2019-04-20 14:17:30 +03:00
|
|
|
# Copyright (c) Microsoft Corporation. All rights reserved.
|
|
|
|
# Licensed under the MIT license.
|
|
|
|
|
|
|
|
import logging
|
|
|
|
import numpy as np
|
|
|
|
from core.CellDict import CellDict
|
|
|
|
from tqdm import tqdm
|
|
|
|
from utils.corpus_utils import load_embedding
|
2019-04-30 09:06:17 +03:00
|
|
|
import nltk
|
2019-05-07 18:23:20 +03:00
|
|
|
nltk.download('punkt', quiet=True)
|
2019-05-08 14:07:52 +03:00
|
|
|
nltk.download('stopwords', quiet=True)
|
2019-04-20 14:17:30 +03:00
|
|
|
from utils.BPEEncoder import BPEEncoder
|
|
|
|
import os
|
|
|
|
import pickle as pkl
|
|
|
|
from utils.common_utils import load_from_pkl, dump_to_pkl
|
|
|
|
|
|
|
|
from settings import ProblemTypes
|
|
|
|
import math
|
2019-05-08 12:44:19 +03:00
|
|
|
from utils.ProcessorsScheduler import ProcessorsScheduler
|
2019-04-20 14:17:30 +03:00
|
|
|
|
|
|
|
from core.EnglishTokenizer import EnglishTokenizer
|
2019-05-08 14:07:52 +03:00
|
|
|
from core.ChineseTokenizer import ChineseTokenizer
|
2019-04-20 14:17:30 +03:00
|
|
|
from core.EnglishTextPreprocessor import EnglishTextPreprocessor
|
|
|
|
from utils.exceptions import PreprocessError
|
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
|
|
|
|
class Problem():
|
|
|
|
def __init__(self, problem_type, input_types, answer_column_name=None, lowercase=False,
|
|
|
|
source_with_start=True, source_with_end=True, source_with_unk=True,
|
|
|
|
source_with_pad=True, target_with_start=False, target_with_end=False,
|
|
|
|
target_with_unk=True, target_with_pad=True, same_length=True, with_bos_eos=True,
|
2019-05-08 14:07:52 +03:00
|
|
|
tagging_scheme=None, tokenizer="nltk", remove_stopwords=False, DBC2SBC=True, unicode_fix=True):
|
2019-04-20 14:17:30 +03:00
|
|
|
"""
|
|
|
|
|
|
|
|
Args:
|
|
|
|
input_types: {
|
|
|
|
"word": ["word1", "word1"],
|
|
|
|
"postag": ["postag_feature1", "postag_feature2"]
|
|
|
|
}
|
|
|
|
answer_column_name: "label" after v1.0.0 answer_column_name change to list
|
|
|
|
source_with_start:
|
|
|
|
source_with_end:
|
|
|
|
source_with_unk:
|
|
|
|
source_with_pad:
|
|
|
|
target_with_start:
|
|
|
|
target_with_end:
|
|
|
|
target_with_unk:
|
|
|
|
target_with_pad:
|
|
|
|
same_length:
|
|
|
|
with_bos_eos: whether to add bos and eos when encoding
|
|
|
|
"""
|
|
|
|
self.lowercase = lowercase
|
|
|
|
|
|
|
|
self.input_dicts = dict()
|
|
|
|
self.problem_type = problem_type
|
|
|
|
self.tagging_scheme = tagging_scheme
|
|
|
|
self.with_bos_eos = with_bos_eos
|
|
|
|
self.source_with_start = source_with_start
|
|
|
|
self.source_with_end = source_with_end
|
|
|
|
self.source_with_unk = source_with_unk
|
|
|
|
self.source_with_pad = source_with_pad
|
|
|
|
self.target_with_start = target_with_start
|
|
|
|
self.target_with_end = target_with_end
|
|
|
|
self.target_with_unk = target_with_unk
|
|
|
|
self.target_with_pad = target_with_pad
|
|
|
|
|
|
|
|
for input_type in input_types:
|
|
|
|
self.input_dicts[input_type] = CellDict(with_unk=source_with_unk, with_pad=source_with_pad,
|
|
|
|
with_start=source_with_start, with_end=source_with_end)
|
|
|
|
if ProblemTypes[self.problem_type] == ProblemTypes.sequence_tagging or \
|
|
|
|
ProblemTypes[self.problem_type] == ProblemTypes.classification :
|
|
|
|
self.output_dict = CellDict(with_unk=target_with_unk, with_pad=target_with_pad,
|
|
|
|
with_start=target_with_start, with_end=target_with_end)
|
|
|
|
elif ProblemTypes[self.problem_type] == ProblemTypes.regression or \
|
|
|
|
ProblemTypes[self.problem_type] == ProblemTypes.mrc:
|
|
|
|
self.output_dict = None
|
|
|
|
|
|
|
|
self.file_column_num = None
|
|
|
|
|
2019-05-08 14:07:52 +03:00
|
|
|
if tokenizer in ['nltk']:
|
|
|
|
self.tokenizer = EnglishTokenizer(tokenizer=tokenizer, remove_stopwords=remove_stopwords)
|
|
|
|
elif tokenizer in ['jieba']:
|
|
|
|
self.tokenizer = ChineseTokenizer(tokenizer=tokenizer, remove_stopwords=remove_stopwords)
|
2019-04-20 14:17:30 +03:00
|
|
|
self.text_preprocessor = EnglishTextPreprocessor(DBC2SBC=DBC2SBC, unicode_fix=unicode_fix)
|
|
|
|
|
|
|
|
def input_word_num(self):
|
|
|
|
return self.input_word_dict.cell_num()
|
|
|
|
|
|
|
|
def output_target_num(self):
|
|
|
|
if ProblemTypes[self.problem_type] == ProblemTypes.sequence_tagging or ProblemTypes[self.problem_type] == ProblemTypes.classification:
|
|
|
|
return self.output_dict.cell_num()
|
|
|
|
else:
|
|
|
|
return None
|
|
|
|
|
2019-05-10 07:43:52 +03:00
|
|
|
def get_data_generator_from_file(self, file_path, file_with_col_header, chunk_size=1000000):
|
|
|
|
with open(file_path, "r", encoding='utf-8') as f:
|
|
|
|
if file_with_col_header:
|
|
|
|
f.readline()
|
|
|
|
data_list = list()
|
|
|
|
for index, line in enumerate(f):
|
|
|
|
line = line.rstrip()
|
|
|
|
if not line:
|
|
|
|
break
|
|
|
|
data_list.append(line)
|
|
|
|
if (index + 1) % chunk_size == 0:
|
|
|
|
yield data_list
