added lesson_4.html
This commit is contained in:
Родитель
5eb68ee402
Коммит
a74f75d912
|
@ -14,7 +14,7 @@ output:
|
|||
|
||||
![Infographic by Dasani Madipalli](../../images/logistic-linear.png){width="600"}
|
||||
|
||||
#### ** [Pre-lecture quiz](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/15/)**
|
||||
#### **[Pre-lecture quiz](https://gray-sand-07a10f403.1.azurestaticapps.net/quiz/15/)**
|
||||
|
||||
#### Introduction
|
||||
|
||||
|
@ -56,7 +56,7 @@ suppressWarnings(if (!require("pacman"))install.packages("pacman"))
|
|||
pacman::p_load(tidyverse, tidymodels, janitor, ggbeeswarm)
|
||||
```
|
||||
|
||||
## ** Define the question**
|
||||
## **Define the question**
|
||||
|
||||
For our purposes, we will express this as a binary: 'Orange' or 'Not Orange'. There is also a 'striped' category in our dataset but there are few instances of it, so we will not use it. It disappears once we remove null values from the dataset, anyway.
|
||||
|
||||
|
@ -148,7 +148,7 @@ pumpkins_select %>%
|
|||
|
||||
The goal of data exploration is to try to understand the `relationships` between its attributes; in particular, any apparent correlation between the *features* and the *label* your model will try to predict. One way of doing this is by using data visualization.
|
||||
|
||||
Given our the data types of our columns, we can `encode` them and be on our way to making some visualizations. This simply involves `translating` a column with `categorical values` for example our columns of type *char*, into one or more `numeric columns` that take the place of the original. - Something we did in our [last lesson](https://github.com/microsoft/ML-For-Beginners/blob/main/2-Regression/3-Linear/solution/lesson_3-R.ipynb).
|
||||
Given our the data types of our columns, we can `encode` them and be on our way to making some visualizations. This simply involves `translating` a column with `categorical values` for example our columns of type *char*, into one or more `numeric columns` that take the place of the original. - Something we did in our [last lesson](https://github.com/microsoft/ML-For-Beginners/blob/main/2-Regression/3-Linear/solution/lesson_3.html).
|
||||
|
||||
Tidymodels provides yet another neat package: [recipes](https://recipes.tidymodels.org/)- a package for preprocessing data. We'll define a `recipe` that specifies that all predictor columns should be encoded into a set of integers , `prep` it to estimates the required quantities and statistics needed by any operations and finally `bake` to apply the computations to new data.
|
||||
|
||||
|
|
Различия файлов скрыты, потому что одна или несколько строк слишком длинны
|
@ -97,7 +97,7 @@ By ensuring that the content aligns with projects, the process is made more enga
|
|||
| 05 | Introduction to regression | [Regression](2-Regression/README.md) | Get started with Python and Scikit-learn for regression models | <ul><li>[Python](2-Regression/1-Tools/README.md)</li><li>[R](2-Regression/1-Tools/solution/R/lesson_1.html)</li></ul> | <ul><li>Jen</li><li>Eric Wanjau</li></ul> |
|
||||
| 06 | North American pumpkin prices 🎃 | [Regression](2-Regression/README.md) | Visualize and clean data in preparation for ML | <ul><li>[Python](2-Regression/2-Data/README.md)</li><li>[R](2-Regression/2-Data/solution/R/lesson_2.html)</li></ul> | <ul><li>Jen</li><li>Eric Wanjau</li></ul> |
|
||||
| 07 | North American pumpkin prices 🎃 | [Regression](2-Regression/README.md) | Build linear and polynomial regression models | <ul><li>[Python](2-Regression/3-Linear/README.md)</li><li>[R](2-Regression/3-Linear/solution/R/lesson_3.html)</li></ul> | <ul><li>Jen and Dmitry</li><li>Eric Wanjau</li></ul> |
|
||||
| 08 | North American pumpkin prices 🎃 | [Regression](2-Regression/README.md) | Build a logistic regression model | <ul><li>[Python](2-Regression/4-Logistic/README.md) </li><li>[R](2-Regression/4-Logistic/solution/R/lesson_4-R.ipynb)</li></ul> | <ul><li>Jen</li><li>Eric Wanjau</li></ul> |
|
||||
| 08 | North American pumpkin prices 🎃 | [Regression](2-Regression/README.md) | Build a logistic regression model | <ul><li>[Python](2-Regression/4-Logistic/README.md) </li><li>[R](2-Regression/4-Logistic/solution/R/lesson_4.html)</li></ul> | <ul><li>Jen</li><li>Eric Wanjau</li></ul> |
|
||||
| 09 | A Web App 🔌 | [Web App](3-Web-App/README.md) | Build a web app to use your trained model | [Python](3-Web-App/1-Web-App/README.md) | Jen |
|
||||
| 10 | Introduction to classification | [Classification](4-Classification/README.md) | Clean, prep, and visualize your data; introduction to classification | <ul><li> [Python](4-Classification/1-Introduction/README.md) </li><li>[R](4-Classification/1-Introduction/solution/R/lesson_10-R.ipynb) | <ul><li>Jen and Cassie</li><li>Eric Wanjau</li></ul> |
|
||||
| 11 | Delicious Asian and Indian cuisines 🍜 | [Classification](4-Classification/README.md) | Introduction to classifiers | <ul><li> [Python](4-Classification/2-Classifiers-1/README.md)</li><li>[R](4-Classification/2-Classifiers-1/solution/R/lesson_11.html) | <ul><li>Jen and Cassie</li><li>Eric Wanjau</li></ul> |
|
||||
|
|
Загрузка…
Ссылка в новой задаче