зеркало из https://github.com/microsoft/LightGBM.git
[docs] Change some 'parallel learning' references to 'distributed learning' (#4000)
* [docs] Change some 'parallel learning' references to 'distributed learning' * found a few more * one more reference
This commit is contained in:
Родитель
0ee4d37fb5
Коммит
7880b79fde
|
@ -1,4 +1,4 @@
|
|||
OPTION(USE_MPI "Enable MPI-based parallel learning" OFF)
|
||||
OPTION(USE_MPI "Enable MPI-based distributed learning" OFF)
|
||||
OPTION(USE_OPENMP "Enable OpenMP" ON)
|
||||
OPTION(USE_GPU "Enable GPU-accelerated training" OFF)
|
||||
OPTION(USE_SWIG "Enable SWIG to generate Java API" OFF)
|
||||
|
|
|
@ -21,14 +21,14 @@ LightGBM is a gradient boosting framework that uses tree based learning algorith
|
|||
- Faster training speed and higher efficiency.
|
||||
- Lower memory usage.
|
||||
- Better accuracy.
|
||||
- Support of parallel and GPU learning.
|
||||
- Support of parallel, distributed, and GPU learning.
|
||||
- Capable of handling large-scale data.
|
||||
|
||||
For further details, please refer to [Features](https://github.com/microsoft/LightGBM/blob/master/docs/Features.rst).
|
||||
|
||||
Benefitting from these advantages, LightGBM is being widely-used in many [winning solutions](https://github.com/microsoft/LightGBM/blob/master/examples/README.md#machine-learning-challenge-winning-solutions) of machine learning competitions.
|
||||
|
||||
[Comparison experiments](https://github.com/microsoft/LightGBM/blob/master/docs/Experiments.rst#comparison-experiment) on public datasets show that LightGBM can outperform existing boosting frameworks on both efficiency and accuracy, with significantly lower memory consumption. What's more, [parallel experiments](https://github.com/microsoft/LightGBM/blob/master/docs/Experiments.rst#parallel-experiment) show that LightGBM can achieve a linear speed-up by using multiple machines for training in specific settings.
|
||||
[Comparison experiments](https://github.com/microsoft/LightGBM/blob/master/docs/Experiments.rst#comparison-experiment) on public datasets show that LightGBM can outperform existing boosting frameworks on both efficiency and accuracy, with significantly lower memory consumption. What's more, [distributed learning experiments](https://github.com/microsoft/LightGBM/blob/master/docs/Experiments.rst#parallel-experiment) show that LightGBM can achieve a linear speed-up by using multiple machines for training in specific settings.
|
||||
|
||||
Get Started and Documentation
|
||||
-----------------------------
|
||||
|
@ -40,7 +40,7 @@ Next you may want to read:
|
|||
- [**Examples**](https://github.com/microsoft/LightGBM/tree/master/examples) showing command line usage of common tasks.
|
||||
- [**Features**](https://github.com/microsoft/LightGBM/blob/master/docs/Features.rst) and algorithms supported by LightGBM.
|
||||
- [**Parameters**](https://github.com/microsoft/LightGBM/blob/master/docs/Parameters.rst) is an exhaustive list of customization you can make.
|
||||
- [**Parallel Learning**](https://github.com/microsoft/LightGBM/blob/master/docs/Parallel-Learning-Guide.rst) and [**GPU Learning**](https://github.com/microsoft/LightGBM/blob/master/docs/GPU-Tutorial.rst) can speed up computation.
|
||||
- [**Distributed Learning**](https://github.com/microsoft/LightGBM/blob/master/docs/Parallel-Learning-Guide.rst) and [**GPU Learning**](https://github.com/microsoft/LightGBM/blob/master/docs/GPU-Tutorial.rst) can speed up computation.
|
||||
- [**Laurae++ interactive documentation**](https://sites.google.com/view/lauraepp/parameters) is a detailed guide for hyperparameters.
|
||||
- [**Optuna Hyperparameter Tuner**](https://medium.com/optuna/lightgbm-tuner-new-optuna-integration-for-hyperparameter-optimization-8b7095e99258) provides automated tuning for LightGBM hyperparameters ([code examples](https://github.com/optuna/optuna/blob/master/examples/)).
|
||||
|
||||
|
|
|
@ -62,7 +62,7 @@ Parameters Tuning
|
|||
Parallel Learning
|
||||
-----------------
|
||||
|
||||
- Refer to `Parallel Learning Guide <./Parallel-Learning-Guide.rst>`__.