|
|
|
|
data_list = list()
|
|
|
|
if len(data_list) > 0:
|
|
|
|
yield data_list
|
2019-04-20 14:17:30 +03:00
|
|
|
|
|
|
|
def build_training_data_list(self, training_data_list, file_columns, input_types, answer_column_name, bpe_encoder=None):
|
|
|
|
docs = dict() # docs of each type of input
|
|
|
|
col_index_types = dict() # input type of each column, col_index_types[0] = 'word'/'postag'
|
|
|
|
|
|
|
|
target_docs = {} # after v1.0.0, the target_docs change to dict for support multi_label
|
|
|
|
columns_to_target = {}
|
|
|
|
for single_target in answer_column_name:
|
|
|
|
target_docs[single_target] = []
|
|
|
|
columns_to_target[file_columns[single_target]] = single_target
|
|
|
|
|
|
|
|
for input_type in input_types:
|
|
|
|
docs[input_type] = []
|
|
|
|
# char is not in file_columns
|
|
|
|
if input_type == 'char':
|
|
|
|
continue
|
|
|
|
for col in input_types[input_type]['cols']:
|
|
|
|
col_index_types[file_columns[col]] = input_type
|
|
|
|
|
|
|
|
cnt_legal = 0
|
|
|
|
cnt_illegal = 0
|
|
|
|
for line in training_data_list:
|
|
|
|
# line_split = list(filter(lambda x: len(x) > 0, line.rstrip().split('\t')))
|
|
|
|
line_split = line.rstrip().split('\t')
|
|
|
|
if len(line_split) != len(file_columns):
|
|
|
|
logging.warning("Current line is inconsistent with configuration/inputs/file_header. Ingore now. %s" % line)
|
|
|
|
cnt_illegal += 1
|
|
|
|
continue
|
|
|
|
cnt_legal += 1
|
|
|
|
|
|
|
|
for i in range(len(line_split)):
|
|
|
|
if i in col_index_types:
|
|
|
|
if self.lowercase:
|
|
|
|
line_split[i] = line_split[i].lower()
|
|
|
|
line_split[i] = self.text_preprocessor.preprocess(line_split[i])
|
|
|
|
|
|
|
|
if col_index_types[i] == 'word':
|
|
|
|
token_list = self.tokenizer.tokenize(line_split[i])
|
|
|
|
docs[col_index_types[i]].append(token_list)
|
|
|
|
if 'char' in docs:
|
|
|
|
# add char
|
|
|
|
docs['char'].append([single_char for single_char in ''.join(token_list)])
|
|
|
|
elif col_index_types[i] == 'bpe':
|
|
|
|
bpe_tokens = []
|
|
|
|
for token in self.tokenizer.tokenize(line_split[i]):
|
|
|
|
bpe_tokens.extend(bpe_encoder.bpe(token))
|
|
|
|
docs[col_index_types[i]].append(bpe_tokens)
|
|
|
|
else:
|
|
|
|
docs[col_index_types[i]].append(line_split[i].split(" "))
|
|
|
|
# target_docs change to dict
|
|
|
|
elif i in columns_to_target.keys():
|
|
|
|
curr_target = columns_to_target[i]
|
|
|
|
if ProblemTypes[self.problem_type] == ProblemTypes.classification:
|
|
|
|
target_docs[curr_target].append(line_split[i])
|
|
|
|
elif ProblemTypes[self.problem_type] == ProblemTypes.sequence_tagging:
|
|
|
|
target_docs[curr_target].append(line_split[i].split(" "))
|
|
|
|
elif ProblemTypes[self.problem_type] == ProblemTypes.regression or \
|
|
|
|
ProblemTypes[self.problem_type] == ProblemTypes.mrc:
|
|
|
|
pass
|
|
|
|
return docs, target_docs, cnt_legal, cnt_illegal
|
|
|
|
|
2019-05-10 07:43:52 +03:00
|
|
|
def build_training_multi_processor(self, training_data_generator, cpu_num_workers, file_columns, input_types, answer_column_name, bpe_encoder=None):
|
|
|
|
for data in training_data_generator:
|
|
|
|
# multi-Processing
|
|
|
|
scheduler = ProcessorsScheduler(cpu_num_workers)
|
|
|
|
func_args = (data, file_columns, input_types, answer_column_name, bpe_encoder)
|
|
|
|
res = scheduler.run_data_parallel(self.build_training_data_list, func_args)
|
|
|
|
# aggregate
|
|
|
|
docs = dict() # docs of each type of input
|
|
|
|
target_docs = []
|
|
|
|
cnt_legal = 0
|
|
|
|
cnt_illegal = 0
|
|
|
|
for (index, j) in res:
|
|
|
|
#logging.info("collect proccesor %d result" % index)
|
|
|
|
tmp_docs, tmp_target_docs, tmp_cnt_legal, tmp_cnt_illegal = j.get()
|
|
|
|
if len(docs) == 0:
|
|
|
|
docs = tmp_docs
|
|
|
|
else:
|
|
|
|
for key, value in tmp_docs.items():
|
|
|
|
docs[key].extend(value)
|
|
|
|
if len(target_docs) == 0:
|
|
|
|
target_docs = tmp_target_docs
|
|
|
|
else:
|
|
|
|
for single_type in tmp_target_docs:
|
|
|
|
target_docs[single_type].extend(tmp_target_docs[single_type])
|
|
|
|
# target_docs.extend(tmp_target_docs)
|
|
|
|
cnt_legal += tmp_cnt_legal
|
|
|
|
cnt_illegal += tmp_cnt_illegal
|
2019-04-20 14:17:30 +03:00
|
|
|
|
2019-05-10 07:43:52 +03:00
|
|
|
yield docs, target_docs, cnt_legal, cnt_illegal
|
2019-04-20 14:17:30 +03:00
|
|
|
|
|
|
|
def build(self, training_data_path, file_columns, input_types, file_with_col_header, answer_column_name, word2vec_path=None, word_emb_dim=None,
|
|
|
|
format=None, file_type=None, involve_all_words=None, file_format="tsv", show_progress=True,
|
2019-04-29 16:18:06 +03:00
|
|
|
cpu_num_workers=-1, max_vocabulary=800000, word_frequency=3):
|
2019-04-20 14:17:30 +03:00
|
|
|
"""
|
|
|
|
|
|
|
|
Args:
|
|
|
|
training_data_path:
|
|
|
|
file_columns: {
|
|
|
|
"word1": 0,
|
|
|
|
"word2": 1,
|
|
|
|
"label": 2,
|
|
|
|
"postag_feature1": 3,
|
|
|
|
"postag_feature2": 4
|
|
|
|
},
|
|
|
|
input_types:
|
|
|
|
e.g.
