зеркало из https://github.com/microsoft/LightGBM.git
[ci][python] run isort in CI linting job (#3990)
* run isort in CI linting job * workaround conda compatibility issues
This commit is contained in:
Родитель
4ae59494ab
Коммит
d6ebd063ff
|
@ -10,6 +10,7 @@ import json
|
|||
from os import environ
|
||||
from sys import argv, exit
|
||||
from time import sleep
|
||||
|
||||
try:
|
||||
from urllib import request
|
||||
except ImportError:
|
||||
|
|
|
@ -20,8 +20,8 @@ cd $BUILD_DIRECTORY
|
|||
|
||||
if [[ $TASK == "check-docs" ]] || [[ $TASK == "check-links" ]]; then
|
||||
cd $BUILD_DIRECTORY/docs
|
||||
conda install -q -y -n $CONDA_ENV -c conda-forge doxygen
|
||||
pip install --user -r requirements.txt rstcheck
|
||||
conda install -q -y -n $CONDA_ENV -c conda-forge doxygen rstcheck
|
||||
pip install --user -r requirements.txt
|
||||
# check reStructuredText formatting
|
||||
cd $BUILD_DIRECTORY/python-package
|
||||
rstcheck --report warning `find . -type f -name "*.rst"` || exit -1
|
||||
|
@ -55,10 +55,11 @@ if [[ $TASK == "lint" ]]; then
|
|||
libxml2 \
|
||||
"r-xfun>=0.19" \
|
||||
"r-lintr>=2.0"
|
||||
pip install --user cpplint mypy
|
||||
pip install --user cpplint isort mypy
|
||||
echo "Linting Python code"
|
||||
pycodestyle --ignore=E501,W503 --exclude=./.nuget,./external_libs . || exit -1
|
||||
pydocstyle --convention=numpy --add-ignore=D105 --match-dir="^(?!^external_libs|test|example).*" --match="(?!^test_|setup).*\.py" . || exit -1
|
||||
isort . --check-only || exit -1
|
||||
mypy --ignore-missing-imports python-package/ || true
|
||||
echo "Linting R code"
|
||||
Rscript ${BUILD_DIRECTORY}/.ci/lint_r_code.R ${BUILD_DIRECTORY} || exit -1
|
||||
|
|
|
@ -9,6 +9,9 @@ indent_size = 2
|
|||
|
||||
[*.{py,sh,js}]
|
||||
indent_size = 4
|
||||
line_length = 120
|
||||
skip = external_libs
|
||||
known_first_party = lightgbm
|
||||
|
||||
# Placeholder files
|
||||
[{*.gitkeep,__init__.py}]
|
||||
|
|
|
@ -3,10 +3,8 @@
|
|||
import datetime
|
||||
import os
|
||||
import sys
|
||||
|
||||
from distutils.file_util import copy_file
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
source = sys.argv[1]
|
||||
current_dir = os.path.abspath(os.path.dirname(__file__))
|
||||
|
|
|
@ -6,8 +6,7 @@ Contributors: https://github.com/microsoft/LightGBM/graphs/contributors.