|
||||
- Refer to `Distributed Learning Guide <./Parallel-Learning-Guide.rst>`__.
|
||||
|
||||
GPU Support
|
||||
-----------
|
||||
|
|
|
@ -239,7 +239,7 @@ Results
|
|||
| 16 | 42 s | 11GB |
|
||||
+----------+---------------+---------------------------+
|
||||
|
||||
The results show that LightGBM achieves a linear speedup with parallel learning.
|
||||
The results show that LightGBM achieves a linear speedup with distributed learning.
|
||||
|
||||
GPU Experiments
|
||||
---------------
|
||||
|
|
|
@ -28,7 +28,7 @@ LightGBM uses histogram-based algorithms\ `[4, 5, 6] <#references>`__, which buc
|
|||
|
||||
- No need to store additional information for pre-sorting feature values
|
||||
|
||||
- **Reduce communication cost for parallel learning**
|
||||
- **Reduce communication cost for distributed learning**
|
||||
|
||||
Sparse Optimization
|
||||
-------------------
|
||||
|
@ -68,14 +68,14 @@ More specifically, LightGBM sorts the histogram (for a categorical feature) acco
|
|||
Optimization in Network Communication
|
||||
-------------------------------------
|
||||
|
||||
It only needs to use some collective communication algorithms, like "All reduce", "All gather" and "Reduce scatter", in parallel learning of LightGBM.
|
||||
It only needs to use some collective communication algorithms, like "All reduce", "All gather" and "Reduce scatter", in distributed learning of LightGBM.
|
||||
LightGBM implements state-of-art algorithms\ `[9] <#references>`__.
|
||||
These collective communication algorithms can provide much better performance than point-to-point communication.
|
||||
|
||||
Optimization in Parallel Learning
|
||||
---------------------------------
|
||||
|
||||
LightGBM provides the following parallel learning algorithms.
|
||||
LightGBM provides the following distributed learning algorithms.
|
||||
|
||||
Feature Parallel
|
||||
~~~~~~~~~~~~~~~~
|
||||
|
|
|
@ -348,7 +348,7 @@ Build MPI Version
|
|||
The default build version of LightGBM is based on socket. LightGBM also supports MPI.
|
||||
`MPI`_ is a high performance communication approach with `RDMA`_ support.
|
||||
|
||||
If you need to run a parallel learning application with high performance communication, you can build the LightGBM with MPI support.
|
||||
If you need to run a distributed learning application with high performance communication, you can build the LightGBM with MPI support.
|
||||
|
||||
Windows
|
||||
^^^^^^^
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
Parallel Learning Guide
|
||||
=======================
|
||||
|
||||
This is a guide for parallel learning of LightGBM.
|
||||
This guide describes distributed learning in LightGBM. Distributed learning allows the use of multiple machines to produce a single model.
|
||||
|
||||
Follow the `Quick Start <./Quick-Start.rst>`__ to know how to use LightGBM first.
|
||||
|
||||
|
@ -20,7 +20,7 @@ Follow the `Quick Start <./Quick-Start.rst>`__ to know how to use LightGBM first
|
|||
Choose Appropriate Parallel Algorithm
|
||||
-------------------------------------
|
||||
|
||||
LightGBM provides 3 parallel learning algorithms now.
|
||||
LightGBM provides 3 distributed learning algorithms now.
|
||||
|
||||
+--------------------+---------------------------+
|
||||
| Parallel Algorithm | How to Use |
|
||||
|
@ -57,7 +57,7 @@ Preparation
|
|||
Socket Version
|
||||
^^^^^^^^^^^^^^
|
||||
|
||||
It needs to collect IP of all machines that want to run parallel learning in and allocate one TCP port (assume 12345 here) for all machines,
|
||||
It needs to collect IP of all machines that want to run distributed learning in and allocate one TCP port (assume 12345 here) for all machines,
|
||||
and change firewall rules to allow income of this port (12345). Then write these IP and ports in one file (assume ``mlist.txt``), like following:
|
||||
|
||||
.. code::
|
||||
|
@ -68,7 +68,7 @@ and change firewall rules to allow income of this port (12345). Then write these
|
|||
MPI Version
|
||||
^^^^^^^^^^^
|
||||
|
||||
It needs to collect IP (or hostname) of all machines that want to run parallel learning in.
