This commit is contained in:
Kit 2018-02-09 19:23:16 +08:00
Родитель 6fe9db3174
Коммит 3a0aeb69ea
1 изменённых файлов: 42 добавлений и 37 удалений

Просмотреть файл

@ -1,13 +1,10 @@
import os
import sys
import six
import unittest
import numpy as np
import tensorflow as tf
from mmdnn.conversion.examples.imagenet_test import TestKit
from mmdnn.conversion.cntk.cntk_emitter import CntkEmitter
from mmdnn.conversion.tensorflow.tensorflow_emitter import TensorflowEmitter
from mmdnn.conversion.keras.keras2_emitter import Keras2Emitter
from mmdnn.conversion.pytorch.pytorch_emitter import PytorchEmitter
from mmdnn.conversion.mxnet.mxnet_emitter import MXNetEmitter
@ -213,12 +210,16 @@ class TestModels(CorrectnessTest):
@staticmethod
def TensorflowEmit(original_framework, architecture_name, architecture_path, weight_path, image_path):
import tensorflow as tf
from mmdnn.conversion.tensorflow.tensorflow_emitter import TensorflowEmitter
# IR to code
converted_file = original_framework + '_tensorflow_' + architecture_name + "_converted"
converted_file = converted_file.replace('.', '_')
emitter = TensorflowEmitter((architecture_path, weight_path))
emitter.run(converted_file + '.py', None, 'test')
del emitter
del TensorflowEmitter
# import converted model
model_converted = __import__(converted_file).KitModel(weight_path)
@ -235,6 +236,9 @@ class TestModels(CorrectnessTest):
del sys.modules[converted_file]
os.remove(converted_file + '.py')
converted_predict = np.squeeze(predict)
del tf
return converted_predict
@ -262,13 +266,14 @@ class TestModels(CorrectnessTest):
predict = model_converted(input_data)
predict = predict.data.numpy()
converted_predict = np.squeeze(predict)
del model_converted
del sys.modules[converted_file]
del torch
os.remove(converted_file + '.py')
os.remove(converted_file + '.npy')
converted_predict = np.squeeze(predict)
return converted_predict
@ -342,47 +347,47 @@ class TestModels(CorrectnessTest):
'cntk' : {
# 'alexnet' : [TensorflowEmit, KerasEmit],
# 'resnet18' : [TensorflowEmit, KerasEmit],
'inception_v3' : [PytorchEmit ],
'inception_v3' : [PytorchEmit],
},
'keras' : {
'vgg16' : [CntkEmit, TensorflowEmit, KerasEmit, PytorchEmit],
'vgg16' : [CntkEmit, TensorflowEmit, KerasEmit, PytorchEmit, MXNetEmit],
'vgg19' : [CntkEmit, TensorflowEmit, KerasEmit, PytorchEmit, MXNetEmit],
'vgg19' : [CntkEmit, TensorflowEmit, KerasEmit, PytorchEmit],
'inception_v3' : [CntkEmit, TensorflowEmit, KerasEmit, PytorchEmit],
'resnet50' : [CntkEmit, TensorflowEmit, KerasEmit, PytorchEmit],
'densenet' : [CntkEmit, TensorflowEmit, KerasEmit, PytorchEmit],
'vgg19' : [CntkEmit, TensorflowEmit, KerasEmit, PytorchEmit, MXNetEmit],
'inception_v3' : [CntkEmit, TensorflowEmit, KerasEmit, PytorchEmit, MXNetEmit],
'resnet50' : [CntkEmit, TensorflowEmit, KerasEmit, PytorchEmit, MXNetEmit],
'densenet' : [CntkEmit, TensorflowEmit, KerasEmit, PytorchEmit, MXNetEmit],
'xception' : [TensorflowEmit, KerasEmit],
'mobilenet' : [TensorflowEmit, KerasEmit],
'mobilenet' : [TensorflowEmit, KerasEmit, MXNetEmit],
'nasnet' : [TensorflowEmit, KerasEmit],
},
'mxnet' : {
'vgg19' : [CntkEmit, TensorflowEmit, KerasEmit, PytorchEmit],
'imagenet1k-inception-bn' : [CntkEmit, TensorflowEmit, KerasEmit, PytorchEmit],
'imagenet1k-resnet-152' : [CntkEmit, TensorflowEmit, KerasEmit, PytorchEmit],
'squeezenet_v1.1' : [CntkEmit, TensorflowEmit, KerasEmit, PytorchEmit],
'imagenet1k-resnext-101-64x4d' : [CntkEmit, TensorflowEmit, PytorchEmit], # Keras is too slow
'imagenet1k-resnext-50' : [CntkEmit, TensorflowEmit, KerasEmit, PytorchEmit],
'vgg19' : [CntkEmit, TensorflowEmit, KerasEmit, PytorchEmit, MXNetEmit],
'imagenet1k-inception-bn' : [CntkEmit, TensorflowEmit, KerasEmit, PytorchEmit, MXNetEmit],
'imagenet1k-resnet-152' : [CntkEmit, TensorflowEmit, KerasEmit, PytorchEmit, MXNetEmit],
'squeezenet_v1.1' : [CntkEmit, TensorflowEmit, KerasEmit, PytorchEmit, MXNetEmit],
'imagenet1k-resnext-101-64x4d' : [CntkEmit, TensorflowEmit, PytorchEmit, MXNetEmit], # Keras is too slow
'imagenet1k-resnext-50' : [CntkEmit, TensorflowEmit, KerasEmit, PytorchEmit, MXNetEmit],
},
'caffe' : {
'vgg19' : [CntkEmit, TensorflowEmit, KerasEmit, PytorchEmit],
