
if (ncol(data) != ncols) {
stop(sprintf("Model was fitted to data with %d columns, input data has %.0f columns."
, ncols
, ncol(data)))
}
res <- .Call(
LGBM_BoosterPredictSparseOutput_R
, private$handle
, data@p
, data@i
, data@x
, FALSE
, nrow(data)
, ncols
, start_iteration
, num_iteration
, private$params
)
out <- methods::new("dgCMatrix")
out@p <- res$indptr
out@i <- res$indices
out@x <- res$data
out@Dim <- as.integer(c(nrow(data), length(res$indptr) - 1L))
} else {
stop(sprintf("Predictions on sparse inputs are only allowed for '%s', '%s', '%s' - got: %s"
, "dsparseVector"
, "dgRMatrix"
, "dgCMatrix"
, paste(class(data)
, collapse = ", ")))
}
if (NROW(row.names(data))) {
out@Dimnames[[1L]] <- row.names(data)
}
return(out)
} else { } else {
# Not a file, we need to predict from R object # Not a file, we need to predict from R object

Просмотреть файл

@ -65,6 +65,14 @@ SEXP wrapped_R_raw(void *len) {
return Rf_allocVector(RAWSXP, *(reinterpret_cast<R_xlen_t*>(len))); return Rf_allocVector(RAWSXP, *(reinterpret_cast<R_xlen_t*>(len)));
} }
SEXP wrapped_R_int(void *len) {
return Rf_allocVector(INTSXP, *(reinterpret_cast<R_xlen_t*>(len)));
}
SEXP wrapped_R_real(void *len) {
return Rf_allocVector(REALSXP, *(reinterpret_cast<R_xlen_t*>(len)));
}
SEXP wrapped_Rf_mkChar(void *txt) { SEXP wrapped_Rf_mkChar(void *txt) {
return Rf_mkChar(reinterpret_cast<char*>(txt)); return Rf_mkChar(reinterpret_cast<char*>(txt));
} }
@ -84,6 +92,14 @@ SEXP safe_R_raw(R_xlen_t len, SEXP *cont_token) {
return R_UnwindProtect(wrapped_R_raw, reinterpret_cast<void*>(&len), throw_R_memerr, cont_token, *cont_token); return R_UnwindProtect(wrapped_R_raw, reinterpret_cast<void*>(&len), throw_R_memerr, cont_token, *cont_token);
} }
SEXP safe_R_int(R_xlen_t len, SEXP *cont_token) {
return R_UnwindProtect(wrapped_R_int, reinterpret_cast<void*>(&len), throw_R_memerr, cont_token, *cont_token);
}
SEXP safe_R_real(R_xlen_t len, SEXP *cont_token) {
return R_UnwindProtect(wrapped_R_real, reinterpret_cast<void*>(&len), throw_R_memerr, cont_token, *cont_token);
}
SEXP safe_R_mkChar(char *txt, SEXP *cont_token) { SEXP safe_R_mkChar(char *txt, SEXP *cont_token) {
return R_UnwindProtect(wrapped_Rf_mkChar, reinterpret_cast<void*>(txt), throw_R_memerr, cont_token, *cont_token); return R_UnwindProtect(wrapped_Rf_mkChar, reinterpret_cast<void*>(txt), throw_R_memerr, cont_token, *cont_token);
} }
@ -851,6 +867,76 @@ SEXP LGBM_BoosterPredictForMat_R(SEXP handle,
R_API_END(); R_API_END();
} }
struct SparseOutputPointers {
void* indptr;
int32_t* indices;
void* data;
int indptr_type;
int data_type;
SparseOutputPointers(void* indptr, int32_t* indices, void* data)
: indptr(indptr), indices(indices), data(data) {}
};
void delete_SparseOutputPointers(SparseOutputPointers *ptr) {
LGBM_BoosterFreePredictSparse(ptr->indptr, ptr->indices, ptr->data, C_API_DTYPE_INT32, C_API_DTYPE_FLOAT64);
delete ptr;
}
SEXP LGBM_BoosterPredictSparseOutput_R(SEXP handle,
SEXP indptr,
SEXP indices,
SEXP data,
SEXP is_csr,
SEXP nrows,
SEXP ncols,
SEXP start_iteration,
SEXP num_iteration,
SEXP parameter) {
SEXP cont_token = PROTECT(R_MakeUnwindCont());
R_API_BEGIN();
_AssertBoosterHandleNotNull(handle);
const char* out_names[] = {"indptr", "indices", "data", ""};
SEXP out = PROTECT(Rf_mkNamed(VECSXP, out_names));
const char* parameter_ptr = CHAR(PROTECT(Rf_asChar(parameter)));
int64_t out_len[2];
void *out_indptr;
int32_t *out_indices;
void *out_data;
CHECK_CALL(LGBM_BoosterPredictSparseOutput(R_ExternalPtrAddr(handle),
INTEGER(indptr), C_API_DTYPE_INT32, INTEGER(indices),
REAL(data), C_API_DTYPE_FLOAT64,
Rf_xlength(indptr), Rf_xlength(data),
Rf_asLogical(is_csr)? Rf_asInteger(ncols) : Rf_asInteger(nrows),
C_API_PREDICT_CONTRIB, Rf_asInteger(start_iteration), Rf_asInteger(num_iteration),
parameter_ptr,
Rf_asLogical(is_csr)? C_API_MATRIX_TYPE_CSR : C_API_MATRIX_TYPE_CSC,
out_len, &out_indptr, &out_indices, &out_data));
std::unique_ptr<SparseOutputPointers, decltype(&delete_SparseOutputPointers)> pointers_struct = {
new SparseOutputPointers(
out_indptr,
out_indices,
out_data),
&delete_SparseOutputPointers
};
SEXP out_indptr_R = safe_R_int(out_len[1], &cont_token);
SET_VECTOR_ELT(out, 0, out_indptr_R);
SEXP out_indices_R = safe_R_int(out_len[0], &cont_token);
SET_VECTOR_ELT(out, 1, out_indices_R);
SEXP out_data_R = safe_R_real(out_len[0], &cont_token);
SET_VECTOR_ELT(out, 2, out_data_R);
std::memcpy(INTEGER(out_indptr_R), out_indptr, out_len[1]*sizeof(int));
std::memcpy(INTEGER(out_indices_R), out_indices, out_len[0]*sizeof(int));
std::memcpy(REAL(out_data_R), out_data, out_len[0]*sizeof(double));
UNPROTECT(3);
return out;
R_API_END();
}
SEXP LGBM_BoosterSaveModel_R(SEXP handle, SEXP LGBM_BoosterSaveModel_R(SEXP handle,
SEXP num_iteration, SEXP num_iteration,
SEXP feature_importance_type, SEXP feature_importance_type,
@ -975,6 +1061,7 @@ static const R_CallMethodDef CallEntries[] = {
{"LGBM_BoosterCalcNumPredict_R" , (DL_FUNC) &LGBM_BoosterCalcNumPredict_R , 8}, {"LGBM_BoosterCalcNumPredict_R" , (DL_FUNC) &LGBM_BoosterCalcNumPredict_R , 8},
{"LGBM_BoosterPredictForCSC_R" , (DL_FUNC) &LGBM_BoosterPredictForCSC_R , 14}, {"LGBM_BoosterPredictForCSC_R" , (DL_FUNC) &LGBM_BoosterPredictForCSC_R , 14},
{"LGBM_BoosterPredictForMat_R" , (DL_FUNC) &LGBM_BoosterPredictForMat_R , 11}, {"LGBM_BoosterPredictForMat_R" , (DL_FUNC) &LGBM_BoosterPredictForMat_R , 11},
{"LGBM_BoosterPredictSparseOutput_R", (DL_FUNC) &LGBM_BoosterPredictSparseOutput_R, 10},
{"LGBM_BoosterSaveModel_R" , (DL_FUNC) &LGBM_BoosterSaveModel_R , 4}, {"LGBM_BoosterSaveModel_R" , (DL_FUNC) &LGBM_BoosterSaveModel_R , 4},
{"LGBM_BoosterSaveModelToString_R" , (DL_FUNC) &LGBM_BoosterSaveModelToString_R , 3}, {"LGBM_BoosterSaveModelToString_R" , (DL_FUNC) &LGBM_BoosterSaveModelToString_R , 3},
{"LGBM_BoosterDumpModel_R" , (DL_FUNC) &LGBM_BoosterDumpModel_R , 3}, {"LGBM_BoosterDumpModel_R" , (DL_FUNC) &LGBM_BoosterDumpModel_R , 3},