|
||||
It needs to collect IP (or hostname) of all machines that want to run distributed learning in.
|
||||
Then write these IP in one file (assume ``mlist.txt``) like following:
|
||||
|
||||
.. code::
|
||||
|
@ -132,7 +132,7 @@ MPI Version
|
|||
Example
|
||||
^^^^^^^
|
||||
|
||||
- `A simple parallel example`_
|
||||
- `A simple distributed learning example`_
|
||||
|
||||
.. _MMLSpark: https://aka.ms/spark
|
||||
|
||||
|
@ -148,4 +148,4 @@ Example
|
|||
|
||||
.. _here: https://www.youtube.com/watch?v=iqzXhp5TxUY
|
||||
|
||||
.. _A simple parallel example: https://github.com/microsoft/lightgbm/tree/master/examples/parallel_learning
|
||||
.. _A simple distributed learning example: https://github.com/microsoft/lightgbm/tree/master/examples/parallel_learning
|
||||
|
|
|
@ -181,7 +181,7 @@ Core Parameters
|
|||
|
||||
- ``voting``, voting parallel tree learner, aliases: ``voting_parallel``
|
||||
|
||||
- refer to `Parallel Learning Guide <./Parallel-Learning-Guide.rst>`__ to get more details
|
||||
- refer to `Distributed Learning Guide <./Parallel-Learning-Guide.rst>`__ to get more details
|
||||
|
||||
- ``num_threads`` :raw-html:`<a id="num_threads" title="Permalink to this parameter" href="#num_threads">🔗︎</a>`, default = ``0``, type = int, aliases: ``num_thread``, ``nthread``, ``nthreads``, ``n_jobs``
|
||||
|
||||
|
@ -195,7 +195,7 @@ Core Parameters
|
|||
|
||||
- be aware a task manager or any similar CPU monitoring tool might report that cores not being fully utilized. **This is normal**
|
||||
|
||||
- for parallel learning, do not use all CPU cores because this will cause poor performance for the network communication
|
||||
- for distributed learning, do not use all CPU cores because this will cause poor performance for the network communication
|
||||
|
||||
- **Note**: please **don't** change this during training, especially when running multiple jobs simultaneously by external packages, otherwise it may cause undesirable errors
|
||||
|
||||
|
@ -714,7 +714,7 @@ Dataset Parameters
|
|||
|
||||
- ``pre_partition`` :raw-html:`<a id="pre_partition" title="Permalink to this parameter" href="#pre_partition">🔗︎</a>`, default = ``false``, type = bool, aliases: ``is_pre_partition``
|
||||
|
||||
- used for parallel learning (excluding the ``feature_parallel`` mode)
|
||||
- used for distributed learning (excluding the ``feature_parallel`` mode)
|
||||
|
||||
- ``true`` if training data are pre-partitioned, and different machines use different partitions
|
||||
|
||||
|
@ -1133,7 +1133,7 @@ Network Parameters
|
|||
|
||||
- ``num_machines`` :raw-html:`<a id="num_machines" title="Permalink to this parameter" href="#num_machines">🔗︎</a>`, default = ``1``, type = int, aliases: ``num_machine``, constraints: ``num_machines > 0``
|
||||
|
||||
- the number of machines for parallel learning application
|
||||
- the number of machines for distributed learning application
|
||||
|
||||
- this parameter is needed to be set in both **socket** and **mpi** versions
|
||||
|
||||
|
@ -1149,7 +1149,7 @@ Network Parameters
|
|||
|
||||
- ``machine_list_filename`` :raw-html:`<a id="machine_list_filename" title="Permalink to this parameter" href="#machine_list_filename">🔗︎</a>`, default = ``""``, type = string, aliases: ``machine_list_file``, ``machine_list``, ``mlist``
|
||||
|
||||
- path of file that lists machines for this parallel learning application
|
||||
- path of file that lists machines for this distributed learning application
|
||||
|
||||
- each line contains one IP and one port for one machine. The format is ``ip port`` (space as a separator)
|
||||
|
||||
|
|
|
@ -77,7 +77,7 @@ Examples
|
|||
|
||||
- `Lambdarank <https://github.com/microsoft/LightGBM/tree/master/examples/lambdarank>`__
|
||||
|
||||
- `Parallel Learning <https://github.com/microsoft/LightGBM/tree/master/examples/parallel_learning>`__
|
||||
- `Distributed Learning <https://github.com/microsoft/LightGBM/tree/master/examples/parallel_learning>`__
|
||||
|
||||
.. _CSV: https://en.wikipedia.org/wiki/Comma-separated_values
|
||||
|
||||
|
|
|
@ -17,7 +17,7 @@ Welcome to LightGBM's documentation!
