This commit is contained in:
Flyer Cheng 2019-09-03 14:15:25 +08:00 коммит произвёл L.J. SHOU
Родитель 58ad563a23
Коммит a291d40aac
2 изменённых файлов: 388 добавлений и 323 удалений

Просмотреть файл

@ -15,10 +15,56 @@ import shutil
from losses.BaseLossConf import BaseLossConf
#import traceback
from settings import LanguageTypes, ProblemTypes, TaggingSchemes, SupportedMetrics, PredictionTypes, DefaultPredictionFields, ConstantStatic
from utils.common_utils import log_set, prepare_dir, md5
from utils.common_utils import log_set, prepare_dir, md5, load_from_json, dump_to_json
from utils.exceptions import ConfigurationError
import numpy as np
class ConstantStaticItems(ConstantStatic):
@staticmethod
def concat_key_desc(key_prefix_desc, key):
return key_prefix_desc + '.' + key
@staticmethod
def get_value_by_key(json, key, key_prefix='', use_default=False, default=None):
"""
Args:
json: a json object
key: a key pointing to the value wanted to acquire
use_default: if you really want to use default value when key can not be found in json object, set use_default=True
default: if key is not found and default is None, we would raise an Exception, except that use_default is True
Returns:
value:
"""
try:
value = json[key]
except:
if not use_default:
raise ConfigurationError("key[%s] can not be found in configuration file" % (key_prefix + key))
else:
value = default
return value
@staticmethod
def add_item(item_name, use_default=False, default=None):
def add_item_loading_func(use_default, default, func_get_value_by_key):
@classmethod
def load_data(cls, obj, json, key_prefix_desc='', use_default=use_default, default=default, func_get_value_by_key=func_get_value_by_key):
obj.__dict__[cls.__name__] = func_get_value_by_key(json, cls.__name__, key_prefix_desc, use_default, default)
return obj
return load_data
return type(item_name, (ConstantStatic, ), dict(load_data=add_item_loading_func(use_default, default, __class__.get_value_by_key)))
@classmethod
def load_data(cls, obj, json, key_prefix_desc=''):
if cls.__name__ in json.keys():
json = json[cls.__name__]
for key in cls.__dict__.keys():
if not hasattr(cls.__dict__[key], 'load_data'):
continue
item = cls.__dict__[key]
obj = item.load_data(obj, json, cls.concat_key_desc(key_prefix_desc, item.__name__))
return obj
class ModelConf(object):
def __init__(self, phase, conf_path, nb_version, params=None, mode='normal'):
""" loading configuration from configuration file and argparse parameters
@ -36,6 +82,7 @@ class ModelConf(object):
self.params = params
self.mode = mode.lower()
assert self.mode in set(['normal', 'philly']), 'Your mode %s is illegal, supported modes are: normal and philly!'
self.load_from_file(conf_path)
self.check_version_compat(nb_version, self.tool_version)
@ -51,321 +98,335 @@ class ModelConf(object):
logging.debug('%s: %s' % (str(name), str(value)))
logging.debug('=' * 80)
class Conf(ConstantStaticItems):
license = ConstantStaticItems.add_item('license')
tool_version = ConstantStaticItems.add_item('tool_version')
model_description = ConstantStaticItems.add_item('model_description')
language = ConstantStaticItems.add_item('language', use_default=True, default='english')
class inputs(ConstantStaticItems):
use_cache = ConstantStaticItems.add_item('use_cache', use_default=True, default=True)
dataset_type = ConstantStaticItems.add_item('dataset_type')
tagging_scheme = ConstantStaticItems.add_item('tagging_scheme', use_default=True, default=None)
class data_paths(ConstantStaticItems):
train_data_path = ConstantStaticItems.add_item('train_data_path', use_default=True, default=None)
valid_data_path = ConstantStaticItems.add_item('valid_data_path', use_default=True, default=None)
test_data_path = ConstantStaticItems.add_item('test_data_path', use_default=True, default=None)
predict_data_path = ConstantStaticItems.add_item('predict_data_path', use_default=True, default=None)
pre_trained_emb = ConstantStaticItems.add_item('pre_trained_emb', use_default=True, default=None)
pretrained_model_path = ConstantStaticItems.add_item('pretrained_model_path', use_default=True, default=None)
