fixed spacing
This commit is contained in:
Родитель
f0f20653d0
Коммит
81db2c85f4
|
@ -82,8 +82,6 @@ There are other types of logistic regression, including multinomial and ordinal:
|
||||||
|
|
||||||
![Multinomial vs ordinal regression](https://github.com/microsoft/ML-For-Beginners/blob/main/2-Regression/4-Logistic/images/multinomial-vs-ordinal.png)
|
![Multinomial vs ordinal regression](https://github.com/microsoft/ML-For-Beginners/blob/main/2-Regression/4-Logistic/images/multinomial-vs-ordinal.png)
|
||||||
|
|
||||||
\
|
|
||||||
|
|
||||||
|
|
||||||
#### **Variables DO NOT have to correlate**
|
#### **Variables DO NOT have to correlate**
|
||||||
|
|
||||||
|
@ -306,6 +304,7 @@ log_reg_wf
|
||||||
|
|
||||||
After a workflow has been *specified*, a model can be `trained` using the [`fit()`](https://tidymodels.github.io/parsnip/reference/fit.html) function. The workflow will estimate a recipe and preprocess the data before training, so we won't have to manually do that using prep and bake.
|
After a workflow has been *specified*, a model can be `trained` using the [`fit()`](https://tidymodels.github.io/parsnip/reference/fit.html) function. The workflow will estimate a recipe and preprocess the data before training, so we won't have to manually do that using prep and bake.
|
||||||
|
|
||||||
|
|
||||||
```{r train}
|
```{r train}
|
||||||
# Train the model
|
# Train the model
|
||||||
wf_fit <- log_reg_wf %>%
|
wf_fit <- log_reg_wf %>%
|
||||||
|
@ -345,8 +344,6 @@ The [**`conf_mat()`**](https://tidymodels.github.io/yardstick/reference/conf_mat
|
||||||
```{r conf_mat}
|
```{r conf_mat}
|
||||||
# Confusion matrix for prediction results
|
# Confusion matrix for prediction results
|
||||||
conf_mat(data = results, truth = color, estimate = .pred_class)
|
conf_mat(data = results, truth = color, estimate = .pred_class)
|
||||||
|
|
||||||
|
|
||||||
```
|
```
|
||||||
|
|
||||||
Let's interpret the confusion matrix. Our model is asked to classify pumpkins between two binary categories, category `white` and category `not-white`
|
Let's interpret the confusion matrix. Our model is asked to classify pumpkins between two binary categories, category `white` and category `not-white`
|
||||||
|
|
Загрузка…
Ссылка в новой задаче