|
|
|
|
{
|
|
|
|
"word": {
|
|
|
|
"cols": ["word1", "word2"],
|
|
|
|
"dim": 300
|
|
|
|
},
|
|
|
|
"postag": {
|
|
|
|
"cols": ["postag_feature1", "postag_feature2"],
|
|
|
|
"dim": 20
|
|
|
|
},
|
|
|
|
}
|
|
|
|
or
|
|
|
|
{
|
|
|
|
"bpe": {
|
|
|
|
"cols": ["word1", "word2"],
|
|
|
|
"dim": 100
|
|
|
|
"bpe_path": "xxx.bpe"
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
word2vec_path:
|
|
|
|
word_emb_dim:
|
|
|
|
involve_all_word: involve all words that show up in the pretrained embedding
|
|
|
|
file_format: "tsv", or "json". Note "json" means each sample is represented by a json string.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
|
|
|
"""
|
|
|
|
if 'bpe' in input_types:
|
|
|
|
try:
|
|
|
|
bpe_encoder = BPEEncoder(input_types['bpe']['bpe_path'])
|
|
|
|
except KeyError:
|
|
|
|
raise Exception('Please define a bpe path at the embedding layer.')
|
|
|
|
else:
|
|
|
|
bpe_encoder = None
|
|
|
|
|
|
|
|
self.file_column_num = len(file_columns)
|
2019-05-10 07:43:52 +03:00
|
|
|
progress = self.get_data_generator_from_file(training_data_path, file_with_col_header)
|
|
|
|
preprocessed_data_generator= self.build_training_multi_processor(progress, cpu_num_workers, file_columns, input_types, answer_column_name, bpe_encoder=bpe_encoder)
|
|
|
|
|
|
|
|
# update symbol universe
|
|
|
|
total_cnt_legal, total_cnt_illegal = 0, 0
|
|
|
|
for docs, target_docs, cnt_legal, cnt_illegal in tqdm(preprocessed_data_generator):
|
|
|
|
total_cnt_legal += cnt_legal
|
|
|
|
total_cnt_illegal += cnt_illegal
|
|
|
|
|
|
|
|
# input_type
|
|
|
|
for input_type in input_types:
|
|
|
|
self.input_dicts[input_type].update(docs[input_type])
|
|
|
|
|
|
|
|
# problem_type
|
|
|
|
if ProblemTypes[self.problem_type] == ProblemTypes.classification or \
|
|
|
|
ProblemTypes[self.problem_type] == ProblemTypes.sequence_tagging:
|
|
|
|
self.output_dict.update(list(target_docs.values())[0])
|
|
|
|
elif ProblemTypes[self.problem_type] == ProblemTypes.regression or \
|
|
|
|
ProblemTypes[self.problem_type] == ProblemTypes.mrc:
|
|
|
|
pass
|
|
|
|
logging.info("Corpus imported: %d legal lines, %d illegal lines." % (total_cnt_legal, total_cnt_illegal))
|
|
|
|
|
|
|
|
# build dictionary
|
2019-04-20 14:17:30 +03:00
|
|
|
for input_type in input_types:
|
2019-05-10 07:43:52 +03:00
|
|
|
self.input_dicts[input_type].build(threshold=word_frequency, max_vocabulary_num=max_vocabulary)
|
|
|
|
logging.info("%d types in %s column" % (self.input_dicts[input_type].cell_num(), input_type))
|
2019-04-20 14:17:30 +03:00
|
|
|
if self.output_dict:
|
2019-05-10 07:43:52 +03:00
|
|
|
self.output_dict.build(threshold=0)
|
|
|
|
logging.info("%d types in target column" % (self.output_dict.cell_num()))
|
|
|
|
logging.debug("training data dict built")
|
2019-04-20 14:17:30 +03:00
|
|
|
|
2019-05-10 07:43:52 +03:00
|
|
|
# embedding
|
|
|
|
word_emb_matrix = None
|
2019-04-20 14:17:30 +03:00
|
|
|
if word2vec_path:
|
2019-05-10 07:43:52 +03:00
|
|
|
logging.info("Getting pre-trained embeddings...")
|
|
|
|
word_emb_dict = None
|
|
|
|
if involve_all_words is True:
|
|
|
|
word_emb_dict = load_embedding(word2vec_path, word_emb_dim, format, file_type, with_head=False, word_set=None)
|
|
|
|
self.input_dicts['word'].update([list(word_emb_dict.keys())])
|
|
|
|
self.input_dicts['word'].build(threshold=0, max_vocabulary_num=len(word_emb_dict))
|
|
|
|
else:
|
2019-04-20 14:17:30 +03:00
|
|
|
word_emb_dict = load_embedding(word2vec_path, word_emb_dim, format, file_type, with_head=False, word_set=self.input_dicts['word'].cell_id_map.keys())
|
|
|
|
|
|
|
|
for word in word_emb_dict:
|
|
|
|
loaded_emb_dim = len(word_emb_dict[word])
|
|
|
|
break
|
|
|
|
|
|
|
|
assert loaded_emb_dim == word_emb_dim, "The dimension of defined word embedding is inconsistent with the pretrained embedding provided!"
