NeuronBlocks/block_zoo/HighwayLinear.py

88 строки
3.0 KiB
Python
Исходник Обычный вид История

# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT license.
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import copy
from block_zoo.BaseLayer import BaseLayer, BaseConf
from utils.DocInherit import DocInherit
class HighwayLinearConf(BaseConf):
""" Configuration of BiLSTM
Args:
hidden_dim (int): dimension of hidden state
dropout (float): dropout rate
num_layers (int): number of BiLSTM layers
"""
def __init__(self, **kwargs):
super(HighwayLinearConf, self).__init__(**kwargs)
@DocInherit
def default(self):
self.num_layers = 1
self.activation = 'PReLU'
@DocInherit
def declare(self):
self.num_of_inputs = 1
self.input_ranks = [-1]
@DocInherit
def inference(self):
self.output_dim = copy.deepcopy(self.input_dims[0])
super(HighwayLinearConf, self).inference() # PUT THIS LINE AT THE END OF inference()
@DocInherit
def verify(self):
super(HighwayLinearConf, self).verify()
necessary_attrs_for_user = ['num_layers', 'activation']
for attr in necessary_attrs_for_user:
self.add_attr_exist_assertion_for_user(attr)
class HighwayLinear(BaseLayer):
""" A `Highway layer <https://arxiv.org/abs/1505.00387>`_ does a gated combination of a linear
transformation and a non-linear transformation of its input. :math:`y = g * x + (1 - g) *
f(A(x))`, where :math:`A` is a linear transformation, :math:`f` is an element-wise
non-linearity, and :math:`g` is an element-wise gate, computed as :math:`sigmoid(B(x))`.
This module will apply a fixed number of highway layers to its input, returning the final
result.
Args:
layer_conf (HighwayLinearConf): configuration of a layer
"""
def __init__(self, layer_conf):
super(HighwayLinear, self).__init__(layer_conf)
self.layer_conf = layer_conf
self.layers = torch.nn.ModuleList([torch.nn.Linear(layer_conf.input_dims[0][-1], layer_conf.input_dims[0][-1] * 2) for _ in range(layer_conf.num_layers)])
self.activation = eval("nn." + layer_conf.activation)()
def forward(self, string, string_len):
""" process inputs
Args:
string (Tensor): [batch_size, seq_len, dim]
string_len (Tensor): [batch_size]
Returns:
Tensor: [batch_size, seq_len, 2 * hidden_dim]
"""
current_input = string
for layer in self.layers:
projected_input = layer(current_input)
linear_part = current_input
# NOTE: if you modify this, think about whether you should modify the initialization above, too.
nonlinear_part, gate = projected_input.chunk(2, dim=-1)
nonlinear_part = self.activation(nonlinear_part)
gate = torch.sigmoid(gate)
current_input = gate * linear_part + (1 - gate) * nonlinear_part
return current_input, string_len