зеркало из https://github.com/microsoft/LightGBM.git
254 строки
12 KiB
ReStructuredText
254 строки
12 KiB
ReStructuredText
Experiments
|
|
===========
|
|
|
|
Comparison Experiment
|
|
---------------------
|
|
|
|
For the detailed experiment scripts and output logs, please refer to this `repo`_.
|
|
|
|
History
|
|
^^^^^^^
|
|
|
|
08 Mar, 2020: update according to the latest master branch (`1b97eaf <https://github.com/dmlc/xgboost/commit/1b97eaf7a74315bfa2c132d59f937a35408bcfd1>`__ for XGBoost, `bcad692 <https://github.com/microsoft/LightGBM/commit/bcad692e263e0317cab11032dd017c78f9e58e5f>`__ for LightGBM). (``xgboost_exact`` is not updated for it is too slow.)
|
|
|
|
27 Feb, 2017: first version.
|
|
|
|
Data
|
|
^^^^
|
|
|
|
We used 5 datasets to conduct our comparison experiments. Details of data are listed in the following table:
|
|
|
|
+-----------+-----------------------+---------------------------------------------------------------------------------+-------------+----------+----------------------------------------------+
|
|
| Data | Task | Link | #Train\_Set | #Feature | Comments |
|
|
+===========+=======================+=================================================================================+=============+==========+==============================================+
|
|
| Higgs | Binary classification | `link <https://archive.ics.uci.edu/dataset/280/higgs>`__ | 10,500,000 | 28 | last 500,000 samples were used as test set |
|
|
+-----------+-----------------------+---------------------------------------------------------------------------------+-------------+----------+----------------------------------------------+
|
|
| Yahoo LTR | Learning to rank | `link <https://webscope.sandbox.yahoo.com/catalog.php?datatype=c>`__ | 473,134 | 700 | set1.train as train, set1.test as test |
|
|
+-----------+-----------------------+---------------------------------------------------------------------------------+-------------+----------+----------------------------------------------+
|
|
| MS LTR | Learning to rank | `link <https://www.microsoft.com/en-us/research/project/mslr/>`__ | 2,270,296 | 137 | {S1,S2,S3} as train set, {S5} as test set |
|
|
+-----------+-----------------------+---------------------------------------------------------------------------------+-------------+----------+----------------------------------------------+
|
|
| Expo | Binary classification | `link <https://community.amstat.org/jointscsg-section/dataexpo/dataexpo2009>`__ | 11,000,000 | 700 | last 1,000,000 samples were used as test set |
|
|
+-----------+-----------------------+---------------------------------------------------------------------------------+-------------+----------+----------------------------------------------+
|
|
| Allstate | Binary classification | `link <https://www.kaggle.com/c/ClaimPredictionChallenge>`__ | 13,184,290 | 4228 | last 1,000,000 samples were used as test set |
|
|
+-----------+-----------------------+---------------------------------------------------------------------------------+-------------+----------+----------------------------------------------+
|
|
|
|
Environment
|
|
^^^^^^^^^^^
|
|
|
|
We ran all experiments on a single Linux server (Azure ND24s) with the following specifications:
|
|
|
|
+------------------+-----------------+---------------------+
|
|
| OS | CPU | Memory |
|
|
+==================+=================+=====================+
|
|
| Ubuntu 16.04 LTS | 2 \* E5-2690 v4 | 448GB |
|
|
+------------------+-----------------+---------------------+
|
|
|
|
Baseline
|
|
^^^^^^^^
|
|
|
|
We used `xgboost`_ as a baseline.
|
|
|
|
Both xgboost and LightGBM were built with OpenMP support.
|
|
|
|
Settings
|
|
^^^^^^^^
|
|
|
|
We set up total 3 settings for experiments. The parameters of these settings are:
|
|
|
|
1. xgboost:
|
|
|
|
.. code:: text
|
|
|
|
eta = 0.1
|
|
max_depth = 8
|
|
num_round = 500
|
|
nthread = 16
|
|
tree_method = exact
|
|
min_child_weight = 100
|
|
|
|
2. xgboost\_hist (using histogram based algorithm):
|
|
|
|
.. code:: text
|
|
|
|
eta = 0.1
|
|
num_round = 500
|
|
nthread = 16
|
|
min_child_weight = 100
|
|
tree_method = hist
|
|
grow_policy = lossguide
|
|
max_depth = 0
|
|
max_leaves = 255
|
|
|
|
3. LightGBM:
|
|
|
|
.. code:: text
|
|
|
|
learning_rate = 0.1
|
|
num_leaves = 255
|
|
num_trees = 500
|
|
num_threads = 16
|
|
min_data_in_leaf = 0
|
|
min_sum_hessian_in_leaf = 100
|
|
|
|
xgboost grows trees depth-wise and controls model complexity by ``max_depth``.
