LightGBM/tests/c_api_test/test_.py

265 строки
8.8 KiB
Python

# coding: utf-8
import ctypes
from pathlib import Path
from platform import system
import numpy as np
from scipy import sparse
try:
from lightgbm.basic import _LIB as LIB
except ModuleNotFoundError:
print("Could not import lightgbm Python package, looking for lib_lightgbm at the repo root")
if system() in ("Windows", "Microsoft"):
lib_file = Path(__file__).absolute().parents[2] / "Release" / "lib_lightgbm.dll"
else:
lib_file = Path(__file__).absolute().parents[2] / "lib_lightgbm.so"
LIB = ctypes.cdll.LoadLibrary(lib_file)
LIB.LGBM_GetLastError.restype = ctypes.c_char_p
dtype_float32 = 0
dtype_float64 = 1
dtype_int32 = 2
dtype_int64 = 3
def c_str(string):
return ctypes.c_char_p(string.encode("utf-8"))
def load_from_file(filename, reference):
ref = None
if reference is not None:
ref = reference
handle = ctypes.c_void_p()
LIB.LGBM_DatasetCreateFromFile(c_str(str(filename)), c_str("max_bin=15"), ref, ctypes.byref(handle))
print(LIB.LGBM_GetLastError())
num_data = ctypes.c_int(0)
LIB.LGBM_DatasetGetNumData(handle, ctypes.byref(num_data))
num_feature = ctypes.c_int(0)
LIB.LGBM_DatasetGetNumFeature(handle, ctypes.byref(num_feature))
print(f"#data: {num_data.value} #feature: {num_feature.value}")
return handle
def save_to_binary(handle, filename):
LIB.LGBM_DatasetSaveBinary(handle, c_str(filename))
def load_from_csr(filename, reference):
data = np.loadtxt(str(filename), dtype=np.float64)
csr = sparse.csr_matrix(data[:, 1:])
label = data[:, 0].astype(np.float32)
handle = ctypes.c_void_p()
ref = None
if reference is not None:
ref = reference
LIB.LGBM_DatasetCreateFromCSR(
csr.indptr.ctypes.data_as(ctypes.POINTER(ctypes.c_int32)),
ctypes.c_int(dtype_int32),
csr.indices.ctypes.data_as(ctypes.POINTER(ctypes.c_int32)),
csr.data.ctypes.data_as(ctypes.POINTER(ctypes.c_double)),
ctypes.c_int(dtype_float64),
ctypes.c_int64(len(csr.indptr)),
ctypes.c_int64(len(csr.data)),
ctypes.c_int64(csr.shape[1]),
c_str("max_bin=15"),
ref,
ctypes.byref(handle),
)
num_data = ctypes.c_int(0)
LIB.LGBM_DatasetGetNumData(handle, ctypes.byref(num_data))
num_feature = ctypes.c_int(0)
LIB.LGBM_DatasetGetNumFeature(handle, ctypes.byref(num_feature))
LIB.LGBM_DatasetSetField(
handle,
c_str("label"),
label.ctypes.data_as(ctypes.POINTER(ctypes.c_float)),
ctypes.c_int(len(label)),
ctypes.c_int(dtype_float32),
)
print(f"#data: {num_data.value} #feature: {num_feature.value}")
return handle
def load_from_csc(filename, reference):
data = np.loadtxt(str(filename), dtype=np.float64)
csc = sparse.csc_matrix(data[:, 1:])
label = data[:, 0].astype(np.float32)
handle = ctypes.c_void_p()
ref = None
if reference is not None:
ref = reference
LIB.LGBM_DatasetCreateFromCSC(
csc.indptr.ctypes.data_as(ctypes.POINTER(ctypes.c_int32)),
ctypes.c_int(dtype_int32),
csc.indices.ctypes.data_as(ctypes.POINTER(ctypes.c_int32)),
csc.data.ctypes.data_as(ctypes.POINTER(ctypes.c_double)),
ctypes.c_int(dtype_float64),
ctypes.c_int64(len(csc.indptr)),
ctypes.c_int64(len(csc.data)),
ctypes.c_int64(csc.shape[0]),
c_str("max_bin=15"),
ref,
ctypes.byref(handle),
)
num_data = ctypes.c_int(0)
LIB.LGBM_DatasetGetNumData(handle, ctypes.byref(num_data))
num_feature = ctypes.c_int(0)
LIB.LGBM_DatasetGetNumFeature(handle, ctypes.byref(num_feature))
LIB.LGBM_DatasetSetField(
handle,
c_str("label"),
label.ctypes.data_as(ctypes.POINTER(ctypes.c_float)),
ctypes.c_int(len(label)),
ctypes.c_int(dtype_float32),
)
print(f"#data: {num_data.value} #feature: {num_feature.value}")
return handle
def load_from_mat(filename, reference):
mat = np.loadtxt(str(filename), dtype=np.float64)
label = mat[:, 0].astype(np.float32)
mat = mat[:, 1:]
data = np.asarray(mat.reshape(mat.size), dtype=np.float64)
handle = ctypes.c_void_p()
ref = None
if reference is not None:
ref = reference
LIB.LGBM_DatasetCreateFromMat(
data.ctypes.data_as(ctypes.POINTER(ctypes.c_double)),
ctypes.c_int(dtype_float64),
ctypes.c_int32(mat.shape[0]),
