LightGBM/docker
이규민 8b1ab4f0ad
Fix Python Dockerfile (#5984)
2023-07-19 13:36:59 -05:00
..
gpu
README.md
dockerfile-cli
dockerfile-python Fix Python Dockerfile (#5984) 2023-07-19 13:36:59 -05:00
dockerfile-r

README.md

Using LightGBM via Docker

This directory contains Dockerfiles to make it easy to build and run LightGBM via Docker.

These builds of LightGBM all train on the CPU. For GPU-enabled builds, see the gpu/ directory.

Installing Docker

Follow the general installation instructions on the Docker site:

Using CLI Version of LightGBM via Docker

Build an image with the LightGBM CLI.

mkdir lightgbm-docker
cd lightgbm-docker
wget https://raw.githubusercontent.com/Microsoft/LightGBM/master/docker/dockerfile-cli
docker build \
    -t lightgbm-cli \
    -f dockerfile-cli \
    .

Once that completes, the built image can be used to run the CLI in a container. To try it out, run the following.

# configure the CLI
cat << EOF > train.conf
task = train
objective = binary
data = binary.train
num_trees = 10
output_model = LightGBM-CLI-model.txt
EOF

# get training data
curl -O https://raw.githubusercontent.com/Microsoft/LightGBM/master/examples/binary_classification/binary.train

# train, and save model to a text file
docker run \
  --rm \
  --volume "${PWD}":/opt/training \
  --workdir /opt/training \
  lightgbm-cli \
  config=train.conf

After this runs, a LightGBM model can be found at LightGBM-CLI-model.txt.

For more details on how to configure and use the LightGBM CLI, see https://lightgbm.readthedocs.io/en/latest/Quick-Start.html.

Running the Python-package Сontainer

Build an image with the LightGBM Python package installed.

mkdir lightgbm-docker
cd lightgbm-docker
wget https://raw.githubusercontent.com/Microsoft/LightGBM/master/docker/dockerfile-python
docker build \
    -t lightgbm-python \
    -f dockerfile-python \
    .

Once that completes, the built image can be used to run LightGBM's Python package in a container. Run the following to produce a model using the Python package.

# get training data
curl -O https://raw.githubusercontent.com/Microsoft/LightGBM/master/examples/binary_classification/binary.train

# create training script
cat << EOF > train.py
import lightgbm as lgb
import numpy as np
params = {
    "objective": "binary",
    "num_trees": 10
}

bst = lgb.train(
    train_set=lgb.Dataset("binary.train"),
    params=params
)
bst.save_model("LightGBM-python-model.txt")
EOF

# run training in a container
docker run \
    --rm \
    --volume "${PWD}":/opt/training \
    --workdir /opt/training \
    lightgbm-python \
    python train.py

After this runs, a LightGBM model can be found at LightGBM-python-model.txt.

Or run an interactive Python session in a container.

docker run \
    --rm \
    --volume "${PWD}":/opt/training \
    --workdir /opt/training \
    -it lightgbm-python \
    python

Running the R-package Сontainer

Build an image with the LightGBM R package installed.

mkdir lightgbm-docker
cd lightgbm-docker
wget https://raw.githubusercontent.com/Microsoft/LightGBM/master/docker/dockerfile-r

docker build \
    -t lightgbm-r \
    -f dockerfile-r \
    .

Once that completes, the built image can be used to run LightGBM's R package in a container. Run the following to produce a model using the R package.

# get training data
curl -O https://raw.githubusercontent.com/Microsoft/LightGBM/master/examples/binary_classification/binary.train

# create training script
cat << EOF > train.R
library(lightgbm)
params <- list(
    objective = "binary"
    , num_trees = 10L
)

bst <- lgb.train(
    data = lgb.Dataset("binary.train"),
    params = params
)
lgb.save(bst, "LightGBM-R-model.txt")
EOF

# run training in a container
docker run \
    --rm \
    --volume "${PWD}":/opt/training \
    --workdir /opt/training \
    lightgbm-r \
    Rscript train.R

After this runs, a LightGBM model can be found at LightGBM-R-model.txt.

Run the following to get an interactive R session in a container.

docker run \
    --rm \
    -it lightgbm-r \
    R

To use RStudio, an interactive development environment, run the following.

docker run \
    --rm \
    --env PASSWORD="lightgbm" \
    -p 8787:8787 \
    lightgbm-r

Then navigate to localhost:8787 in your local web browser, and log in with username rstudio and password lightgbm.

To target a different R version, pass any valid rocker/verse tag to docker build.

For example, to test LightGBM with R 3.5:

docker build \
    -t lightgbm-r-35 \
    -f dockerfile-r \
    --build-arg R_VERSION=3.5 \
    .