JP aks deployment fix (#388)
* Change AKS deployment configuration Deployment config changed from 1CPU/4GB to 0.5CPU/2GB so it fits a AKS created with default parameters * Update custom_model.md Co-authored-by: João Pedro Martins <lokijota@users.noreply.github.com>
This commit is contained in:
Родитель
fa03633cdb
Коммит
d8e29ccdfd
|
@ -7,8 +7,8 @@ autoScaler:
|
|||
targetUtilization: 70
|
||||
authEnabled: True
|
||||
containerResourceRequirements:
|
||||
cpu: 1
|
||||
memoryInGB: 4
|
||||
cpu: 0.5
|
||||
memoryInGB: 2
|
||||
appInsightsEnabled: True
|
||||
scoringTimeoutMs: 5000
|
||||
maxConcurrentRequestsPerContainer: 2
|
||||
|
|
|
@ -97,6 +97,7 @@ If you want to keep scoring:
|
|||
1. Update or replace `[project name]/scoring/score.py`
|
||||
1. Add any dependencies required by scoring to `[project name]/conda_dependencies.yml`
|
||||
1. Modify the test cases in the `ml_service/util/smoke_test_scoring_service.py` script to match the schema of the training features in your data
|
||||
1. Check and modify [project name]/scoring/deployment_config_aks.yml if AKS deployment is planned. The deployment configuration shall suit custom model as well as AKS cluster size.
|
||||
|
||||
# Configure Custom Batch Scoring
|
||||
|
||||
|
|
Загрузка…
Ссылка в новой задаче