LightGBM/R-package/man/set_field.Rd

51 строка
1.7 KiB
R

% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/lgb.Dataset.R
\name{set_field}
\alias{set_field}
\alias{set_field.lgb.Dataset}
\title{Set one attribute of a \code{lgb.Dataset} object}
\usage{
set_field(dataset, field_name, data)
\method{set_field}{lgb.Dataset}(dataset, field_name, data)
}
\arguments{
\item{dataset}{Object of class \code{lgb.Dataset}}
\item{field_name}{String with the name of the attribute to set. One of the following.
\itemize{
\item \code{label}: label lightgbm learns from ;
\item \code{weight}: to do a weight rescale ;
\item{\code{group}: used for learning-to-rank tasks. An integer vector describing how to
group rows together as ordered results from the same set of candidate results to be ranked.
For example, if you have a 100-document dataset with \code{group = c(10, 20, 40, 10, 10, 10)},
that means that you have 6 groups, where the first 10 records are in the first group,
records 11-30 are in the second group, etc.}
\item \code{init_score}: initial score is the base prediction lightgbm will boost from.
}}
\item{data}{The data for the field. See examples.}
}
\value{
The \code{lgb.Dataset} you passed in.
}
\description{
Set one attribute of a \code{lgb.Dataset}
}
\examples{
\donttest{
\dontshow{setLGBMthreads(2L)}
\dontshow{data.table::setDTthreads(1L)}
data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)
lgb.Dataset.construct(dtrain)
labels <- lightgbm::get_field(dtrain, "label")
lightgbm::set_field(dtrain, "label", 1 - labels)
labels2 <- lightgbm::get_field(dtrain, "label")
stopifnot(all.equal(labels2, 1 - labels))
}
}