|
|||
- Faster training speed and higher efficiency.
|
||||
- Lower memory usage.
|
||||
- Better accuracy.
|
||||
- Support of parallel and GPU learning.
|
||||
- Support of parallel, distributed, and GPU learning.
|
||||
- Capable of handling large-scale data.
|
||||
|
||||
For more details, please refer to `Features <./Features.rst>`__.
|
||||
|
@ -36,7 +36,7 @@ For more details, please refer to `Features <./Features.rst>`__.
|
|||
C API <C-API>
|
||||
Python API <Python-API>
|
||||
R API <https://lightgbm.readthedocs.io/en/latest/R/reference/>
|
||||
Parallel Learning Guide <Parallel-Learning-Guide>
|
||||
Distributed Learning Guide <Parallel-Learning-Guide>
|
||||
GPU Tutorial <GPU-Tutorial>
|
||||
Advanced Topics <Advanced-Topics>
|
||||
FAQ <FAQ>
|
||||
|
|
|
@ -98,13 +98,13 @@ output_model = LightGBM_model.txt
|
|||
# output_result= prediction.txt
|
||||
|
||||
|
||||
# number of machines in parallel training, alias: num_machine
|
||||
# number of machines in distributed training, alias: num_machine
|
||||
num_machines = 1
|
||||
|
||||
# local listening port in parallel training, alias: local_port
|
||||
# local listening port in distributed training, alias: local_port
|
||||
local_listen_port = 12400
|
||||
|
||||
# machines list file for parallel training, alias: mlist
|
||||
# machines list file for distributed training, alias: mlist
|
||||
machine_list_file = mlist.txt
|
||||
|
||||
# force splits
|
||||
|
|
|
@ -100,13 +100,13 @@ output_model = LightGBM_model.txt
|
|||
# output_result= prediction.txt
|
||||
|
||||
|
||||
# number of machines in parallel training, alias: num_machine
|
||||
# number of machines in distributed training, alias: num_machine
|
||||
num_machines = 1
|
||||
|
||||
# local listening port in parallel training, alias: local_port
|
||||
# local listening port in distributed training, alias: local_port
|
||||
local_listen_port = 12400
|
||||
|
||||
# machines list file for parallel training, alias: mlist
|
||||
# machines list file for distributed training, alias: mlist
|
||||
machine_list_file = mlist.txt
|
||||
|
||||
# force splits
|
||||
|
|
|
@ -103,11 +103,11 @@ output_model = LightGBM_model.txt
|
|||
# output_result= prediction.txt
|
||||
|
||||
|
||||
# number of machines in parallel training, alias: num_machine
|
||||
# number of machines in distributed training, alias: num_machine
|
||||
num_machines = 1
|
||||
|
||||
# local listening port in parallel training, alias: local_port
|
||||
# local listening port in distributed training, alias: local_port
|
||||
local_listen_port = 12400
|
||||
|
||||
# machines list file for parallel training, alias: mlist
|
||||
# machines list file for distributed training, alias: mlist
|
||||
machine_list_file = mlist.txt
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
Parallel Learning Example
|
||||
=========================
|
||||
|
||||
Here is an example for LightGBM to perform parallel learning for 2 machines.
|
||||
Here is an example for LightGBM to perform distributed learning for 2 machines.
|
||||
|
||||
1. Edit [mlist.txt](./mlist.txt): write the ip of these 2 machines that you want to run application on.
|
||||
|
||||
|
@ -16,6 +16,6 @@ Here is an example for LightGBM to perform parallel learning for 2 machines.
|
|||
|
||||
```"./lightgbm" config=train.conf```
|
||||
|
||||
This parallel learning example is based on socket. LightGBM also supports parallel learning based on mpi.
|
||||
This distributed learning example is based on socket. LightGBM also supports distributed learning based on MPI.
|
||||
|
||||
For more details about the usage of parallel learning, please refer to [this](https://github.com/microsoft/LightGBM/blob/master/docs/Parallel-Learning-Guide.rst).