|
|||
import os
|
||||
|
||||
from .basic import Booster, Dataset, register_logger
|
||||
from .callback import (early_stopping, print_evaluation, record_evaluation,
|
||||
reset_parameter)
|
||||
from .callback import early_stopping, print_evaluation, record_evaluation, reset_parameter
|
||||
from .engine import CVBooster, cv, train
|
||||
|
||||
try:
|
||||
|
@ -15,8 +14,7 @@ try:
|
|||
except ImportError:
|
||||
pass
|
||||
try:
|
||||
from .plotting import (create_tree_digraph, plot_importance, plot_metric,
|
||||
plot_split_value_histogram, plot_tree)
|
||||
from .plotting import create_tree_digraph, plot_importance, plot_metric, plot_split_value_histogram, plot_tree
|
||||
except ImportError:
|
||||
pass
|
||||
try:
|
||||
|
|
|
@ -14,8 +14,7 @@ from typing import Any, Dict
|
|||
import numpy as np
|
||||
import scipy.sparse
|
||||
|
||||
from .compat import (PANDAS_INSTALLED, concat, dt_DataTable, is_dtype_sparse,
|
||||
pd_DataFrame, pd_Series)
|
||||
from .compat import PANDAS_INSTALLED, concat, dt_DataTable, is_dtype_sparse, pd_DataFrame, pd_Series
|
||||
from .libpath import find_lib_path
|
||||
|
||||
|
||||
|
|
|
@ -61,8 +61,7 @@ try:
|
|||
from sklearn.preprocessing import LabelEncoder
|
||||
from sklearn.utils.class_weight import compute_sample_weight
|
||||
from sklearn.utils.multiclass import check_classification_targets
|
||||
from sklearn.utils.validation import (assert_all_finite, check_array,
|
||||
check_X_y)
|
||||
from sklearn.utils.validation import assert_all_finite, check_array, check_X_y
|
||||
try:
|
||||
from sklearn.exceptions import NotFittedError
|
||||
from sklearn.model_selection import GroupKFold, StratifiedKFold
|
||||
|
|
|
@ -9,20 +9,17 @@ It is based on dask-lightgbm, which was based on dask-xgboost.
|
|||
import socket
|
||||
from collections import defaultdict
|
||||
from copy import deepcopy
|
||||
from typing import Any, Callable, Dict, Iterable, List, Optional, Type, Union, Set
|
||||
from typing import Any, Callable, Dict, Iterable, List, Optional, Set, Type, Union
|
||||
from urllib.parse import urlparse
|
||||
|
||||
import numpy as np
|
||||
import scipy.sparse as ss
|
||||
|
||||
from .basic import (_LIB, LightGBMError, _choose_param_value, _ConfigAliases,
|
||||
_log_warning, _safe_call)
|
||||
from .compat import (DASK_INSTALLED, PANDAS_INSTALLED, SKLEARN_INSTALLED,
|
||||
Client, LGBMNotFittedError, concat, dask_Array,
|
||||
dask_DataFrame, dask_Series, default_client, delayed,
|
||||
get_worker, pd_DataFrame, pd_Series, wait)
|
||||
from .sklearn import (LGBMClassifier, LGBMModel, LGBMRanker, LGBMRegressor,
|
||||
_lgbmmodel_doc_fit, _lgbmmodel_doc_predict)
|
||||
from .basic import _LIB, LightGBMError, _choose_param_value, _ConfigAliases, _log_warning, _safe_call
|
||||
from .compat import (DASK_INSTALLED, PANDAS_INSTALLED, SKLEARN_INSTALLED, Client, LGBMNotFittedError, concat,
|
||||
dask_Array, dask_DataFrame, dask_Series, default_client, delayed, get_worker, pd_DataFrame,
|
||||
pd_Series, wait)
|
||||
from .sklearn import LGBMClassifier, LGBMModel, LGBMRanker, LGBMRegressor, _lgbmmodel_doc_fit, _lgbmmodel_doc_predict
|
||||
|
||||
_DaskCollection = Union[dask_Array, dask_DataFrame, dask_Series]
|
||||
_DaskMatrixLike = Union[dask_Array, dask_DataFrame]
|
||||
|
|
|
@ -7,8 +7,7 @@ from operator import attrgetter
|
|||
import numpy as np
|
||||
|
||||
from . import callback
|
||||
from .basic import (Booster, Dataset, LightGBMError, _ConfigAliases,
|
||||
_InnerPredictor, _log_warning)
|
||||
from .basic import Booster, Dataset, LightGBMError, _ConfigAliases, _InnerPredictor, _log_warning