Просмотреть файл

@ -574,6 +574,35 @@ LIGHTGBM_C_EXPORT SEXP LGBM_BoosterPredictForMat_R(
SEXP out_result SEXP out_result
); );
/*!
* \brief make feature contribution prediction for a new Dataset
* \param handle Booster handle
* \param indptr array with the index pointer of the data in CSR or CSC format
* \param indices array with the non-zero indices of the data in CSR or CSC format
* \param data array with the non-zero values of the data in CSR or CSC format
* \param is_csr whether the input data is in CSR format or not (pass FALSE for CSC)
* \param nrows number of rows in the data
* \param ncols number of columns in the data
* \param start_iteration Start index of the iteration to predict
* \param num_iteration number of iteration for prediction, <= 0 means no limit
* \param parameter additional parameters
* \return An R list with entries "indptr", "indices", "data", constituting the
* feature contributions in sparse format, in the same storage order as
* the input data.
*/
LIGHTGBM_C_EXPORT SEXP LGBM_BoosterPredictSparseOutput_R(
SEXP handle,
SEXP indptr,
SEXP indices,
SEXP data,
SEXP is_csr,
SEXP nrows,
SEXP ncols,
SEXP start_iteration,
SEXP num_iteration,
SEXP parameter
);
/*! /*!
* \brief save model into file * \brief save model into file
* \param handle Booster handle * \param handle Booster handle