|
|
|
|
|
2019-05-10 07:43:52 +03:00
|
|
|
logging.info("constructing embedding table")
|
2019-04-20 14:17:30 +03:00
|
|
|
if self.input_dicts['word'].with_unk:
|
|
|
|
word_emb_dict['<unk>'] = np.random.random(size=word_emb_dim)
|
|
|
|
if self.input_dicts['word'].with_pad:
|
|
|
|
word_emb_dict['<pad>'] = np.random.random(size=word_emb_dim)
|
|
|
|
|
|
|
|
word_emb_matrix = []
|
|
|
|
unknown_word_count = 0
|
|
|
|
for i in range(self.input_dicts['word'].cell_num()):
|
|
|
|
if self.input_dicts['word'].id_cell_map[i] in word_emb_dict:
|
|
|
|
word_emb_matrix.append(word_emb_dict[self.input_dicts['word'].id_cell_map[i]])
|
|
|
|
else:
|
|
|
|
word_emb_matrix.append(word_emb_dict['<unk>'])
|
|
|
|
unknown_word_count += 1
|
|
|
|
word_emb_matrix = np.array(word_emb_matrix)
|
|
|
|
logging.info("word embedding matrix shape:(%d, %d); unknown word count: %d;" %
|
|
|
|
(len(word_emb_matrix), len(word_emb_matrix[0]), unknown_word_count))
|
|
|
|
logging.info("Word embedding loaded")
|
2019-05-10 07:43:52 +03:00
|
|
|
|
2019-04-20 14:17:30 +03:00
|
|
|
return word_emb_matrix
|
|
|
|
|
2019-05-10 07:43:52 +03:00
|
|
|
def encode_data_multi_processor(self, data_generator, cpu_num_workers, file_columns, input_types, object_inputs,
|
2019-04-20 14:17:30 +03:00
|
|
|
answer_column_name, min_sentence_len, extra_feature, max_lengths=None, fixed_lengths=None, file_format="tsv", bpe_encoder=None):
|
|
|
|
def judge_dict(obj):
|
|
|
|
return True if isinstance(obj, dict) else False
|
2019-05-10 07:43:52 +03:00
|
|
|
cnt_legal, cnt_illegal = 0, 0
|
|
|
|
output_data = dict()
|
2019-04-20 14:17:30 +03:00
|
|
|
lengths = dict()
|
|
|
|
target = dict()
|
2019-05-10 07:43:52 +03:00
|
|
|
for data in tqdm(data_generator):
|
|
|
|
scheduler = ProcessorsScheduler(cpu_num_workers)
|
|
|
|
func_args = (data, file_columns, input_types, object_inputs,
|
|
|
|
answer_column_name, min_sentence_len, extra_feature, max_lengths, fixed_lengths, file_format, bpe_encoder)
|
|
|
|
res = scheduler.run_data_parallel(self.encode_data_list, func_args)
|
|
|
|
|
|
|
|
for (index, j) in res:
|
|
|
|
# logging.info("collect proccesor %d result"%index)
|
|
|
|
tmp_data, tmp_lengths, tmp_target, tmp_cnt_legal, tmp_cnt_illegal = j.get()
|
|
|
|
|
|
|
|
if len(output_data) == 0:
|
|
|
|
output_data = tmp_data
|
2019-04-20 14:17:30 +03:00
|
|
|
else:
|
2019-05-10 07:43:52 +03:00
|
|
|
for branch in tmp_data:
|
|
|
|
for input_type in output_data[branch]:
|
|
|
|
output_data[branch][input_type].extend(tmp_data[branch][input_type])
|
|
|
|
if len(lengths) == 0:
|
|
|
|
lengths = tmp_lengths
|
|
|
|
else:
|
|
|
|
for branch in tmp_lengths:
|
|
|
|
if judge_dict(tmp_lengths[branch]):
|
|
|
|
for type_branch in tmp_lengths[branch]:
|
|
|
|
lengths[branch][type_branch].extend(tmp_lengths[branch][type_branch])
|
|
|
|
else:
|
|
|
|
lengths[branch].extend(tmp_lengths[branch])
|
|
|
|
if not tmp_target:
|
|
|
|
target = None
|
|
|
|
else:
|
|
|
|
if len(target) == 0:
|
|
|
|
target = tmp_target
|
|
|
|
else:
|
|
|
|
for single_type in tmp_target:
|
|
|
|
target[single_type].extend(tmp_target[single_type])
|
|
|
|
cnt_legal += tmp_cnt_legal
|
|
|
|
cnt_illegal += tmp_cnt_illegal
|
2019-04-20 14:17:30 +03:00
|
|
|
|
2019-05-10 07:43:52 +03:00
|
|
|
return output_data, lengths, target, cnt_legal, cnt_illegal
|
2019-04-20 14:17:30 +03:00
|
|
|
|
|
|
|
def encode_data_list(self, data_list, file_columns, input_types, object_inputs, answer_column_name, min_sentence_len,
|
|
|
|
extra_feature, max_lengths=None, fixed_lengths=None, file_format="tsv", bpe_encoder=None):
|
|
|
|
data = dict()
|
|
|
|
lengths = dict()
|
|
|
|
char_emb = True if 'char' in [single_input_type.lower() for single_input_type in input_types] else False
|
|
|
|
if answer_column_name is not None and len(answer_column_name)>0:
|
|
|
|
target = {}
|
|
|
|
lengths['target'] = {}
|
|
|
|
columns_to_target = {}
|
|
|
|
for single_target in answer_column_name:
|
|
|
|
target[single_target] = []
|
|
|
|
columns_to_target[file_columns[single_target]] = single_target
|
|
|
|
lengths['target'][single_target] = []
|
|
|
|
else:
|
|
|
|
target = None
|
|
|
|
|
|
|
|
col_index_types = dict() # input type of each column, namely the inverse of file_columns, e.g. col_index_types[0] = 'query_index'
|
|
|
|
type2cluster = dict() # e.g. type2cluster['query_index'] = 'word'
|
|
|
|
|
|
|
|
type_branches = dict() # branch of input type, e.g. type_branches['query_index'] = 'query'
|
|
|
|
|
|
|
|
for branch in object_inputs:
|
|
|
|
data[branch] = dict()
|
|
|
|
lengths[branch] = dict()
|
|
|
|
lengths[branch]['sentence_length'] = []
|
|
|
|
temp_branch_char = False
|
|
|
|
for input_type in object_inputs[branch]:
|
|
|
|
type_branches[input_type] = branch
|
|
|
|
data[branch][input_type] = []
|
|
|
|