|
|
LightGBM uses a leaf-wise algorithm instead and controls model complexity by ``num_leaves``.
|
|
So we cannot compare them in the exact same model setting. For the tradeoff, we use xgboost with ``max_depth=8``, which will have max number leaves to 255, to compare with LightGBM with ``num_leaves=255``.
|
|
|
|
Other parameters are default values.
|
|
|
|
Result
|
|
^^^^^^
|
|
|
|
Speed
|
|
'''''
|
|
|
|
We compared speed using only the training task without any test or metric output. We didn't count the time for IO.
|
|
For the ranking tasks, since XGBoost and LightGBM implement different ranking objective functions, we used ``regression`` objective for speed benchmark, for the fair comparison.
|
|
|
|
The following table is the comparison of time cost:
|
|
|
|
+-----------+-----------+---------------+---------------+
|
|
| Data | xgboost | xgboost\_hist | LightGBM |
|
|
+===========+===========+===============+===============+
|
|
| Higgs | 3794.34 s | 165.575 s | **130.094 s** |
|
|
+-----------+-----------+---------------+---------------+
|
|
| Yahoo LTR | 674.322 s | 131.462 s | **76.229 s** |
|
|
+-----------+-----------+---------------+---------------+
|
|
| MS LTR | 1251.27 s | 98.386 s | **70.417 s** |
|
|
+-----------+-----------+---------------+---------------+
|
|
| Expo | 1607.35 s | 137.65 s | **62.607 s** |
|
|
+-----------+-----------+---------------+---------------+
|
|
| Allstate | 2867.22 s | 315.256 s | **148.231 s** |
|
|
+-----------+-----------+---------------+---------------+
|
|
|
|
LightGBM ran faster than xgboost on all experiment data sets.
|
|
|
|
Accuracy
|
|
''''''''
|
|
|
|
We computed all accuracy metrics only on the test data set.
|
|
|
|
+-----------+-----------------+----------+-------------------+--------------+
|
|
| Data | Metric | xgboost | xgboost\_hist | LightGBM |
|
|
+===========+=================+==========+===================+==============+
|
|
| Higgs | AUC | 0.839593 | 0.845314 | **0.845724** |
|
|
+-----------+-----------------+----------+-------------------+--------------+
|
|
| Yahoo LTR | NDCG\ :sub:`1` | 0.719748 | 0.720049 | **0.732981** |
|
|
| +-----------------+----------+-------------------+--------------+
|
|
| | NDCG\ :sub:`3` | 0.717813 | 0.722573 | **0.735689** |
|
|
| +-----------------+----------+-------------------+--------------+
|
|
| | NDCG\ :sub:`5` | 0.737849 | 0.740899 | **0.75352** |
|
|
| +-----------------+----------+-------------------+--------------+
|
|
| | NDCG\ :sub:`10` | 0.78089 | 0.782957 | **0.793498** |
|
|
+-----------+-----------------+----------+-------------------+--------------+
|
|
| MS LTR | NDCG\ :sub:`1` | 0.483956 | 0.485115 | **0.517767** |
|
|
| +-----------------+----------+-------------------+--------------+
|
|
| | NDCG\ :sub:`3` | 0.467951 | 0.47313 | **0.501063** |
|
|
| +-----------------+----------+-------------------+--------------+
|
|
| | NDCG\ :sub:`5` | 0.472476 | 0.476375 | **0.504648** |
|
|
| +-----------------+----------+-------------------+--------------+
|
|
| | NDCG\ :sub:`10` | 0.492429 | 0.496553 | **0.524252** |
|
|
+-----------+-----------------+----------+-------------------+--------------+
|
|
| Expo | AUC | 0.756713 | 0.776224 | **0.776935** |
|
|
+-----------+-----------------+----------+-------------------+--------------+
|
|
| Allstate | AUC | 0.607201 | **0.609465** | 0.609072 |
|
|
+-----------+-----------------+----------+-------------------+--------------+
|
|
|
|
Memory Consumption
|
|
''''''''''''''''''
|
|
|
|
We monitored RES while running training task. And we set ``two_round=true`` (this will increase data-loading time and
|
|
reduce peak memory usage but not affect training speed or accuracy) in LightGBM to reduce peak memory usage.