file_with_col_header = ConstantStaticItems.add_item('file_with_col_header', use_default=True, default=False)
pretrained_emb_type = ConstantStaticItems.add_item('pretrained_emb_type', use_default=True, default='glove')
pretrained_emb_binary_or_text = ConstantStaticItems.add_item('pretrained_emb_binary_or_text', use_default=True, default='text')
involve_all_words_in_pretrained_emb = ConstantStaticItems.add_item('involve_all_words_in_pretrained_emb', use_default=True, default=False)
add_start_end_for_seq = ConstantStaticItems.add_item('add_start_end_for_seq', use_default=True, default=False)
file_header = ConstantStaticItems.add_item('file_header', use_default=True, default=None)
predict_file_header = ConstantStaticItems.add_item('predict_file_header', use_default=True, default=None)
model_inputs = ConstantStaticItems.add_item('model_inputs')
target = ConstantStaticItems.add_item('target', use_default=True, default=None)
positive_label = ConstantStaticItems.add_item('positive_label', use_default=True, default=None)
class outputs(ConstantStaticItems):
save_base_dir = ConstantStaticItems.add_item('save_base_dir', use_default=True, default=None)
model_name = ConstantStaticItems.add_item('model_name')
train_log_name = ConstantStaticItems.add_item('train_log_name', use_default=True, default=None)
test_log_name = ConstantStaticItems.add_item('test_log_name', use_default=True, default=None)
predict_log_name = ConstantStaticItems.add_item('predict_log_name', use_default=True, default=None)
predict_fields = ConstantStaticItems.add_item('predict_fields', use_default=True, default=None)
predict_output_name = ConstantStaticItems.add_item('predict_output_name', use_default=True, default='predict.tsv')
cache_dir = ConstantStaticItems.add_item('cache_dir', use_default=True, default=None)
class training_params(ConstantStaticItems):
class vocabulary(ConstantStaticItems):
min_word_frequency = ConstantStaticItems.add_item('min_word_frequency', use_default=True, default=3)
max_vocabulary = ConstantStaticItems.add_item('max_vocabulary', use_default=True, default=800 * 1000)
max_building_lines = ConstantStaticItems.add_item('max_building_lines', use_default=True, default=1000 * 1000)
optimizer = ConstantStaticItems.add_item('optimizer', use_default=True, default=None)
clip_grad_norm_max_norm = ConstantStaticItems.add_item('clip_grad_norm_max_norm', use_default=True, default=-1)
chunk_size = ConstantStaticItems.add_item('chunk_size', use_default=True, default=1000 * 1000)
lr_decay = ConstantStaticItems.add_item('lr_decay', use_default=True, default=1)
minimum_lr = ConstantStaticItems.add_item('minimum_lr', use_default=True, default=0)
epoch_start_lr_decay = ConstantStaticItems.add_item('epoch_start_lr_decay', use_default=True, default=1)
use_gpu = ConstantStaticItems.add_item('use_gpu', use_default=True, default=False)
cpu_num_workers = ConstantStaticItems.add_item('cpu_num_workers', use_default=True, default=-1) #by default, use all workers cpu supports
batch_size = ConstantStaticItems.add_item('batch_size', use_default=True, default=1)
batch_num_to_show_results = ConstantStaticItems.add_item('batch_num_to_show_results', use_default=True, default=10)
max_epoch = ConstantStaticItems.add_item('max_epoch', use_default=True, default=float('inf'))
valid_times_per_epoch = ConstantStaticItems.add_item('valid_times_per_epoch', use_default=True, default=None)
steps_per_validation = ConstantStaticItems.add_item('steps_per_validation', use_default=True, default=10)
text_preprocessing = ConstantStaticItems.add_item('text_preprocessing', use_default=True, default=list())
max_lengths = ConstantStaticItems.add_item('max_lengths', use_default=True, default=None)
fixed_lengths = ConstantStaticItems.add_item('fixed_lengths', use_default=True, default=None)
tokenizer = ConstantStaticItems.add_item('tokenizer', use_default=True, default=None)
architecture = ConstantStaticItems.add_item('architecture')
loss = ConstantStaticItems.add_item('loss', use_default=True, default=None)
metrics = ConstantStaticItems.add_item('metrics', use_default=True, default=None)
def raise_configuration_error(self, key):
raise ConfigurationError(