Просмотреть файл

@ -1,3 +1,5 @@
library(Matrix)
VERBOSITY <- as.integer( VERBOSITY <- as.integer(
Sys.getenv("LIGHTGBM_TEST_VERBOSITY", "-1") Sys.getenv("LIGHTGBM_TEST_VERBOSITY", "-1")
) )
@ -116,6 +118,84 @@ test_that("start_iteration works correctly", {
expect_equal(pred_leaf1, pred_leaf2) expect_equal(pred_leaf1, pred_leaf2)
}) })
test_that("Feature contributions from sparse inputs produce sparse outputs", {
data(mtcars)
X <- as.matrix(mtcars[, -1L])
y <- as.numeric(mtcars[, 1L])
dtrain <- lgb.Dataset(X, label = y, params = list(max_bins = 5L))
bst <- lgb.train(
data = dtrain
, obj = "regression"
, nrounds = 5L
, verbose = VERBOSITY
, params = list(min_data_in_leaf = 5L)
)
pred_dense <- predict(bst, X, predcontrib = TRUE)
Xcsc <- as(X, "CsparseMatrix")
pred_csc <- predict(bst, Xcsc, predcontrib = TRUE)
expect_s4_class(pred_csc, "dgCMatrix")
expect_equal(unname(pred_dense), unname(as.matrix(pred_csc)))
Xcsr <- as(X, "RsparseMatrix")
pred_csr <- predict(bst, Xcsr, predcontrib = TRUE)
expect_s4_class(pred_csr, "dgRMatrix")
expect_equal(as(pred_csr, "CsparseMatrix"), pred_csc)
Xspv <- as(X[1L, , drop = FALSE], "sparseVector")
pred_spv <- predict(bst, Xspv, predcontrib = TRUE)
expect_s4_class(pred_spv, "dsparseVector")
expect_equal(Matrix::t(as(pred_spv, "CsparseMatrix")), unname(pred_csc[1L, , drop = FALSE]))
})
test_that("Sparse feature contribution predictions do not take inputs with wrong number of columns", {
data(mtcars)
X <- as.matrix(mtcars[, -1L])
y <- as.numeric(mtcars[, 1L])
dtrain <- lgb.Dataset(X, label = y, params = list(max_bins = 5L))
bst <- lgb.train(
data = dtrain
, obj = "regression"
, nrounds = 5L
, verbose = VERBOSITY
, params = list(min_data_in_leaf = 5L)
)
X_wrong <- X[, c(1L:10L, 1L:10L)]
X_wrong <- as(X_wrong, "CsparseMatrix")
expect_error(predict(bst, X_wrong, predcontrib = TRUE), regexp = "input data has 20 columns")
X_wrong <- as(X_wrong, "RsparseMatrix")
expect_error(predict(bst, X_wrong, predcontrib = TRUE), regexp = "input data has 20 columns")
X_wrong <- as(X_wrong, "CsparseMatrix")
X_wrong <- X_wrong[, 1L:3L]
expect_error(predict(bst, X_wrong, predcontrib = TRUE), regexp = "input data has 3 columns")
})
test_that("Feature contribution predictions do not take non-general CSR or CSC inputs", {
set.seed(123L)
y <- runif(25L)
Dmat <- matrix(runif(625L), nrow = 25L, ncol = 25L)
Dmat <- crossprod(Dmat)
Dmat <- as(Dmat, "symmetricMatrix")
SmatC <- as(Dmat, "sparseMatrix")
SmatR <- as(SmatC, "RsparseMatrix")
dtrain <- lgb.Dataset(as.matrix(Dmat), label = y, params = list(max_bins = 5L))
bst <- lgb.train(
data = dtrain
, obj = "regression"
, nrounds = 5L
, verbose = VERBOSITY
, params = list(min_data_in_leaf = 5L)
)
expect_error(predict(bst, SmatC, predcontrib = TRUE))
expect_error(predict(bst, SmatR, predcontrib = TRUE))
})
test_that("predict() params should override keyword argument for raw-score predictions", { test_that("predict() params should override keyword argument for raw-score predictions", {
data(agaricus.train, package = "lightgbm") data(agaricus.train, package = "lightgbm")
X <- agaricus.train$data X <- agaricus.train$data
@ -321,6 +401,8 @@ test_that("predict() params should override keyword argument for feature contrib
.expect_has_row_names(pred, Xcsc) .expect_has_row_names(pred, Xcsc)
pred <- predict(bst, Xcsc, predcontrib = TRUE) pred <- predict(bst, Xcsc, predcontrib = TRUE)
.expect_has_row_names(pred, Xcsc) .expect_has_row_names(pred, Xcsc)
pred <- predict(bst, as(Xcsc, "RsparseMatrix"), predcontrib = TRUE)
.expect_has_row_names(pred, Xcsc)
# sparse matrix without row names # sparse matrix without row names
Xcopy <- Xcsc Xcopy <- Xcsc