|
||||
For more details about the usage of distributed learning, please refer to [this](https://github.com/microsoft/LightGBM/blob/master/docs/Parallel-Learning-Guide.rst).
|
||||
|
|
|
@ -101,11 +101,11 @@ output_model = LightGBM_model.txt
|
|||
# output_result= prediction.txt
|
||||
|
||||
|
||||
# number of machines in parallel training, alias: num_machine
|
||||
# number of machines in distributed training, alias: num_machine
|
||||
num_machines = 1
|
||||
|
||||
# local listening port in parallel training, alias: local_port
|
||||
# local listening port in distributed training, alias: local_port
|
||||
local_listen_port = 12400
|
||||
|
||||
# machines list file for parallel training, alias: mlist
|
||||
# machines list file for distributed training, alias: mlist
|
||||
machine_list_file = mlist.txt
|
||||
|
|
|
@ -104,11 +104,11 @@ output_model = LightGBM_model.txt
|
|||
# output_result= prediction.txt
|
||||
|
||||
|
||||
# number of machines in parallel training, alias: num_machine
|
||||
# number of machines in distributed training, alias: num_machine
|
||||
num_machines = 1
|
||||
|
||||
# local listening port in parallel training, alias: local_port
|
||||
# local listening port in distributed training, alias: local_port
|
||||
local_listen_port = 12400
|
||||
|
||||
# machines list file for parallel training, alias: mlist
|
||||
# machines list file for distributed training, alias: mlist
|
||||
machine_list_file = mlist.txt
|
||||
|
|
|
@ -200,7 +200,7 @@ struct Config {
|
|||
// desc = ``feature``, feature parallel tree learner, aliases: ``feature_parallel``
|
||||
// desc = ``data``, data parallel tree learner, aliases: ``data_parallel``
|
||||
// desc = ``voting``, voting parallel tree learner, aliases: ``voting_parallel``
|
||||
// desc = refer to `Parallel Learning Guide <./Parallel-Learning-Guide.rst>`__ to get more details
|
||||
// desc = refer to `Distributed Learning Guide <./Parallel-Learning-Guide.rst>`__ to get more details
|
||||
std::string tree_learner = "serial";
|
||||
|
||||
// alias = num_thread, nthread, nthreads, n_jobs
|
||||
|
@ -209,7 +209,7 @@ struct Config {
|
|||
// desc = for the best speed, set this to the number of **real CPU cores**, not the number of threads (most CPUs use `hyper-threading <https://en.wikipedia.org/wiki/Hyper-threading>`__ to generate 2 threads per CPU core)
|
||||
// desc = do not set it too large if your dataset is small (for instance, do not use 64 threads for a dataset with 10,000 rows)
|
||||
// desc = be aware a task manager or any similar CPU monitoring tool might report that cores not being fully utilized. **This is normal**
|
||||
// desc = for parallel learning, do not use all CPU cores because this will cause poor performance for the network communication
|
||||
// desc = for distributed learning, do not use all CPU cores because this will cause poor performance for the network communication
|
||||
// desc = **Note**: please **don't** change this during training, especially when running multiple jobs simultaneously by external packages, otherwise it may cause undesirable errors
|
||||
int num_threads = 0;
|
||||
|
||||
|
@ -634,7 +634,7 @@ struct Config {
|
|||
bool feature_pre_filter = true;
|
||||
|
||||
// alias = is_pre_partition
|
||||
// desc = used for parallel learning (excluding the ``feature_parallel`` mode)
|
||||
// desc = used for distributed learning (excluding the ``feature_parallel`` mode)
|
||||
// desc = ``true`` if training data are pre-partitioned, and different machines use different partitions
|
||||
bool pre_partition = false;
|
||||
|
||||
|
@ -961,7 +961,7 @@ struct Config {
|
|||
|
||||
// check = >0
|
||||
// alias = num_machine
|
||||
// desc = the number of machines for parallel learning application
|
||||
// desc = the number of machines for distributed learning application
|
||||
// desc = this parameter is needed to be set in both **socket** and **mpi** versions
|
||||
int num_machines = 1;
|
||||
|
||||
|
@ -976,7 +976,7 @@ struct Config {
|
|||
int time_out = 120;
|
||||
|
||||
// alias = machine_list_file, machine_list, mlist
|
||||
// desc = path of file that lists machines for this parallel learning application
|
||||
// desc = path of file that lists machines for this distributed learning application
|
||||
// desc = each line contains one IP and one port for one machine. The format is ``ip port`` (space as a separator)
|
||||
// desc = **Note**: can be used only in CLI version
|
||||
std::string machine_list_filename = "";
|
||||
|
|
|
@ -80,7 +80,7 @@ class Metadata {
|
|||
|
||||
/*!
