зеркало из https://github.com/microsoft/LightGBM.git
[python-package] use f-strings for concatenation in examples/python-guide/logistic_regression.py (#4356)
* updated with f-string migration * Update logistic_regression.py * Update logistic_regression.py * Update logistic_regression.py * Update logistic_regression.py
This commit is contained in:
Родитель
bab58d0e90
Коммит
8e5079efa1
|
@ -71,7 +71,7 @@ def experiment(objective, label_type, data):
|
|||
"""
|
||||
np.random.seed(0)
|
||||
nrounds = 5
|
||||
lgb_data = data['lgb_with_' + label_type + '_labels']
|
||||
lgb_data = data[f"lgb_with_{label_type}_labels"]
|
||||
params = {
|
||||
'objective': objective,
|
||||
'feature_fraction': 1,
|
||||
|
@ -81,7 +81,7 @@ def experiment(objective, label_type, data):
|
|||
time_zero = time.time()
|
||||
gbm = lgb.train(params, lgb_data, num_boost_round=nrounds)
|
||||
y_fitted = gbm.predict(data['X'])
|
||||
y_true = data[label_type + '_labels']
|
||||
y_true = data[f"{label_type}_labels"]
|
||||
duration = time.time() - time_zero
|
||||
return {
|
||||
'time': duration,
|
||||
|
@ -113,5 +113,5 @@ A = [experiment('binary', label_type='binary', data=DATA)['time']
|
|||
for k in range(K)]
|
||||
B = [experiment('xentropy', label_type='binary', data=DATA)['time']
|
||||
for k in range(K)]
|
||||
print('Best `binary` time: ' + str(min(A)))
|
||||
print('Best `xentropy` time: ' + str(min(B)))
|
||||
print(f"Best `binary` time: {min(A)}")
|
||||
print(f"Best `xentropy` time: {min(B)}")
|
||||
|
|
Загрузка…
Ссылка в новой задаче