if 'char' in input_type.lower():
|
|
|
|
temp_branch_char = True
|
|
|
|
if char_emb and temp_branch_char:
|
|
|
|
lengths[branch]['word_length'] = []
|
|
|
|
# for extra_info for mrc task
|
|
|
|
if ProblemTypes[self.problem_type] == ProblemTypes.mrc:
|
|
|
|
extra_info_type = 'passage'
|
|
|
|
if extra_info_type not in object_inputs:
|
|
|
|
raise Exception('MRC task need passage for model_inputs, given: {0}'.format(';'.join(list(object_inputs.keys()))))
|
|
|
|
data[extra_info_type]['extra_passage_text'] = []
|
|
|
|
data[extra_info_type]['extra_passage_token_offsets'] = []
|
|
|
|
|
|
|
|
for input_type in input_types:
|
|
|
|
for col_name in input_types[input_type]['cols']:
|
|
|
|
type2cluster[col_name] = input_type
|
|
|
|
if col_name in file_columns:
|
|
|
|
col_index_types[file_columns[col_name]] = col_name
|
|
|
|
|
|
|
|
|
|
|
|
cnt_legal = 0
|
|
|
|
cnt_illegal = 0
|
|
|
|
|
|
|
|
# cnt_length_unconsistent = 0
|
|
|
|
cnt_all = 0
|
|
|
|
|
|
|
|
for line in data_list:
|
|
|
|
# line_split = list(filter(lambda x: len(x) > 0, line.rstrip().split('\t')))
|
|
|
|
line_split = line.rstrip().split('\t')
|
|
|
|
cnt_all += 1
|
|
|
|
if len(line_split) != len(file_columns):
|
|
|
|
# logging.warning("Current line is inconsistent with configuration/inputs/file_header. Ingore now. %s" % line)
|
|
|
|
cnt_illegal += 1
|
|
|
|
if cnt_illegal / cnt_all > 0.33:
|
2019-05-07 18:23:20 +03:00
|
|
|
raise PreprocessError('The illegal data is too much. Please check the number of data columns or text token version.')
|
2019-04-20 14:17:30 +03:00
|
|
|
continue
|
|
|
|
# cnt_legal += 1
|
|
|
|
length_appended_set = set() # to store branches whose length have been appended to lengths[branch]
|
|
|
|
|
|
|
|
if ProblemTypes[self.problem_type] == ProblemTypes.mrc:
|
|
|
|
passage_token_offsets = None
|
|
|
|
|
|
|
|
for i in range(len(line_split)):
|
|
|
|
line_split[i] = line_split[i].strip()
|
|
|
|
if i in col_index_types:
|
|
|
|
# these are data
|
|
|
|
branch = type_branches[col_index_types[i]]
|
|
|
|
input_type = []
|
|
|
|
input_type.append(col_index_types[i])
|
|
|
|
if(type2cluster[col_index_types[i]] == 'word' and char_emb):
|
|
|
|
temp_col_char = col_index_types[i].split('_')[0] + '_' + 'char'
|
|
|
|
if temp_col_char in input_types['char']['cols']:
|
|
|
|
input_type.append(temp_col_char)
|
|
|
|
if type2cluster[col_index_types[i]] == 'word' or type2cluster[col_index_types[i]] == 'bpe':
|
|
|
|
if self.lowercase:
|
|
|
|
line_split[i] = line_split[i].lower()
|
|
|
|
line_split[i] = self.text_preprocessor.preprocess(line_split[i])
|
|
|
|
if type2cluster[col_index_types[i]] == 'word':
|
|
|
|
if ProblemTypes[self.problem_type] == ProblemTypes.mrc:
|
|
|
|
token_offsets = self.tokenizer.span_tokenize(line_split[i])
|
|
|
|
tokens = [line_split[i][span[0]:span[1]] for span in token_offsets]
|
|
|
|
if branch == 'passage':
|
|
|
|
passage_token_offsets = token_offsets
|
|
|
|
data[extra_info_type]['extra_passage_text'].append(line_split[i])
|
|
|
|
data[extra_info_type]['extra_passage_token_offsets'].append(passage_token_offsets)
|
|
|
|
else:
|
|
|
|
if extra_feature == False:
|
|
|
|
tokens = self.tokenizer.tokenize(line_split[i])
|
|
|
|
else:
|
|
|
|
tokens = line_split[i].split(' ')
|
|
|
|
elif type2cluster[col_index_types[i]] == 'bpe':
|
|
|
|
tokens = bpe_encoder.encode(line_split[i])
|
|
|
|
else:
|
|
|
|
tokens = line_split[i].split(' ')
|
|
|
|
|
|
|
|
if fixed_lengths and type_branches[input_type[0]] in fixed_lengths:
|
|
|
|
if len(tokens) >= fixed_lengths[type_branches[input_type[0]]]:
|
|
|
|
tokens = tokens[:fixed_lengths[type_branches[input_type[0]]]]
|
|
|
|
else:
|
|
|
|
tokens = tokens + ['<pad>'] * (fixed_lengths[type_branches[input_type[0]]] - len(tokens))
|
|
|
|
else:
|
|
|
|
if max_lengths and type_branches[input_type[0]] in max_lengths: # cut sequences which are too long
|
|
|
|
tokens = tokens[:max_lengths[type_branches[input_type[0]]]]
|
|
|
|
|
|
|
|
if len(tokens) < min_sentence_len:
|
|
|
|
tokens = tokens + ['<pad>'] * (min_sentence_len - len(tokens))
|
|
|
|
|
|
|
|
if self.with_bos_eos is True:
|
|
|
|
tokens = ['<start>'] + tokens + ['<eos>'] # so that source_with_start && source_with_end should be True
|
|
|
|
|
|
|
|
if not branch in length_appended_set:
|
|
|
|
lengths[branch]['sentence_length'].append(len(tokens))
|
|
|
|
length_appended_set.add(branch)
|
|
|
|
else:
|
|
|
|
if len(tokens) != lengths[branch]['sentence_length'][-1]:
|
|
|
|
# logging.warning(
|
|
|
|
# "The length of inputs are not consistent. Ingore now. %s" % line)
|
|
|
|
cnt_illegal += 1
|
|
|
|
if cnt_illegal / cnt_all > 0.33:
|
2019-05-07 18:23:20 +03:00
|
|
|
raise PreprocessError("The illegal data is too much. Please check the number of data columns or text token version.")