'vgg19' : [CntkEmit, TensorflowEmit, KerasEmit, PytorchEmit, MXNetEmit],
'alexnet' : [CntkEmit],
'inception_v1' : [CntkEmit, TensorflowEmit, KerasEmit, PytorchEmit],
'resnet152' : [CntkEmit, TensorflowEmit, KerasEmit, PytorchEmit],
'squeezenet' : [CntkEmit, PytorchEmit]
'inception_v1' : [CntkEmit, TensorflowEmit, KerasEmit, MXNetEmit], # TODO: PytorchEmit
'resnet152' : [CntkEmit, TensorflowEmit, KerasEmit, PytorchEmit, MXNetEmit],
'squeezenet' : [CntkEmit, PytorchEmit, MXNetEmit]
},
'tensorflow' : {
'vgg19' : [CntkEmit, TensorflowEmit, KerasEmit, PytorchEmit],
'inception_v1' : [TensorflowEmit, KerasEmit, PytorchEmit], # TODO: CntkEmit
'inception_v3' : [CntkEmit, TensorflowEmit, KerasEmit], # TODO: PytorchEmit
'resnet_v1_50' : [TensorflowEmit, KerasEmit, PytorchEmit], # TODO: CntkEmit
'resnet_v1_152' : [TensorflowEmit, KerasEmit, PytorchEmit], # TODO: CntkEmit
'resnet_v2_50' : [TensorflowEmit, KerasEmit, PytorchEmit], # TODO: CntkEmit
'resnet_v2_152' : [TensorflowEmit, KerasEmit, PytorchEmit], # TODO: CntkEmit
'mobilenet_v1_1.0' : [TensorflowEmit, KerasEmit],
'vgg19' : [CntkEmit, TensorflowEmit, KerasEmit, PytorchEmit, MXNetEmit],
'inception_v1' : [TensorflowEmit, KerasEmit, PytorchEmit, MXNetEmit], # TODO: CntkEmit
'inception_v3' : [CntkEmit, TensorflowEmit, KerasEmit, MXNetEmit], # TODO: PytorchEmit
'resnet_v1_50' : [TensorflowEmit, KerasEmit, PytorchEmit, MXNetEmit], # TODO: CntkEmit
'resnet_v1_152' : [TensorflowEmit, KerasEmit, PytorchEmit, MXNetEmit], # TODO: CntkEmit
'resnet_v2_50' : [TensorflowEmit, KerasEmit, PytorchEmit, MXNetEmit], # TODO: CntkEmit
'resnet_v2_152' : [TensorflowEmit, KerasEmit, PytorchEmit, MXNetEmit], # TODO: CntkEmit
'mobilenet_v1_1.0' : [TensorflowEmit, KerasEmit, MXNetEmit],
# 'inception_resnet_v2' : [CntkEmit, TensorflowEmit, KerasEmit, PytorchEmit], # TODO
# 'nasnet-a_large' : [TensorflowEmit, KerasEmit, PytorchEmit], # TODO
},
@ -394,16 +399,16 @@ class TestModels(CorrectnessTest):
ensure_dir(self.tmpdir)
for network_name in self.test_table[original_framework].keys():
# print("Test {} from {} start.".format(network_name, original_framework), file=sys.stderr, flush=True)
print("Test {} from {} start.".format(network_name, original_framework))
print("Test {} from {} start.".format(network_name, original_framework), file=sys.stderr, flush=True)
# print("Test {} from {} start.".format(network_name, original_framework))
# get original model prediction result
original_predict = parser(network_name, self.image_path)
IR_file = TestModels.tmpdir + original_framework + '_' + network_name + "_converted"
for emit in self.test_table[original_framework][network_name]:
# print('Testing {} from {} to {}.'.format(network_name, original_framework, emit.__func__.__name__[:-4]), file=sys.stderr, flush=True)
print('Testing {} from {} to {}.'.format(network_name, original_framework, emit.__func__.__name__[:-4]))
print('Testing {} from {} to {}.'.format(network_name, original_framework, emit.__func__.__name__[:-4]), file=sys.stderr, flush=True)
# print('Testing {} from {} to {}.'.format(network_name, original_framework, emit.__func__.__name__[:-4]))
converted_predict = emit.__func__(
original_framework,
network_name,
@ -413,8 +418,8 @@ class TestModels(CorrectnessTest):
self._compare_outputs(original_predict, converted_predict)
# print('Conversion {} from {} to {} passed.'.format(network_name, original_framework, emit.__func__.__name__[:-4]), file=sys.stderr, flush=True)
print('Conversion {} from {} to {} passed.'.format(network_name, original_framework, emit.__func__.__name__[:-4]))
print('Conversion {} from {} to {} passed.'.format(network_name, original_framework, emit.__func__.__name__[:-4]), file=sys.stderr, flush=True)
# print('Conversion {} from {} to {} passed.'.format(network_name, original_framework, emit.__func__.__name__[:-4]))
try:
os.remove(IR_file + ".json")
except OSError:
@ -442,5 +447,5 @@ class TestModels(CorrectnessTest):
self._test_function('keras', self.KerasParse)
def test_mxnet(self):
self._test_function('mxnet', self.MXNetParse)
# def test_mxnet(self):
# self._test_function('mxnet', self.MXNetParse)