NPMT/fairseq/models/conv_model.lua

158 строки
5.2 KiB
Lua
Исходник Постоянная ссылка Обычный вид История

2017-04-13 18:36:05 +03:00
-- Copyright (c) 2017-present, Facebook, Inc.
-- All rights reserved.
--
-- This source code is licensed under the license found in the LICENSE file in
-- the root directory of this source tree. An additional grant of patent rights
-- can be found in the PATENTS file in the same directory.
--
--[[
--
-- A model similar to AvgpoolModel, but with an encoder consisting of
-- 2 parallel stacks of convolutional layers.
--
--]]
require 'nn'
require 'nngraph'
local argcheck = require 'argcheck'
local utils = require 'fairseq.utils'
local mutils = require 'fairseq.models.utils'
local cuda = utils.loadCuda()
local ConvModel, parent = torch.class('ConvModel', 'AvgpoolModel')
ConvModel.__init = argcheck{
{name='self', type='ConvModel'},
{name='config', type='table', opt=true},
call = function(self, config)
parent.__init(self, config)
end
}
ConvModel.makeTemporalConvolution = argcheck{
{name='self', type='ConvModel'},
{name='config', type='table'},
{name='ninput', type='number'},
{name='kwidth', type='number'},
{name='nhid', type='number'},
call = function(self, config, ninput, kwidth, nhid)
local pad = (kwidth - 1) / 2
local conv
if config.cudnnconv then
conv = cuda.cudnn.TemporalConvolution(ninput, nhid, kwidth, 1, pad)
else
conv = nn.TemporalConvolutionTBC(ninput, nhid, kwidth, pad)
end
-- Initialize weights using the nn implementation
local nnconv = nn.TemporalConvolution(ninput, nhid,
kwidth, 1)
conv.weight:copy(nnconv.weight)
conv.bias:copy(nnconv.bias)
-- Scale gradients by sqrt(ninput) to make learning more stable
conv = nn.GradMultiply(conv, 1 / math.sqrt(ninput))
return conv
end
}
ConvModel.makeEncoder = argcheck{
{name='self', type='ConvModel'},
{name='config', type='table'},
call = function(self, config)
local sourceIn = nn.Identity()()
-- First, computing embeddings for input tokens and their positions
local tokens, positions = sourceIn:split(2)
local dict = config.srcdict
local embedToken = mutils.makeLookupTable(config, dict:size(),
dict:getPadIndex())
-- XXX Assumes source sentence length < 1024
local embedPosition =
mutils.makeLookupTable(config, 1024, dict:getPadIndex())
local embed =
nn.CAddTable()({embedToken(tokens), embedPosition(positions)})
if config.dropout_src > 0 then
embed = nn.Dropout(config.dropout_src)(embed)
end
if not config.cudnnconv then
embed = nn.Transpose({1, 2})(embed)
end
-- This stack is used for computing attention scores
local cnnA = nn.Sequential()
if config.nembed ~= config.nhid then
-- Up-projection for producing nembed-sized output
cnnA:add(nn.Bottle(
nn.Linear(config.nembed, config.nhid)
))
-- Bottle requires a continuous gradOutput
cnnA:add(nn.Contiguous())
end
for i = 1, config.nenclayer-1 do
-- Residual connections
cnnA:add(nn.ConcatTable()
:add(self:makeTemporalConvolution(config, config.nhid,
config.kwidth, config.nhid))
:add(nn.Identity()))
cnnA:add(nn.CAddTable())
cnnA:add(nn.Tanh())
end
cnnA:add(self:makeTemporalConvolution(config, config.nhid,
config.kwidth, config.nhid))
cnnA:add(nn.Tanh())
if config.nembed ~= config.nhid then
-- Down-projection for producing nembed-sized output
cnnA:add(nn.Bottle(
nn.Linear(config.nhid, config.nembed)
))
end
if not config.cudnnconv then
cnnA:add(nn.Transpose({1, 2}))
end
-- This stack is used for aggregating the context for the decoder (using
-- the attention scores)
local cnnC = nn.Sequential()
local nagglayer = config.nagglayer
if nagglayer < 0 then
-- By default, use fewer layers for aggregation than for attention
nagglayer = math.floor(config.nenclayer / 2)
nagglayer = math.max(1, math.min(nagglayer, 5))
end
for i = 1, nagglayer-1 do
-- Residual connections
cnnC:add(nn.ConcatTable()
:add(self:makeTemporalConvolution(config, config.nembed,
config.kwidth, config.nembed))
:add(nn.Identity()))
cnnC:add(nn.CAddTable())
cnnC:add(nn.Tanh())
end
cnnC:add(self:makeTemporalConvolution(config, config.nembed,
config.kwidth, config.nembed))
cnnC:add(nn.Tanh())
if not config.cudnnconv then
cnnC:add(nn.Transpose({1, 2}))
end
return nn.gModule({sourceIn}, {cnnA(embed), cnnC(embed)})
end
}
function ConvModel:float(...)
self.module:replace(function(m)
if torch.isTypeOf(m, 'cudnn.TemporalConvolution') then
return mutils.moveTemporalConvolutionToCPU(m)
end
return m
end)
return parent.float(self, ...)
end
return ConvModel