ctypes.c_int32(mat.shape[1]),
ctypes.c_int(1),
c_str("max_bin=15"),
ref,
ctypes.byref(handle),
)
num_data = ctypes.c_int(0)
LIB.LGBM_DatasetGetNumData(handle, ctypes.byref(num_data))
num_feature = ctypes.c_int(0)
LIB.LGBM_DatasetGetNumFeature(handle, ctypes.byref(num_feature))
LIB.LGBM_DatasetSetField(
handle,
c_str("label"),
label.ctypes.data_as(ctypes.POINTER(ctypes.c_float)),
ctypes.c_int(len(label)),
ctypes.c_int(dtype_float32),
)
print(f"#data: {num_data.value} #feature: {num_feature.value}")
return handle
def free_dataset(handle):
LIB.LGBM_DatasetFree(handle)
def test_dataset():
binary_example_dir = Path(__file__).absolute().parents[2] / "examples" / "binary_classification"
train = load_from_file(binary_example_dir / "binary.train", None)
test = load_from_mat(binary_example_dir / "binary.test", train)
free_dataset(test)
test = load_from_csr(binary_example_dir / "binary.test", train)
free_dataset(test)
test = load_from_csc(binary_example_dir / "binary.test", train)
free_dataset(test)
save_to_binary(train, "train.binary.bin")
free_dataset(train)
train = load_from_file("train.binary.bin", None)
free_dataset(train)
def test_booster():
binary_example_dir = Path(__file__).absolute().parents[2] / "examples" / "binary_classification"
train = load_from_mat(binary_example_dir / "binary.train", None)
test = load_from_mat(binary_example_dir / "binary.test", train)
booster = ctypes.c_void_p()
LIB.LGBM_BoosterCreate(train, c_str("app=binary metric=auc num_leaves=31 verbose=0"), ctypes.byref(booster))
LIB.LGBM_BoosterAddValidData(booster, test)
is_finished = ctypes.c_int(0)
for i in range(1, 51):
LIB.LGBM_BoosterUpdateOneIter(booster, ctypes.byref(is_finished))
result = np.array([0.0], dtype=np.float64)
out_len = ctypes.c_int(0)
LIB.LGBM_BoosterGetEval(
booster, ctypes.c_int(0), ctypes.byref(out_len), result.ctypes.data_as(ctypes.POINTER(ctypes.c_double))
)
if i % 10 == 0:
print(f"{i} iteration test AUC {result[0]:.6f}")
LIB.LGBM_BoosterSaveModel(booster, ctypes.c_int(0), ctypes.c_int(-1), ctypes.c_int(0), c_str("model.txt"))
LIB.LGBM_BoosterFree(booster)
free_dataset(train)
free_dataset(test)
booster2 = ctypes.c_void_p()
num_total_model = ctypes.c_int(0)
LIB.LGBM_BoosterCreateFromModelfile(c_str("model.txt"), ctypes.byref(num_total_model), ctypes.byref(booster2))
data = np.loadtxt(str(binary_example_dir / "binary.test"), dtype=np.float64)
mat = data[:, 1:]
preb = np.empty(mat.shape[0], dtype=np.float64)
num_preb = ctypes.c_int64(0)
data = np.asarray(mat.reshape(mat.size), dtype=np.float64)
LIB.LGBM_BoosterPredictForMat(
booster2,
data.ctypes.data_as(ctypes.POINTER(ctypes.c_double)),
ctypes.c_int(dtype_float64),
ctypes.c_int32(mat.shape[0]),
ctypes.c_int32(mat.shape[1]),
ctypes.c_int(1),
ctypes.c_int(1),
ctypes.c_int(0),
ctypes.c_int(25),
c_str(""),
ctypes.byref(num_preb),
preb.ctypes.data_as(ctypes.POINTER(ctypes.c_double)),
)
LIB.LGBM_BoosterPredictForFile(
booster2,
c_str(str(binary_example_dir / "binary.test")),
ctypes.c_int(0),
ctypes.c_int(0),
ctypes.c_int(0),
ctypes.c_int(25),
c_str(""),
c_str("preb.txt"),
)
LIB.LGBM_BoosterPredictForFile(
booster2,
c_str(str(binary_example_dir / "binary.test")),
ctypes.c_int(0),
ctypes.c_int(0),
ctypes.c_int(10),
ctypes.c_int(25),
c_str(""),
c_str("preb.txt"),
)
LIB.LGBM_BoosterFree(booster2)
def test_max_thread_control():
# at initialization, should be -1
num_threads = ctypes.c_int(0)
ret = LIB.LGBM_GetMaxThreads(ctypes.byref(num_threads))
assert ret == 0
assert num_threads.value == -1
# updating that value through the C API should work
ret = LIB.LGBM_SetMaxThreads(ctypes.c_int(6))
assert ret == 0
ret = LIB.LGBM_GetMaxThreads(ctypes.byref(num_threads))
assert ret == 0
assert num_threads.value == 6
# resetting to any negative number should set it to -1
ret = LIB.LGBM_SetMaxThreads(ctypes.c_int(-123))
assert ret == 0
ret = LIB.LGBM_GetMaxThreads(ctypes.byref(num_threads))
assert ret == 0
assert num_threads.value == -1