[R-package] factor out {ggplot2} (#3224)

* more changes

* factor out ggplot2

* update CI

* remove library()

* linting

* reduce NOTEs on Windows
This commit is contained in:
James Lamb 2020-07-20 07:31:20 -05:00 коммит произвёл GitHub
Родитель 58b49dd8cd
Коммит 9f52282d0b
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: 4AEE18F83AFDEB23
4 изменённых файлов: 84 добавлений и 61 удалений

Просмотреть файл

@ -148,7 +148,7 @@ if grep -q -R "WARNING" "$LOG_FILE_NAME"; then
exit -1
fi
ALLOWED_CHECK_NOTES=3
ALLOWED_CHECK_NOTES=2
NUM_CHECK_NOTES=$(
cat ${LOG_FILE_NAME} \
| grep -e '^Status: .* NOTE.*' \

Просмотреть файл

@ -157,7 +157,7 @@ if ($env:COMPILER -ne "MSVC") {
$note_str = Get-Content -Path "${LOG_FILE_NAME}" | Select-String -Pattern '.*Status.* NOTE' | Out-String ; Check-Output $?
$relevant_line = $note_str -match '(\d+) NOTE'
$NUM_CHECK_NOTES = $matches[1]
$ALLOWED_CHECK_NOTES = 3
$ALLOWED_CHECK_NOTES = 2
if ([int]$NUM_CHECK_NOTES -gt $ALLOWED_CHECK_NOTES) {
Write-Output "Found ${NUM_CHECK_NOTES} NOTEs from R CMD check. Only ${ALLOWED_CHECK_NOTES} are allowed"
Check-Output $False

Просмотреть файл

@ -25,7 +25,6 @@ BugReports: https://github.com/Microsoft/LightGBM/issues
NeedsCompilation: yes
Biarch: false
Suggests:
ggplot2 (>= 1.0.1),
processx,
testthat
Depends:

Просмотреть файл

@ -2,11 +2,81 @@
# Obviously, we are in a controlled environment, without issues (real rules).
# Do not do this in a real scenario.
# First, we load our libraries
library(lightgbm)
library(ggplot2)
# Second, we load our data
# define helper functions for creating plots
# output of `RColorBrewer::brewer.pal(10, "RdYlGn")`, hardcooded here to avoid a dependency
.diverging_palette <- c(
"#A50026", "#D73027", "#F46D43", "#FDAE61", "#FEE08B"
, "#D9EF8B", "#A6D96A", "#66BD63", "#1A9850", "#006837"
)
.prediction_depth_plot <- function(df) {
plot(
x = df$X
, y = df$Y
, type = "p"
, main = "Prediction Depth"
, xlab = "Leaf Bin"
, ylab = "Prediction Probability"
, pch = 19L
, col = .diverging_palette[df$binned + 1L]
)
legend(
"topright"
, title = "bin"
, legend = sort(unique(df$binned))
, pch = 19L
, col = .diverging_palette[sort(unique(df$binned + 1L))]
, cex = 0.7
)
}
.prediction_depth_spread_plot <- function(df) {
plot(
x = df$binned
, xlim = c(0L, 9L)
, y = df$Z
, type = "p"
, main = "Prediction Depth Spread"
, xlab = "Leaf Bin"
, ylab = "Logloss"
, pch = 19L
, col = .diverging_palette[df$binned + 1L]
)
legend(
"topright"
, title = "bin"
, legend = sort(unique(df$binned))
, pch = 19L
, col = .diverging_palette[sort(unique(df$binned + 1L))]
, cex = 0.7
)
}
.depth_density_plot <- function(df) {
plot(
x = density(df$Y)
, xlim = c(min(df$Y), max(df$Y))
, type = "p"
, main = "Depth Density"
, xlab = "Prediction Probability"
, ylab = "Bin Density"
, pch = 19L
, col = .diverging_palette[df$binned + 1L]
)
legend(
"topright"
, title = "bin"
, legend = sort(unique(df$binned))
, pch = 19L
, col = .diverging_palette[sort(unique(df$binned + 1L))]
, cex = 0.7
)
}
# load some data
data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)
@ -14,7 +84,7 @@ data(agaricus.test, package = "lightgbm")
test <- agaricus.test
dtest <- lgb.Dataset.create.valid(dtrain, test$data, label = test$label)
# Third, we setup parameters and we train a model
# setup parameters and we train a model
params <- list(objective = "regression", metric = "l2")
valids <- list(test = dtest)
model <- lgb.train(
@ -59,7 +129,6 @@ new_data$binned <- .bincode(
, include.lowest = TRUE
)
new_data$binned[is.na(new_data$binned)] <- 0L
new_data$binned <- as.factor(new_data$binned)
# We can check the binned content
table(new_data$binned)
@ -67,25 +136,9 @@ table(new_data$binned)
# We can plot the binned content
# On the second plot, we clearly notice the lower the bin (the lower the leaf value), the higher the loss
# On the third plot, it is smooth!
ggplot(
data = new_data
, mapping = aes(x = X, y = Y, color = binned)
) + geom_point() +
theme_bw() +
labs(title = "Prediction Depth", x = "Leaf Bin", y = "Prediction Probability")
ggplot(
data = new_data
, mapping = aes(x = binned, y = Z, fill = binned, group = binned)
) + geom_boxplot() +
theme_bw() +
labs(title = "Prediction Depth Spread", x = "Leaf Bin", y = "Logloss")
ggplot(
data = new_data
, mapping = aes(x = Y, y = ..count.., fill = binned)
) + geom_density(position = "fill") +
theme_bw() +
labs(title = "Depth Density", x = "Prediction Probability", y = "Bin Density")
.prediction_depth_plot(df = new_data)
.prediction_depth_spread_plot(df = new_data)
.depth_density_plot(df = new_data)
# Now, let's show with other parameters
model2 <- lgb.train(
@ -126,7 +179,6 @@ new_data2$binned <- .bincode(
, include.lowest = TRUE
)
new_data2$binned[is.na(new_data2$binned)] <- 0L
new_data2$binned <- as.factor(new_data2$binned)
# We can check the binned content
table(new_data2$binned)
@ -136,25 +188,9 @@ table(new_data2$binned)
# On the third plot, it is clearly not smooth! We are severely overfitting the data, but the rules are
# real thus it is not an issue
# However, if the rules were not true, the loss would explode.
ggplot(
data = new_data2
, mapping = aes(x = X, y = Y, color = binned)
) + geom_point() +
theme_bw() +
labs(title = "Prediction Depth", x = "Leaf Bin", y = "Prediction Probability")
ggplot(
data = new_data2
, mapping = aes(x = binned, y = Z, fill = binned, group = binned)
) + geom_boxplot() +
theme_bw() +
labs(title = "Prediction Depth Spread", x = "Leaf Bin", y = "Logloss")
ggplot(
data = new_data2
, mapping = aes(x = Y, y = ..count.., fill = binned)
) + geom_density(position = "fill") +
theme_bw() +
labs(title = "Depth Density", x = "Prediction Probability", y = "Bin Density")
.prediction_depth_plot(df = new_data2)
.prediction_depth_spread_plot(df = new_data2)
.depth_density_plot(df = new_data2)
# Now, try with very severe overfitting
model3 <- lgb.train(
@ -195,7 +231,6 @@ new_data3$binned <- .bincode(
, include.lowest = TRUE
)
new_data3$binned[is.na(new_data3$binned)] <- 0L
new_data3$binned <- as.factor(new_data3$binned)
# We can check the binned content
table(new_data3$binned)
@ -204,18 +239,7 @@ table(new_data3$binned)
# On the third plot, it is clearly not smooth! We are severely overfitting the data, but the rules
# are real thus it is not an issue.
# However, if the rules were not true, the loss would explode. See the sudden spikes?
ggplot(
data = new_data3
, mapping = aes(x = Y, y = ..count.., fill = binned)
) +
geom_density(position = "fill") +
theme_bw() +
labs(title = "Depth Density", x = "Prediction Probability", y = "Bin Density")
.depth_density_plot(df = new_data3)
# Compare with our second model, the difference is severe. This is smooth.
ggplot(
data = new_data2
, mapping = aes(x = Y, y = ..count.., fill = binned)
) + geom_density(position = "fill") +
theme_bw() +
labs(title = "Depth Density", x = "Prediction Probability", y = "Bin Density")
.depth_density_plot(df = new_data2)