# Tiny Distroless Dockerfile for LightGBM GPU CLI-only Version `dockerfile-cli-only-distroless.gpu` - A multi-stage build based on the `nvidia/opencl:devel-ubuntu18.04` (build) and `distroless/cc-debian10` (production) images. LightGBM (CLI-only) can be utilized in GPU and CPU modes. The resulting image size is around 15 MB. --- # Small Dockerfile for LightGBM GPU CLI-only Version `dockerfile-cli-only.gpu` - A multi-stage build based on the `nvidia/opencl:devel` (build) and `nvidia/opencl:runtime` (production) images. LightGBM (CLI-only) can be utilized in GPU and CPU modes. The resulting image size is around 100 MB. --- # Dockerfile for LightGBM GPU Version with Python `dockerfile.gpu` - A docker file with LightGBM utilizing nvidia-docker. The file is based on the `nvidia/cuda:8.0-cudnn5-devel` image. LightGBM can be utilized in GPU and CPU modes and via Python. ## Contents - LightGBM (cpu + gpu) - Python (conda) + scikit-learn, notebooks, pandas, matplotlib Running the container starts a Jupyter Notebook at `localhost:8888`. Jupyter password: `keras`. ## Requirements Requires docker and [nvidia-docker](https://github.com/NVIDIA/nvidia-docker) on host machine. ## Quickstart ### Build Docker Image ```sh mkdir lightgbm-docker cd lightgbm-docker wget https://raw.githubusercontent.com/Microsoft/LightGBM/master/docker/gpu/dockerfile.gpu docker build -f dockerfile.gpu -t lightgbm-gpu . ``` ### Run Image ```sh nvidia-docker run --rm -d --name lightgbm-gpu -p 8888:8888 -v /home:/home lightgbm-gpu ``` ### Attach with Command Line Access (if required) ```sh docker exec -it lightgbm-gpu bash ``` ### Jupyter Notebook ```sh localhost:8888 ```