[python-package] use toarray() instead of todense() in tests and examples (#4446)

This commit is contained in:
James Lamb 2021-07-06 17:12:47 -05:00 коммит произвёл GitHub
Родитель ec1debcee8
Коммит e36cc9c171
Не найден ключ, соответствующий данной подписи
Идентификатор ключа GPG: 4AEE18F83AFDEB23
2 изменённых файлов: 3 добавлений и 3 удалений

Просмотреть файл

@ -30,7 +30,7 @@ if __name__ == "__main__":
# make this array dense because we're splitting across
# a sparse boundary to partition the data
X = X.todense()
X = X.toarray()
dX = da.from_array(
x=X,

Просмотреть файл

@ -1087,7 +1087,7 @@ def test_contribs_sparse_multiclass():
# convert data to dense and get back same contribs
contribs_dense = gbm.predict(X_test.toarray(), pred_contrib=True)
# validate the values are the same
contribs_csr_array = np.swapaxes(np.array([sparse_array.todense() for sparse_array in contribs_csr]), 0, 1)
contribs_csr_array = np.swapaxes(np.array([sparse_array.toarray() for sparse_array in contribs_csr]), 0, 1)
contribs_csr_arr_re = contribs_csr_array.reshape((contribs_csr_array.shape[0],
contribs_csr_array.shape[1] * contribs_csr_array.shape[2]))
if platform.machine() == 'aarch64':
@ -1103,7 +1103,7 @@ def test_contribs_sparse_multiclass():
for perclass_contribs_csc in contribs_csc:
assert isspmatrix_csc(perclass_contribs_csc)
# validate the values are the same
contribs_csc_array = np.swapaxes(np.array([sparse_array.todense() for sparse_array in contribs_csc]), 0, 1)
contribs_csc_array = np.swapaxes(np.array([sparse_array.toarray() for sparse_array in contribs_csc]), 0, 1)
contribs_csc_array = contribs_csc_array.reshape((contribs_csc_array.shape[0],
contribs_csc_array.shape[1] * contribs_csc_array.shape[2]))
if platform.machine() == 'aarch64':