|
2019-04-20 14:17:30 +03:00
|
|
|
lengths[branch]['sentence_length'].pop()
|
|
|
|
true_len = len(lengths[branch]['sentence_length'])
|
|
|
|
# need delete the last example
|
|
|
|
check_list = ['data', 'lengths', 'target']
|
|
|
|
for single_check in check_list:
|
|
|
|
single_check = eval(single_check)
|
|
|
|
self.delete_example(single_check, true_len)
|
|
|
|
break
|
|
|
|
|
|
|
|
for single_input_type in input_type:
|
|
|
|
if 'char' in single_input_type:
|
|
|
|
temp_word_char = []
|
|
|
|
temp_word_length = []
|
|
|
|
for single_token in tokens:
|
|
|
|
temp_word_char.append(self.input_dicts[type2cluster[single_input_type]].lookup(single_token))
|
|
|
|
temp_word_length.append(len(single_token))
|
|
|
|
data[branch][single_input_type].append(temp_word_char)
|
|
|
|
lengths[branch]['word_length'].append(temp_word_length)
|
|
|
|
else:
|
|
|
|
data[branch][single_input_type].\
|
|
|
|
append(self.input_dicts[type2cluster[single_input_type]].lookup(tokens))
|
|
|
|
|
|
|
|
else:
|
|
|
|
# judge target
|
|
|
|
if answer_column_name is not None and len(answer_column_name) > 0:
|
|
|
|
if i in columns_to_target.keys():
|
|
|
|
# this is target
|
|
|
|
curr_target = columns_to_target[i]
|
|
|
|
if ProblemTypes[self.problem_type] == ProblemTypes.mrc:
|
|
|
|
try:
|
|
|
|
trans2int = int(line_split[i])
|
|
|
|
except(ValueError):
|
|
|
|
target[curr_target].append(line_split[i])
|
|
|
|
else:
|
|
|
|
target[curr_target].append(trans2int)
|
|
|
|
lengths['target'][curr_target].append(1)
|
|
|
|
if ProblemTypes[self.problem_type] == ProblemTypes.sequence_tagging:
|
|
|
|
target_tags = line_split[i].split(" ")
|
|
|
|
if fixed_lengths and "target" in fixed_lengths:
|
|
|
|
if len(target_tags) >= fixed_lengths[type_branches[input_type[0]]]:
|
|
|
|
target_tags = target_tags[:fixed_lengths[type_branches[input_type[0]]]]
|
|
|
|
else:
|
|
|
|
target_tags = target_tags + ['<pad>'] * (fixed_lengths[type_branches[input_type[0]]] - len(target_tags))
|
|
|
|
else:
|
|
|
|
if max_lengths and "target" in max_lengths: # cut sequences which are too long
|
|
|
|
target_tags = target_tags[:max_lengths["target"]]
|
|
|
|
|
|
|
|
if self.with_bos_eos is True:
|
|
|
|
target_tags = ['O'] + target_tags + ['O']
|
|
|
|
target[curr_target].append(self.output_dict.lookup(target_tags))
|
|
|
|
lengths['target'][curr_target].append(len(target_tags))
|
|
|
|
elif ProblemTypes[self.problem_type] == ProblemTypes.classification:
|
|
|
|
target[curr_target].append(self.output_dict.id(line_split[i]))
|
|
|
|
lengths['target'][curr_target].append(1)
|
|
|
|
elif ProblemTypes[self.problem_type] == ProblemTypes.regression:
|
|
|
|
target[curr_target].append(float(line_split[i]))
|
|
|
|
lengths['target'][curr_target].append(1)
|
|
|
|
else:
|
|
|
|
# these columns are useless in the configuration
|
|
|
|
pass
|
|
|
|
|
|
|
|
cnt_legal += 1
|
|
|
|
if ProblemTypes[self.problem_type] == ProblemTypes.mrc and target is not None:
|
|
|
|
if passage_token_offsets:
|
|
|
|
if 'start_label' not in target or 'end_label' not in target:
|
|
|
|
raise Exception('MRC task need start_label and end_label.')
|
|
|
|
start_char_label = target['start_label'][-1]
|
|
|
|
end_char_label = target['end_label'][-1]
|
|
|
|
start_word_label = 0
|
|
|
|
end_word_label = len(passage_token_offsets) - 1
|
|
|
|
# for i in range(len(passage_token_offsets)):
|
|
|
|
# token_s, token_e = passage_token_offsets[i]
|
|
|
|
# if token_s > start_char_label:
|
|
|
|
# break
|
|
|
|
# start_word_label = i
|
|
|
|
# for i in range(len(passage_token_offsets)):
|
|
|
|
# token_s, token_e = passage_token_offsets[i]
|
|
|
|
# end_word_label = i
|
|
|
|
# if token_e >= end_char_label:
|
|
|
|
# break
|
|
|
|
for i in range(len(passage_token_offsets)):
|
|
|
|
token_s, token_e = passage_token_offsets[i]
|
|
|
|
if token_s <= start_char_label <= token_e:
|
|
|
|
start_word_label = i
|
|
|
|
if token_s <= end_char_label - 1 <= token_e:
|
|
|
|
end_word_label = i
|
|
|
|
target['start_label'][-1] = start_word_label
|
|
|
|
target['end_label'][-1] = end_word_label
|
|
|
|
else:
|
|
|
|
raise Exception('MRC task need passage.')