"The configuration file %s is illegal. the item [%s] is not found." % (self.conf_path, key))
def load_from_file(self, conf_path):
with codecs.open(conf_path, 'r', encoding='utf-8') as fin:
try:
self.conf = json.load(fin)
except Exception as e:
raise ConfigurationError("%s is not a legal JSON file, please check your JSON format!" % conf_path)
# load file
self.conf = load_from_json(conf_path, debug=False)
self = self.Conf.load_data(self, {'Conf' : self.conf}, key_prefix_desc='Conf')
self.language = self.language.lower()
self.configurate_outputs()
self.configurate_inputs()
self.configurate_training_params()
self.configurate_architecture()
self.configurate_loss()
self.configurate_cache()
self.tool_version = self.get_item(['tool_version'])
self.language = self.get_item(['language'], default='english').lower()
self.problem_type = self.get_item(['inputs', 'dataset_type']).lower()
#if ProblemTypes[self.problem_type] == ProblemTypes.sequence_tagging:
self.tagging_scheme = self.get_item(['inputs', 'tagging_scheme'], default=None, use_default=True)
def configurate_outputs(self):
def configurate_logger(self):
if self.phase == 'cache':
return
if self.mode == 'normal':
self.use_cache = self.get_item(['inputs', 'use_cache'], True)
elif self.mode == 'philly':
self.use_cache = True
# dir
if hasattr(self.params, 'log_dir') and self.params.log_dir:
self.log_dir = self.params.log_dir
prepare_dir(self.log_dir, True, allow_overwrite=True)
else:
self.log_dir = self.save_base_dir
# path
self.train_log_path = os.path.join(self.log_dir, self.train_log_name)
self.test_log_path = os.path.join(self.log_dir, self.test_log_name)
self.predict_log_path = os.path.join(self.log_dir, self.predict_log_name)
if self.phase == 'train':
log_path = self.train_log_path
elif self.phase == 'test':
log_path = self.test_log_path
elif self.phase == 'predict':
log_path = self.predict_log_path
if log_path is None:
self.raise_configuration_error(self.phase + '_log_name')
# OUTPUTS
# log level
if self.mode == 'philly' or self.params.debug:
log_set(log_path, console_level='DEBUG', console_detailed=True, disable_log_file=self.params.disable_log_file)
else:
log_set(log_path, disable_log_file=self.params.disable_log_file)
# save base dir
if hasattr(self.params, 'model_save_dir') and self.params.model_save_dir:
self.save_base_dir = self.params.model_save_dir
else:
self.save_base_dir = self.get_item(['outputs', 'save_base_dir'])
if self.phase == 'train':
# in train.py, it is called pretrained_model_path
if hasattr(self.params, 'pretrained_model_path') and self.params.pretrained_model_path:
self.pretrained_model_path = self.previous_model_path = self.params.pretrained_model_path
else:
self.pretrained_model_path = self.previous_model_path = self.get_item(['inputs', 'data_paths', 'pretrained_model_path'], default=None, use_default=True)
elif self.phase == 'test' or self.phase == 'predict':
# in test.py and predict.py, it is called pretrained_model_path
if hasattr(self.params, 'previous_model_path') and self.params.previous_model_path:
self.previous_model_path = self.pretrained_model_path = self.params.previous_model_path
else:
self.previous_model_path = self.pretrained_model_path = os.path.join(self.save_base_dir, self.get_item(['outputs', 'model_name'])) # namely, the model_save_path
if hasattr(self, 'pretrained_model_path') and self.pretrained_model_path: # namely self.previous_model_path
tmp_saved_problem_path = os.path.join(os.path.dirname(self.pretrained_model_path), '.necessary_cache', 'problem.pkl')
self.saved_problem_path = tmp_saved_problem_path if os.path.isfile(tmp_saved_problem_path) \
else os.path.join(os.path.dirname(self.pretrained_model_path), 'necessary_cache', 'problem.pkl')
if not (os.path.isfile(self.pretrained_model_path) and os.path.isfile(self.saved_problem_path)):
raise Exception('Previous trained model %s or its dictionaries %s does not exist!' % (self.pretrained_model_path, self.saved_problem_path))
elif self.save_base_dir is None:
self.raise_configuration_error('save_base_dir')
# prepare save base dir
if self.phase != 'cache':
