зеркало из https://github.com/microsoft/LightGBM.git
[docs] clarify that custom eval functions are not only used on training data (#5011)
This commit is contained in:
Родитель
83a41dabec
Коммит
717631af18
|
@ -3152,7 +3152,7 @@ class Booster:
|
|||
If ``fobj`` is specified, predicted values are returned before any transformation,
|
||||
e.g. they are raw margin instead of probability of positive class for binary task in this case.
|
||||
eval_data : Dataset
|
||||
The evaluation dataset.
|
||||
A ``Dataset`` to evaluate.
|
||||
eval_name : str
|
||||
The name of evaluation function (without whitespace).
|
||||
eval_result : float
|
||||
|
|
|
@ -83,7 +83,7 @@ def train(
|
|||
If ``fobj`` is specified, predicted values are returned before any transformation,
|
||||
e.g. they are raw margin instead of probability of positive class for binary task in this case.
|
||||
eval_data : Dataset
|
||||
The training dataset.
|
||||
A ``Dataset`` to evaluate.
|
||||
eval_name : str
|
||||
The name of evaluation function (without whitespaces).
|
||||
eval_result : float
|
||||
|
@ -430,15 +430,15 @@ def cv(params, train_set, num_boost_round=100,
|
|||
|
||||
feval : callable, list of callable, or None, optional (default=None)
|
||||
Customized evaluation function.
|
||||
Each evaluation function should accept two parameters: preds, train_data,
|
||||
Each evaluation function should accept two parameters: preds, eval_data,
|
||||
and return (eval_name, eval_result, is_higher_better) or list of such tuples.
|
||||
|
||||
preds : numpy 1-D array
|
||||
The predicted values.
|
||||
If ``fobj`` is specified, predicted values are returned before any transformation,
|
||||
e.g. they are raw margin instead of probability of positive class for binary task in this case.
|
||||
train_data : Dataset
|
||||
The training dataset.
|
||||
eval_data : Dataset
|
||||
A ``Dataset`` to evaluate.
|
||||
eval_name : str
|
||||
The name of evaluation function (without whitespace).
|
||||
eval_result : float
|
||||
|
|
Загрузка…
Ссылка в новой задаче