|
|
|
|
|
|
|
|
return data, lengths, target, cnt_legal, cnt_illegal
|
|
|
|
|
|
|
|
def encode(self, data_path, file_columns, input_types, file_with_col_header, object_inputs, answer_column_name,
|
|
|
|
min_sentence_len, extra_feature, max_lengths=None, fixed_lengths=None, file_format="tsv", show_progress=True,
|
2019-04-29 16:18:06 +03:00
|
|
|
cpu_num_workers = -1):
|
2019-04-20 14:17:30 +03:00
|
|
|
"""
|
|
|
|
|
|
|
|
Args:
|
|
|
|
data_path:
|
|
|
|
file_columns: {
|
|
|
|
"word1": 0,
|
|
|
|
"word2": 1,
|
|
|
|
"label": 2,
|
|
|
|
"postag_feature1": 3,
|
|
|
|
"postag_feature2": 4
|
|
|
|
},
|
|
|
|
input_types:
|
|
|
|
{
|
|
|
|
"word": {
|
|
|
|
"cols": [
|
|
|
|
"word1",
|
|
|
|
"word2"
|
|
|
|
],
|
|
|
|
"dim": 300
|
|
|
|
},
|
|
|
|
"postag": {
|
|
|
|
"cols": ["postag_feature1", "postag_feature2"],
|
|
|
|
"dim": 20
|
|
|
|
}
|
|
|
|
}
|
|
|
|
or
|
|
|
|
{
|
|
|
|
"bpe": {
|
|
|
|
"cols": ["word1", "word2"],
|
|
|
|
"dim": 100
|
|
|
|
"bpe_path": "xxx.bpe"
|
|
|
|
}
|
|
|
|
}
|
|
|
|
object_inputs: {
|
|
|
|
"string1": [
|
|
|
|
"word1",
|
|
|
|
"postag_feature1"
|
|
|
|
],
|
|
|
|
"string2": [
|
|
|
|
"word2",
|
|
|
|
"postag_feature2"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
answer_column_name: 'label' / None. None means there is no target and it is used for prediction only.
|
|
|
|
max_lengths: if it is a dict, firstly cut the sequences if they exceed the max length. Then, pad all the sequences to the length of longest string.
|
|
|
|
{
|
|
|
|
"string1": 25,
|
|
|
|
"string2": 100
|
|
|
|
}
|
|
|
|
fixed_lengths: if it is a dict, cut or pad the sequences to the fixed lengths.
|
|
|
|
{
|
|
|
|
"string1": 25,
|
|
|
|
"string2": 100
|
|
|
|
}
|
|
|
|
file_format:
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
data: indices, padded
|
|
|
|
{
|
|
|
|
'string1': {
|
|
|
|
'word1': [...],
|
|
|
|
'postage_feature1': [..]
|
|
|
|
}
|
|
|
|
'string2': {
|
|
|
|
'word1': [...],
|
|
|
|
'postage_feature1': [..]
|
|
|
|
}
|
|
|
|
lengths: real length of data
|
|
|
|
{
|
|
|
|
'string1': [...],
|
|
|
|
'string2': [...]
|
|
|
|
}
|
|
|
|
target: [...]
|
|
|
|
|
|
|
|
"""
|
|
|
|
if 'bpe' in input_types:
|
|
|
|
try:
|
|
|
|
bpe_encoder = BPEEncoder(input_types['bpe']['bpe_path'])
|
|
|
|
except KeyError:
|
|
|
|
raise Exception('Please define a bpe path at the embedding layer.')
|
|
|
|
else:
|
|
|
|
bpe_encoder = None
|
|
|
|
|
2019-05-10 07:43:52 +03:00
|
|
|
progress = self.get_data_generator_from_file(data_path, file_with_col_header)
|
|
|
|
data, lengths, target, cnt_legal, cnt_illegal = self.encode_data_multi_processor(progress, cpu_num_workers,
|
2019-04-20 14:17:30 +03:00
|
|
|
file_columns, input_types, object_inputs, answer_column_name, min_sentence_len, extra_feature, max_lengths,
|
|
|
|
fixed_lengths, file_format, bpe_encoder=bpe_encoder)
|
|
|
|
logging.info("%s: %d legal samples, %d illegal samples" % (data_path, cnt_legal, cnt_illegal))
|
|
|
|
return data, lengths, target
|
|
|
|
|
|
|
|
def decode(self, model_output, lengths=None, batch_data=None):
|
|
|
|
""" decode the model output, either a batch of output or a single output
|
|
|
|
|
|
|
|
Args:
|
|
|
|
model_output: target indices.