|
||||
* \brief Partition meta data according to local used indices if need
|
||||
* \param num_all_data Number of total training data, including other machines' data on parallel learning
|
||||
* \param num_all_data Number of total training data, including other machines' data on distributed learning
|
||||
* \param used_data_indices Indices of local used training data
|
||||
*/
|
||||
void CheckOrPartition(data_size_t num_all_data,
|
||||
|
|
|
@ -2333,7 +2333,7 @@ class Booster:
|
|||
listen_time_out : int, optional (default=120)
|
||||
Socket time-out in minutes.
|
||||
num_machines : int, optional (default=1)
|
||||
The number of machines for parallel learning application.
|
||||
The number of machines for distributed learning application.
|
||||
|
||||
Returns
|
||||
-------
|
||||
|
|
|
@ -105,7 +105,7 @@ void Application::LoadData() {
|
|||
config_.num_class, config_.data.c_str());
|
||||
// load Training data
|
||||
if (config_.is_data_based_parallel) {
|
||||
// load data for parallel training
|
||||
// load data for distributed training
|
||||
train_data_.reset(dataset_loader.LoadFromFile(config_.data.c_str(),
|
||||
Network::rank(), Network::num_machines()));
|
||||
} else {
|
||||
|
|
|
@ -374,7 +374,7 @@ void Config::CheckParamConflict() {
|
|||
}
|
||||
if (is_parallel && (monotone_constraints_method == std::string("intermediate") || monotone_constraints_method == std::string("advanced"))) {
|
||||
// In distributed mode, local node doesn't have histograms on all features, cannot perform "intermediate" monotone constraints.
|
||||
Log::Warning("Cannot use \"intermediate\" or \"advanced\" monotone constraints in parallel learning, auto set to \"basic\" method.");
|
||||
Log::Warning("Cannot use \"intermediate\" or \"advanced\" monotone constraints in distributed learning, auto set to \"basic\" method.");
|
||||
monotone_constraints_method = "basic";
|
||||
}
|
||||
if (feature_fraction_bynode != 1.0 && (monotone_constraints_method == std::string("intermediate") || monotone_constraints_method == std::string("advanced"))) {
|
||||
|
|
|
@ -180,10 +180,10 @@ void CheckSampleSize(size_t sample_cnt, size_t num_data) {
|
|||
}
|
||||
|
||||
Dataset* DatasetLoader::LoadFromFile(const char* filename, int rank, int num_machines) {
|
||||
// don't support query id in data file when training in parallel
|
||||
// don't support query id in data file when using distributed training
|
||||
if (num_machines > 1 && !config_.pre_partition) {
|
||||
if (group_idx_ > 0) {
|
||||
Log::Fatal("Using a query id without pre-partitioning the data file is not supported for parallel training.\n"
|
||||
Log::Fatal("Using a query id without pre-partitioning the data file is not supported for distributed training.\n"
|
||||
"Please use an additional query file or pre-partition the data");
|
||||
}
|
||||
}
|
||||
|
|
|
@ -22,7 +22,7 @@ Metadata::Metadata() {
|
|||
|
||||
void Metadata::Init(const char* data_filename) {
|
||||
data_filename_ = data_filename;
|
||||
// for lambdarank, it needs query data for partition data in parallel learning
|
||||
// for lambdarank, it needs query data for partition data in distributed learning
|
||||
LoadQueryBoundaries();
|
||||
LoadWeights();
|
||||
LoadQueryWeights();
|
||||
|
@ -187,7 +187,7 @@ void Metadata::CheckOrPartition(data_size_t num_all_data, const std::vector<data
|
|||
}
|
||||
} else {
|
||||
if (!queries_.empty()) {
|
||||
Log::Fatal("Cannot used query_id for parallel training");
|
||||
Log::Fatal("Cannot used query_id for distributed training");
|
||||
}
|
||||
data_size_t num_used_data = static_cast<data_size_t>(used_data_indices.size());
|
||||
// check weights
|
||||
|
|
Загрузка…
Ссылка в новой задаче