prepare_dir(self.save_base_dir, True, allow_overwrite=self.params.force or self.mode == 'philly',
extra_info='will overwrite model file and train.log' if self.phase=='train' else 'will add %s.log and predict file'%self.phase)
if hasattr(self.params, 'log_dir') and self.params.log_dir:
self.log_dir = self.params.log_dir
if self.phase != 'cache':
prepare_dir(self.log_dir, True, allow_overwrite=True)
else:
self.log_dir = self.save_base_dir
# logger
configurate_logger(self)
if self.phase == 'train':
self.train_log_path = os.path.join(self.log_dir, self.get_item(['outputs', 'train_log_name']))
if self.mode == 'philly' or self.params.debug:
log_set(self.train_log_path, console_level='DEBUG', console_detailed=True, disable_log_file=self.params.disable_log_file)
else:
log_set(self.train_log_path, disable_log_file=self.params.disable_log_file)
elif self.phase == 'test':
self.test_log_path = os.path.join(self.log_dir, self.get_item(['outputs', 'test_log_name']))
if self.mode == 'philly' or self.params.debug:
log_set(self.test_log_path, console_level='DEBUG', console_detailed=True, disable_log_file=self.params.disable_log_file)
else:
log_set(self.test_log_path, disable_log_file=self.params.disable_log_file)
elif self.phase == 'predict':
self.predict_log_path = os.path.join(self.log_dir, self.get_item(['outputs', 'predict_log_name']))
if self.mode == 'philly' or self.params.debug:
log_set(self.predict_log_path, console_level='DEBUG', console_detailed=True, disable_log_file=self.params.disable_log_file)
else:
log_set(self.predict_log_path, disable_log_file=self.params.disable_log_file)
# predict output path
if self.phase != 'cache':
self.predict_output_path = self.params.predict_output_path if self.params.predict_output_path else os.path.join(self.save_base_dir, self.get_item(['outputs', 'predict_output_name'], default='predict.tsv'))
if self.params.predict_output_path:
self.predict_output_path = self.params.predict_output_path
else:
self.predict_output_path = os.path.join(self.save_base_dir, self.predict_output_name)
logging.debug('Prepare dir for: %s' % self.predict_output_path)
prepare_dir(self.predict_output_path, False, allow_overwrite=self.params.force or self.mode == 'philly')
self.predict_fields = self.get_item(['outputs', 'predict_fields'], default=DefaultPredictionFields[ProblemTypes[self.problem_type]])
self.model_save_path = os.path.join(self.save_base_dir, self.get_item(['outputs', 'model_name']))
if self.predict_fields is None:
self.predict_fields = DefaultPredictionFields[ProblemTypes[self.problem_type]]
# INPUTS
if hasattr(self.params, 'train_data_path') and self.params.train_data_path:
self.train_data_path = self.params.train_data_path
else:
if self.mode == 'normal':
self.train_data_path = self.get_item(['inputs', 'data_paths', 'train_data_path'], default=None, use_default=True)
else:
self.model_save_path = os.path.join(self.save_base_dir, self.model_name)
def configurate_inputs(self):
def configurate_data_path(self):
self.pretrained_emb_path =self.pre_trained_emb
if self.mode != "normal":
self.train_data_path = None
if hasattr(self.params, 'valid_data_path') and self.params.valid_data_path:
self.valid_data_path = self.params.valid_data_path
else:
if self.mode == 'normal':
self.valid_data_path = self.get_item(['inputs', 'data_paths', 'valid_data_path'], default=None, use_default=True)
else:
self.valid_data_path = None
if hasattr(self.params, 'test_data_path') and self.params.test_data_path:
self.test_data_path = self.params.test_data_path
else:
if self.mode == 'normal':
self.test_data_path = self.get_item(['inputs', 'data_paths', 'test_data_path'], default=None, use_default=True)
else:
self.test_data_path = None
if self.phase == 'predict':
if self.params.predict_data_path:
self.predict_data_path = self.params.predict_data_path
else:
if self.mode == 'normal':
self.predict_data_path = self.get_item(['inputs', 'data_paths', 'predict_data_path'], default=None, use_default=True)
else:
self.predict_data_path = None
if self.phase == 'train' or self.phase == 'cache':
if self.valid_data_path is None and self.test_data_path is not None:
# We support test_data_path == None, if someone set valid_data_path to None while test_data_path is not None,
# swap the valid_data_path and test_data_path
self.valid_data_path = self.test_data_path
self.test_data_path = None
elif self.phase == 'predict':
if self.predict_data_path is None and self.test_data_path is not None:
self.predict_data_path = self.test_data_path
self.test_data_path = None
if self.phase == 'train' or self.phase == 'test' or self.phase == 'cache':
self.file_columns = self.get_item(['inputs', 'file_header'])
else:
self.file_columns = self.get_item(['inputs', 'file_header'], default=None, use_default=True)
if self.phase == 'predict':
if self.file_columns is None:
self.predict_file_columns = self.get_item(['inputs', 'predict_file_header'])
else:
self.predict_file_columns = self.get_item(['inputs', 'predict_file_header'], default=None, use_default=True)
if self.predict_file_columns is None:
self.predict_file_columns = self.file_columns
if self.phase != 'predict':
if self.phase == 'cache':
self.answer_column_name = self.get_item(['inputs', 'target'], default=None, use_default=True)
else:
self.answer_column_name = self.get_item(['inputs', 'target'])
self.input_types = self.get_item(['architecture', 0, 'conf'])
# add extra feature
feature_all = set([_.lower() for _ in self.input_types.keys()])
formal_feature = set(['word', 'char'])
self.extra_feature = len(feature_all - formal_feature) != 0
# add char embedding config
# char_emb_type = None
# char_emb_type_cols = None
# for single_type in self.input_types:
# if single_type.lower() == 'char':
# char_emb_type = single_type
# char_emb_type_cols = [single_col.lower() for single_col in self.input_types[single_type]['cols']]
# break
self.object_inputs = self.get_item(['inputs', 'model_inputs'])
# if char_emb_type and char_emb_type_cols:
# for single_input in self.object_inputs:
# for single_col in char_emb_type_cols:
# if single_input.lower() in single_col:
# self.object_inputs[single_input].append(single_col)
self.object_inputs_names = [name for name in self.object_inputs]
# vocabulary setting
self.max_vocabulary = self.get_item(['training_params', 'vocabulary', 'max_vocabulary'], default=800000, use_default=True)
self.min_word_frequency = self.get_item(['training_params', 'vocabulary', 'min_word_frequency'], default=3, use_default=True)
self.max_building_lines = self.get_item(['training_params', 'vocabulary', 'max_building_lines'], default=1000 * 1000, use_default=True)
# chunk_size
self.chunk_size = self.get_item(['training_params', 'chunk_size'], default=1000 * 1000, use_default=True)
# file column header setting
self.file_with_col_header = self.get_item(['inputs', 'file_with_col_header'], default=False, use_default=True)
if ProblemTypes[self.problem_type] == ProblemTypes.sequence_tagging:
self.add_start_end_for_seq = self.get_item(['inputs', 'add_start_end_for_seq'], default=True)
else:
self.add_start_end_for_seq = self.get_item(['inputs', 'add_start_end_for_seq'], default=False)
if hasattr(self.params, 'pretrained_emb_path') and self.params.pretrained_emb_path:
self.pretrained_emb_path = self.params.pretrained_emb_path
else:
if self.mode == 'normal':
self.pretrained_emb_path = self.get_item(['inputs', 'data_paths', 'pre_trained_emb'], default=None, use_default=True)
else:
self.predict_data_path = None
self.pretrained_emb_path = None
if 'word' in self.get_item(['architecture', 0, 'conf']) and self.pretrained_emb_path:
if hasattr(self.params, 'involve_all_words_in_pretrained_emb') and self.params.involve_all_words_in_pretrained_emb:
self.involve_all_words_in_pretrained_emb = self.params.involve_all_words_in_pretrained_emb
if hasattr(self.params, 'train_data_path') and self.params.train_data_path:
self.train_data_path = self.params.train_data_path
if hasattr(self.params, 'valid_data_path') and self.params.valid_data_path:
self.valid_data_path = self.params.valid_data_path
if hasattr(self.params, 'test_data_path') and self.params.test_data_path:
self.test_data_path = self.params.test_data_path
if hasattr(self.params, 'predict_data_path') and self.params.predict_data_path:
self.predict_data_path = self.params.predict_data_path
