578a8c8a99
* updated docker folder * added depth=1 option to all git commands |
||
---|---|---|
.. | ||
gpu | ||
README.md | ||
dockerfile-cli | ||
dockerfile-python | ||
dockerfile-r |
README.md
Using LightGBM via Docker
This directory contains Dockerfile
s to make it easy to build and run LightGBM via Docker.
Installing Docker
Follow the general installation instructions on the Docker site:
Using CLI Version of LightGBM via Docker
Build a Docker image with LightGBM CLI:
mkdir lightgbm-docker
cd lightgbm-docker
wget https://raw.githubusercontent.com/Microsoft/LightGBM/master/docker/dockerfile-cli
docker build -t lightgbm-cli -f dockerfile-cli .
where lightgbm-cli
is the desired Docker image name.
Run the CLI from the container:
docker run --rm -it \
--volume $HOME/lgbm.conf:/lgbm.conf \
--volume $HOME/model.txt:/model.txt \
--volume $HOME/tmp:/out \
lightgbm-cli \
config=lgbm.conf
In the above example, three volumes are mounted from the host machine to the Docker container:
lgbm.conf
- task config, for example
app=multiclass
num_class=3
task=convert_model
input_model=model.txt
convert_model=/out/predict.cpp
convert_model_language=cpp
model.txt
- an input file for the task, could be training data or, in this case, a pre-trained model.out
- a directory to store the output of the task, notice thatconvert_model
in the task config is using it.
config=lgbm.conf
is a command-line argument passed to the lightgbm
executable, more arguments can be passed if required.
Running the Python-package Сontainer
Build the container, for Python users:
mkdir lightgbm-docker
cd lightgbm-docker
wget https://raw.githubusercontent.com/Microsoft/LightGBM/master/docker/dockerfile-python
docker build -t lightgbm -f dockerfile-python .
After build finished, run the container:
docker run --rm -it lightgbm
Running the R-package Сontainer
Build the container based on the verse
Rocker image, for R users:
mkdir lightgbm-docker
cd lightgbm-docker
wget https://raw.githubusercontent.com/Microsoft/LightGBM/master/docker/dockerfile-r
docker build -t lightgbm-r -f dockerfile-r .
After the build is finished you have two options to run the container:
- Start RStudio, an interactive development environment, so that you can develop your analysis using LightGBM or simply try out the R package. You can open RStudio in your web browser.
- Start a regular R session.
In both cases you can simply call
library("lightgbm")
to load the installed LightGBM R package.
RStudio
docker run --rm -it -e PASSWORD=lightgbm -p 8787:8787 lightgbm-r
Open the browser at http://localhost:8787 and log in.
See the rocker/rstudio
image documentation for further configuration options.
Regular R
If you just want a vanilla R process, change the executable of the container:
docker run --rm -it lightgbm-r R