|
|
|
|
+-----------+---------+---------------+--------------------+--------------------+
|
|
| Data | xgboost | xgboost\_hist | LightGBM (col-wise)|LightGBM (row-wise) |
|
|
+===========+=========+===============+====================+====================+
|
|
| Higgs | 4.853GB | 7.335GB | **0.897GB** | 1.401GB |
|
|
+-----------+---------+---------------+--------------------+--------------------+
|
|
| Yahoo LTR | 1.907GB | 4.023GB | **1.741GB** | 2.161GB |
|
|
+-----------+---------+---------------+--------------------+--------------------+
|
|
| MS LTR | 5.469GB | 7.491GB | **0.940GB** | 1.296GB |
|
|
+-----------+---------+---------------+--------------------+--------------------+
|
|
| Expo | 1.553GB | 2.606GB | **0.555GB** | 0.711GB |
|
|
+-----------+---------+---------------+--------------------+--------------------+
|
|
| Allstate | 6.237GB | 12.090GB | **1.116GB** | 1.755GB |
|
|
+-----------+---------+---------------+--------------------+--------------------+
|
|
|
|
Parallel Experiment
|
|
-------------------
|
|
|
|
History
|
|
^^^^^^^
|
|
|
|
27 Feb, 2017: first version.
|
|
|
|
Data
|
|
^^^^
|
|
|
|
We used a terabyte click log dataset to conduct parallel experiments. Details are listed in following table:
|
|
|
|
+--------+-----------------------+---------+---------------+----------+
|
|
| Data | Task | Link | #Data | #Feature |
|
|
+========+=======================+=========+===============+==========+
|
|
| Criteo | Binary classification | `link`_ | 1,700,000,000 | 67 |
|
|
+--------+-----------------------+---------+---------------+----------+
|
|
|
|
This data contains 13 integer features and 26 categorical features for 24 days of click logs.
|
|
We statisticized the click-through rate (CTR) and count for these 26 categorical features from the first ten days.
|
|
Then we used next ten days' data, after replacing the categorical features by the corresponding CTR and count, as training data.
|
|
The processed training data have a total of 1.7 billions records and 67 features.
|
|
|
|
Environment
|
|
^^^^^^^^^^^
|
|
|
|
We ran our experiments on 16 Windows servers with the following specifications:
|
|
|
|
+---------------------+-----------------+---------------------+-------------------------------------------+
|
|
| OS | CPU | Memory | Network Adapter |
|
|
+=====================+=================+=====================+===========================================+
|
|
| Windows Server 2012 | 2 \* E5-2670 v2 | DDR3 1600Mhz, 256GB | Mellanox ConnectX-3, 54Gbps, RDMA support |
|
|
+---------------------+-----------------+---------------------+-------------------------------------------+
|
|
|
|
Settings
|
|
^^^^^^^^
|
|
|
|
.. code:: text
|
|
|
|
learning_rate = 0.1
|
|
num_leaves = 255
|
|
num_trees = 100
|
|
num_thread = 16
|
|
tree_learner = data
|
|
|
|
We used data parallel here because this data is large in ``#data`` but small in ``#feature``. Other parameters were default values.
|
|
|
|
Results
|
|
^^^^^^^
|
|
|
|
+----------+---------------+---------------------------+
|
|
| #Machine | Time per Tree | Memory Usage(per Machine) |
|
|
+==========+===============+===========================+
|
|
| 1 | 627.8 s | 176GB |
|
|
+----------+---------------+---------------------------+
|
|
| 2 | 311 s | 87GB |
|
|
+----------+---------------+---------------------------+
|
|
| 4 | 156 s | 43GB |
|
|
+----------+---------------+---------------------------+
|
|
| 8 | 80 s | 22GB |
|
|
+----------+---------------+---------------------------+
|
|
| 16 | 42 s | 11GB |
|
|
+----------+---------------+---------------------------+
|
|
|
|
The results show that LightGBM achieves a linear speedup with distributed learning.
|
|
|
|
GPU Experiments
|
|
---------------
|
|
|
|
Refer to `GPU Performance <./GPU-Performance.rst>`__.
|
|
|
|
.. _repo: https://github.com/guolinke/boosting_tree_benchmarks
|
|
|
|
.. _xgboost: https://github.com/dmlc/xgboost
|
|
|
|
.. _link: http://labs.criteo.com/2013/12/download-terabyte-click-logs/
|