if hasattr(self.params, 'pretrained_emb_path') and self.params.pretrained_emb_path:
self.pretrained_emb_path = self.params.pretrained_emb_path
if self.phase == 'train' or self.phase == 'cache':
if self.valid_data_path is None and self.test_data_path is not None:
# We support test_data_path == None, if someone set valid_data_path to None while test_data_path is not None,
# swap the valid_data_path and test_data_path
self.valid_data_path = self.test_data_path
self.test_data_path = None
elif self.phase == 'predict':
if self.predict_data_path is None and self.test_data_path is not None:
self.predict_data_path = self.test_data_path
self.test_data_path = None
return self
def configurate_data_format(self):
# file columns
if self.phase == 'train' or self.phase == 'test' or self.phase == 'cache':
self.file_columns = self.file_header
if self.file_columns is None:
self.raise_configuration_error('file_columns')
if self.phase == 'predict':
if self.file_columns is None and self.predict_file_columns is None:
self.raise_configuration_error('predict_file_columns')
if self.file_columns and self.predict_file_columns is None:
self.predict_file_columns = self.file_columns
# target
if self.phase != 'predict':
self.answer_column_name = self.target
if self.target is None and self.phase != 'cache':
self.raise_configuration_error('target')
if ProblemTypes[self.problem_type] == ProblemTypes.sequence_tagging and self.add_start_end_for_seq is None:
self.add_start_end_for_seq = True
# pretrained embedding
if 'word' in self.architecture[0]['conf'] and self.pretrained_emb_path:
if hasattr(self.params, 'involve_all_words_in_pretrained_emb') and self.params.involve_all_words_in_pretrained_emb:
self.involve_all_words_in_pretrained_emb = self.params.involve_all_words_in_pretrained_emb
if hasattr(self.params, 'pretrained_emb_type') and self.params.pretrained_emb_type:
self.pretrained_emb_type = self.params.pretrained_emb_type
if hasattr(self.params, 'pretrained_emb_binary_or_text') and self.params.pretrained_emb_binary_or_text:
self.pretrained_emb_binary_or_text = self.params.pretrained_emb_binary_or_text
self.pretrained_emb_dim = self.architecture[0]['conf']['word']['dim']
else:
self.involve_all_words_in_pretrained_emb = self.get_item(['inputs', 'involve_all_words_in_pretrained_emb'], default=False)
if hasattr(self.params, 'pretrained_emb_type') and self.params.pretrained_emb_type:
self.pretrained_emb_type = self.params.pretrained_emb_type
else:
self.pretrained_emb_type = self.get_item(['inputs', 'pretrained_emb_type'], default='glove')
if hasattr(self.params, 'pretrained_emb_binary_or_text') and self.params.pretrained_emb_binary_or_text:
self.pretrained_emb_binary_or_text = self.params.pretrained_emb_binary_or_text
else:
self.pretrained_emb_binary_or_text = self.get_item(['inputs', 'pretrained_emb_binary_or_text'], default='text')
self.pretrained_emb_dim = self.get_item(['architecture', 0, 'conf', 'word', 'dim'])
self.pretrained_emb_path = None
self.involve_all_words_in_pretrained_emb = None
self.pretrained_emb_type = None
self.pretrained_emb_binary_or_text = None
self.pretrained_emb_dim = None
return self
def configurate_model_input(self):
self.object_inputs = self.model_inputs
self.object_inputs_names = [name for name in self.object_inputs]
return self
self.problem_type = self.dataset_type.lower()
# previous model path
if hasattr(self.params, 'previous_model_path') and self.params.previous_model_path:
self.previous_model_path = self.params.previous_model_path
else:
self.pretrained_emb_path = None
self.involve_all_words_in_pretrained_emb = None
self.pretrained_emb_binary_or_text = None
self.pretrained_emb_dim = None
self.pretrained_emb_type = None
self.previous_model_path = os.path.join(self.save_base_dir, self.model_name)
# pretrained model path
if hasattr(self.params, 'pretrained_model_path') and self.params.pretrained_model_path:
self.pretrained_model_path = self.params.pretrained_model_path
# saved problem path
model_path = None
if self.phase == 'train':
if hasattr(self.params, 'cache_dir') and self.params.cache_dir:
# for aether
self.cache_dir = self.params.cache_dir
else:
if self.mode == 'normal':
if self.use_cache:
self.cache_dir = self.get_item(['outputs', 'cache_dir'])
else:
self.cache_dir = os.path.join(tempfile.gettempdir(), 'neuron_blocks', ''.join(random.sample(string.ascii_letters+string.digits, 16)))
else:
# for philly mode, we can only save files in model_path or scratch_path
self.cache_dir = os.path.join(self.save_base_dir, 'cache')
model_path = self.pretrained_model_path
elif self.phase == 'test' or self.phase == 'predict':
model_path = self.previous_model_path
if model_path:
model_path_dir = os.path.dirname(model_path)
self.saved_problem_path = os.path.join(model_path_dir, '.necessary_cache', 'problem.pkl')
if not os.path.isfile(self.saved_problem_path):
self.saved_problem_path = os.path.join(model_path_dir, 'necessary_cache', 'problem.pkl')
if not (os.path.isfile(model_path) and os.path.isfile(self.saved_problem_path)):
raise Exception('Previous trained model %s or its dictionaries %s does not exist!' % (model_path, self.saved_problem_path))
self.problem_path = os.path.join(self.cache_dir, 'problem.pkl')
if self.pretrained_emb_path is not None:
self.emb_pkl_path = os.path.join(self.cache_dir, 'emb.pkl')
else:
self.emb_pkl_path = None
else:
tmp_problem_path = os.path.join(self.save_base_dir, '.necessary_cache', 'problem.pkl')
self.problem_path = tmp_problem_path if os.path.isfile(tmp_problem_path) else os.path.join(self.save_base_dir, 'necessary_cache', 'problem.pkl')
# cache configuration
self._load_cache_config_from_conf()
# training params
self.training_params = self.get_item(['training_params'])
configurate_data_path(self)
configurate_data_format(self)
configurate_model_input(self)
def configurate_training_params(self):
# optimizer
if self.phase == 'train':
self.optimizer_name = self.get_item(['training_params', 'optimizer', 'name'])
self.optimizer_params = self.get_item(['training_params', 'optimizer', 'params'])
self.clip_grad_norm_max_norm = self.get_item(['training_params', 'clip_grad_norm_max_norm'], default=-1)
if self.optimizer is None:
self.raise_configuration_error('training_params.optimizer')
if 'name' not in self.optimizer.keys():
self.raise_configuration_error('training_params.optimizer.name')
self.optimizer_name = self.optimizer['name']
if 'params' not in self.optimizer.keys():
self.raise_configuration_error('training_params.optimizer.params')
self.optimizer_params = self.optimizer['params']
if hasattr(self.params, 'learning_rate') and self.params.learning_rate:
self.optimizer_params['lr'] = self.params.learning_rate
# batch size
self.batch_size_each_gpu = self.batch_size # the batch_size in conf file is the batch_size on each GPU
if hasattr(self.params, 'batch_size') and self.params.batch_size:
self.batch_size_each_gpu = self.params.batch_size
else:
self.batch_size_each_gpu = self.get_item(['training_params', 'batch_size']) #the batch_size in conf file is the batch_size on each GPU
self.lr_decay = self.get_item(['training_params', 'lr_decay'], default=1) # by default, no decay
self.minimum_lr = self.get_item(['training_params', 'minimum_lr'], default=0)
self.epoch_start_lr_decay = self.get_item(['training_params', 'epoch_start_lr_decay'], default=1)
if self.batch_size_each_gpu is None:
self.raise_configuration_error('training_params.batch_size')
self.batch_size_total = self.batch_size_each_gpu
if torch.cuda.device_count() > 1:
self.batch_size_total = torch.cuda.device_count() * self.batch_size_each_gpu
self.batch_num_to_show_results = self.batch_num_to_show_results // torch.cuda.device_count()
if hasattr(self.params, 'max_epoch') and self.params.max_epoch:
self.max_epoch = self.params.max_epoch
else:
self.max_epoch = self.get_item(['training_params', 'max_epoch'], default=float('inf'))
if 'valid_times_per_epoch' in self.conf['training_params']:
if self.valid_times_per_epoch is not None:
logging.info("configuration[training_params][valid_times_per_epoch] is deprecated, please use configuration[training_params][steps_per_validation] instead")
self.steps_per_validation = self.get_item(['training_params', 'steps_per_validation'], default=10)