|
||||
from .compat import SKLEARN_INSTALLED, _LGBMGroupKFold, _LGBMStratifiedKFold
|
||||
|
||||
|
||||
|
|
|
@ -5,14 +5,10 @@ from inspect import signature
|
|||
|
||||
import numpy as np
|
||||
|
||||
from .basic import (Dataset, LightGBMError, _choose_param_value,
|
||||
_ConfigAliases, _log_warning)
|
||||
from .compat import (SKLEARN_INSTALLED, LGBMNotFittedError,
|
||||
_LGBMAssertAllFinite, _LGBMCheckArray,
|
||||
_LGBMCheckClassificationTargets, _LGBMCheckSampleWeight,
|
||||
_LGBMCheckXY, _LGBMClassifierBase,
|
||||
_LGBMComputeSampleWeight, _LGBMLabelEncoder,
|
||||
_LGBMModelBase, _LGBMRegressorBase, dt_DataTable,
|
||||
from .basic import Dataset, LightGBMError, _choose_param_value, _ConfigAliases, _log_warning
|
||||
from .compat import (SKLEARN_INSTALLED, LGBMNotFittedError, _LGBMAssertAllFinite, _LGBMCheckArray,
|
||||
_LGBMCheckClassificationTargets, _LGBMCheckSampleWeight, _LGBMCheckXY, _LGBMClassifierBase,
|
||||
_LGBMComputeSampleWeight, _LGBMLabelEncoder, _LGBMModelBase, _LGBMRegressorBase, dt_DataTable,
|
||||
pd_DataFrame)
|
||||
from .engine import train
|
||||
|
||||
|
|
|
@ -11,11 +11,8 @@ import psutil
|
|||
import pytest
|
||||
from scipy.sparse import csr_matrix, isspmatrix_csc, isspmatrix_csr
|
||||
from sklearn.datasets import load_svmlight_file, make_multilabel_classification
|
||||
from sklearn.metrics import (average_precision_score, log_loss,
|
||||
mean_absolute_error, mean_squared_error,
|
||||
roc_auc_score)
|
||||
from sklearn.model_selection import (GroupKFold, TimeSeriesSplit,
|
||||
train_test_split)
|
||||
from sklearn.metrics import average_precision_score, log_loss, mean_absolute_error, mean_squared_error, roc_auc_score
|
||||
from sklearn.model_selection import GroupKFold, TimeSeriesSplit, train_test_split
|
||||
|
||||
import lightgbm as lgb
|
||||
|
||||
|
|
|
@ -1,30 +1,31 @@
|
|||
# coding: utf-8
|
||||
import itertools
|
||||
import joblib
|
||||
import math
|
||||
import os
|
||||
|
||||
import lightgbm as lgb
|
||||
import joblib
|
||||
import numpy as np
|
||||
import pytest
|
||||
from pkg_resources import parse_version
|
||||
from sklearn import __version__ as sk_version
|
||||
from sklearn.base import clone
|
||||
from sklearn.datasets import load_svmlight_file, make_multilabel_classification
|
||||
from sklearn.utils.estimator_checks import check_parameters_default_constructible
|
||||
from sklearn.metrics import log_loss, mean_squared_error
|
||||
from sklearn.model_selection import GridSearchCV, RandomizedSearchCV, train_test_split
|
||||
from sklearn.multioutput import (MultiOutputClassifier, ClassifierChain, MultiOutputRegressor,
|
||||
RegressorChain)
|
||||
from sklearn.multioutput import ClassifierChain, MultiOutputClassifier, MultiOutputRegressor, RegressorChain
|
||||
from sklearn.utils.estimator_checks import check_parameters_default_constructible
|
||||
from sklearn.utils.validation import check_is_fitted
|
||||
|
||||
import lightgbm as lgb
|
||||
|
||||
from .utils import load_boston, load_breast_cancer, load_digits, load_iris, load_linnerud
|
||||
|
||||
sk_version = parse_version(sk_version)
|
||||
if sk_version < parse_version("0.23"):
|
||||
import warnings
|
||||
|
||||
from sklearn.exceptions import SkipTestWarning
|
||||
from sklearn.utils.estimator_checks import _yield_all_checks, SkipTest
|
||||
from sklearn.utils.estimator_checks import SkipTest, _yield_all_checks
|
||||
else:
|
||||
from sklearn.utils.estimator_checks import parametrize_with_checks
|
||||
|
||||
|
|
Загрузка…
Ссылка в новой задаче