|
|
|
|
if is 1d array, it is an output of a sample;
|
|
|
|
if is 2d array, it is outputs of a batch of samples;
|
|
|
|
lengths: if not None, the shape of length should be consistent with model_output.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
the original output
|
|
|
|
|
|
|
|
"""
|
|
|
|
if ProblemTypes[self.problem_type] == ProblemTypes.classification:
|
|
|
|
if isinstance(model_output, int): # output of a sample
|
|
|
|
return self.output_dict.cell(model_output)
|
|
|
|
else: # output of a batch
|
|
|
|
return self.output_dict.decode(model_output)
|
|
|
|
elif ProblemTypes[self.problem_type] == ProblemTypes.sequence_tagging:
|
|
|
|
if isinstance(model_output, dict):
|
|
|
|
model_output = list(model_output.values())[0]
|
|
|
|
if not isinstance(model_output, np.ndarray):
|
|
|
|
model_output = np.array(model_output)
|
|
|
|
if len(model_output.shape) == 1: # output of a sample
|
|
|
|
if lengths is None:
|
|
|
|
outputs = np.array(self.output_dict.decode(model_output))
|
|
|
|
else:
|
|
|
|
outputs = np.array(self.output_dict.decode(model_output[:lengths]))
|
|
|
|
if self.with_bos_eos:
|
|
|
|
outputs = outputs[1:-1]
|
|
|
|
|
|
|
|
elif len(model_output.shape) == 2: # output of a batch of sequence
|
|
|
|
outputs = []
|
|
|
|
if lengths is None:
|
|
|
|
for sample in model_output:
|
|
|
|
if self.with_bos_eos:
|
|
|
|
outputs.append(self.output_dict.decode(sample[1:-1]))
|
|
|
|
else:
|
|
|
|
outputs.append(self.output_dict.decode(sample))
|
|
|
|
else:
|
|
|
|
for sample, length in zip(model_output, lengths):
|
|
|
|
if self.with_bos_eos:
|
|
|
|
outputs.append(self.output_dict.decode(sample[:length][1:-1]))
|
|
|
|
else:
|
|
|
|
outputs.append(self.output_dict.decode(sample[:length]))
|
|
|
|
return outputs
|
|
|
|
elif ProblemTypes[self.problem_type] == ProblemTypes.mrc:
|
|
|
|
# for mrc, model_output is dict
|
|
|
|
answers = []
|
|
|
|
p1, p2 = list(model_output.values())[0], list(model_output.values())[1]
|
|
|
|
batch_size, c_len = p1.size()
|
|
|
|
passage_length = lengths.numpy()
|
|
|
|
padding_mask = np.ones((batch_size, c_len))
|
|
|
|
for i, single_len in enumerate(passage_length):
|
|
|
|
padding_mask[i][:single_len] = 0
|
|
|
|
device = p1.device
|
|
|
|
padding_mask = torch.from_numpy(padding_mask).byte().to(device)
|
|
|
|
p1.data.masked_fill_(padding_mask.data, float('-inf'))
|
|
|
|
p2.data.masked_fill_(padding_mask.data, float('-inf'))
|
|
|
|
ls = nn.LogSoftmax(dim=1)
|
|
|
|
mask = (torch.ones(c_len, c_len) * float('-inf')).to(device).tril(-1).unsqueeze(0).expand(batch_size, -1, -1)
|
|
|
|
score = (ls(p1).unsqueeze(2) + ls(p2).unsqueeze(1)) + mask
|
|
|
|
score, s_idx = score.max(dim=1)
|
|
|
|
score, e_idx = score.max(dim=1)
|
|
|
|
s_idx = torch.gather(s_idx, 1, e_idx.view(-1, 1)).squeeze()
|
|
|
|
# encode mrc answer text
|
|
|
|
passage_text = 'extra_passage_text'
|
|
|
|
passage_token_offsets = 'extra_passage_token_offsets'
|
|
|
|
for i in range(batch_size):
|
|
|
|
char_s_idx, _ = batch_data[passage_token_offsets][i][s_idx[i]]
|
|
|
|
_, char_e_idx = batch_data[passage_token_offsets][i][e_idx[i]]
|
|
|
|
answer = batch_data[passage_text][i][char_s_idx:char_e_idx]
|
|
|
|
answers.append(answer)
|
|
|
|
return answers
|
|
|
|
|
|
|
|
def get_vocab_sizes(self):
|
|
|
|
""" get size of vocabs: including word embedding, postagging ...
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
{
|
|
|
|
'word': xxx,
|
|
|
|
'postag': xxx,
|
|
|
|
}
|
|
|
|
|
|
|
|
"""
|
|
|
|
vocab_sizes = dict()
|
|
|
|
for input in self.input_dicts:
|
|
|
|
vocab_sizes[input] = self.input_dicts[input].cell_num()
|
|
|
|
return vocab_sizes
|
|
|
|
|
|
|
|
def export_problem(self, save_path, ret_without_save=False):
|
|
|
|
if not os.path.exists(os.path.dirname(save_path)):
|
|
|
|
os.makedirs(os.path.dirname(save_path))
|
|
|
|
|
|
|
|
problem = dict()
|
|
|
|
for name, value in vars(self).items():
|
|
|
|
if name.startswith("__") is False:
|
|
|
|
if isinstance(value, CellDict):
|
|
|
|
problem[name] = value.export_cell_dict()
|
|
|
|
else:
|
|
|
|
problem[name] = value
|
|
|
|
|
|
|
|
if ret_without_save is False:
|
|
|
|
with open(save_path, 'wb') as fout:
|
|
|
|
pkl.dump(problem, fout, protocol=pkl.HIGHEST_PROTOCOL)
|
|
|
|
logging.debug("Problem saved to %s" % save_path)
|
|
|
|
return None
|
|
|
|
else:
|
|
|
|
return problem
|
|
|
|
|
|
|
|
def load_problem(self, problem_path):
|
|
|
|
info_dict = load_from_pkl(problem_path)
|
|
|
|
for name in info_dict:
|
|
|
|
if isinstance(getattr(self, name), CellDict):
|
|
|
|
getattr(self, name).load_cell_dict(info_dict[name])
|
|
|
|
|
|
|
|
else:
|
|
|
|
setattr(self, name, info_dict[name])
|
|
|
|
# the type of input_dicts is dict
|
|
|
|
# elif name == 'input_dicts' and isinstance(getattr(self, name), type(info_dict[name])):
|
|
|
|
# setattr(self, name, info_dict[name])
|
|
|
|
logging.debug("Problem loaded")
|
|
|
|
|
|
|
|
def delete_example(self, data, true_len):
|
|
|
|
if isinstance(data, list):
|
|
|
|
if len(data)>true_len:
|
|
|
|
data.pop()
|
|
|
|
else:
|
|
|
|
# data is dict
|
|
|
|
for single_value in data.values():
|
2019-05-08 14:07:52 +03:00
|
|
|
self.delete_example(single_value, true_len)
|