From b6aa5ee82f61847f8511178047c21024335b4e93 Mon Sep 17 00:00:00 2001 From: Nikita Titov Date: Tue, 10 Dec 2019 05:58:12 +0300 Subject: [PATCH] fixed broken link in docs (#2623) --- docs/Parameters.rst | 2 +- include/LightGBM/config.h | 2 +- 2 files changed, 2 insertions(+), 2 deletions(-) diff --git a/docs/Parameters.rst b/docs/Parameters.rst index ed3d784ce..436dffd20 100644 --- a/docs/Parameters.rst +++ b/docs/Parameters.rst @@ -71,7 +71,7 @@ Core Parameters - ``gamma``, Gamma regression with log-link. It might be useful, e.g., for modeling insurance claims severity, or for any target that might be `gamma-distributed `__ - - ``tweedie``, Tweedie regression with log-link. It might be useful, e.g., for modeling total loss in insurance, or for any target that might be `tweedie-distributed `__ + - ``tweedie``, Tweedie regression with log-link. It might be useful, e.g., for modeling total loss in insurance, or for any target that might be `tweedie-distributed `__ - ``binary``, binary `log loss `__ classification (or logistic regression). Requires labels in {0, 1}; see ``cross-entropy`` application for general probability labels in [0, 1] diff --git a/include/LightGBM/config.h b/include/LightGBM/config.h index b5769774c..155b913f4 100644 --- a/include/LightGBM/config.h +++ b/include/LightGBM/config.h @@ -113,7 +113,7 @@ struct Config { // descl2 = ``quantile``, `Quantile regression `__ // descl2 = ``mape``, `MAPE loss `__, aliases: ``mean_absolute_percentage_error`` // descl2 = ``gamma``, Gamma regression with log-link. It might be useful, e.g., for modeling insurance claims severity, or for any target that might be `gamma-distributed `__ - // descl2 = ``tweedie``, Tweedie regression with log-link. It might be useful, e.g., for modeling total loss in insurance, or for any target that might be `tweedie-distributed `__ + // descl2 = ``tweedie``, Tweedie regression with log-link. It might be useful, e.g., for modeling total loss in insurance, or for any target that might be `tweedie-distributed `__ // desc = ``binary``, binary `log loss `__ classification (or logistic regression). Requires labels in {0, 1}; see ``cross-entropy`` application for general probability labels in [0, 1] // desc = multi-class classification application // descl2 = ``multiclass``, `softmax `__ objective function, aliases: ``softmax``