self.batch_num_to_show_results = self.get_item(['training_params', 'batch_num_to_show_results'], default=10)
self.max_lengths = self.get_item(['training_params', 'max_lengths'], default=None, use_default=True)
self.fixed_lengths = self.get_item(['training_params', 'fixed_lengths'], default=None, use_default=True)
# sequence length
if self.fixed_lengths:
self.max_lengths = None
if ProblemTypes[self.problem_type] == ProblemTypes.sequence_tagging:
self.fixed_lengths = None
self.max_lengths = None
if torch.cuda.device_count() > 1:
self.batch_size_total = torch.cuda.device_count() * self.training_params['batch_size']
self.batch_num_to_show_results = self.batch_num_to_show_results // torch.cuda.device_count()
else:
self.batch_size_total = self.batch_size_each_gpu
self.cpu_num_workers = self.get_item(['training_params', 'cpu_num_workers'], default=-1) #by default, use all workers cpu supports
# text preprocessing
self.__text_preprocessing = self.get_item(['training_params', 'text_preprocessing'], default=list())
self.__text_preprocessing = self.text_preprocessing
self.DBC2SBC = True if 'DBC2SBC' in self.__text_preprocessing else False
self.unicode_fix = True if 'unicode_fix' in self.__text_preprocessing else False
self.remove_stopwords = True if 'remove_stopwords' in self.__text_preprocessing else False
# tokenzier
if self.language == 'chinese':
self.tokenizer = self.get_item(['training_params', 'tokenizer'], default='jieba')
else:
self.tokenizer = self.get_item(['training_params', 'tokenizer'], default='nltk')
if self.extra_feature:
if self.DBC2SBC:
logging.warning("Detect the extra feature %s, set the DBC2sbc is False." % ''.join(list(feature_all-formal_feature)))
if self.unicode_fix:
logging.warning("Detect the extra feature %s, set the unicode_fix is False." % ''.join(list(feature_all-formal_feature)))
if self.remove_stopwords:
logging.warning("Detect the extra feature %s, set the remove_stopwords is False." % ''.join(list(feature_all-formal_feature)))
if ProblemTypes[self.problem_type] == ProblemTypes.sequence_tagging:
if self.unicode_fix:
logging.warning('For sequence tagging task, unicode_fix may change the number of words.')
if self.remove_stopwords:
self.remove_stopwords = True
logging.warning('For sequence tagging task, remove stopwords is forbidden! It is disabled now.')
if self.tokenizer is None:
self.tokenizer = 'jieba' if self.language == 'chinese' else 'nltk'
# GPU/CPU
if self.phase != 'cache':
if torch.cuda.is_available() and torch.cuda.device_count() > 0 and self.training_params.get('use_gpu', True):
self.use_gpu = True
if torch.cuda.is_available() and torch.cuda.device_count() > 0 and self.use_gpu:
logging.info("Activating GPU mode, there are %d GPUs available" % torch.cuda.device_count())
else:
self.use_gpu = False
logging.info("Activating CPU mode")
self.architecture = self.get_item(['architecture'])
def configurate_architecture(self):
self.input_types = self.architecture[0]['conf']
# extra feature
feature_all = set([_.lower() for _ in self.input_types.keys()])
formal_feature = set(['word', 'char'])
extra_feature_num = feature_all - formal_feature
self.extra_feature = len(extra_feature_num) != 0
if self.extra_feature:
if self.DBC2SBC:
logging.warning("Detect the extra feature %s, set the DBC2sbc is False." % ''.join(list(extra_feature_num)))
if self.unicode_fix:
logging.warning("Detect the extra feature %s, set the unicode_fix is False." % ''.join(list(extra_feature_num)))
if self.remove_stopwords:
logging.warning("Detect the extra feature %s, set the remove_stopwords is False." % ''.join(list(extra_feature_num)))
# output layer
self.output_layer_id = []
for single_layer in self.architecture:
if 'output_layer_flag' in single_layer and single_layer['output_layer_flag']:
@ -384,42 +445,59 @@ class ModelConf(object):
self.min_sentence_len = max(self.min_sentence_len, np.max(np.array([single_conf_value])))
break
if self.phase == 'train' or self.phase == 'test':
self.loss = BaseLossConf.get_conf(**self.get_item(['loss']))
self.metrics = self.get_item(['metrics'])
if 'auc' in self.metrics and ProblemTypes[self.problem_type] == ProblemTypes.classification:
self.pos_label = self.get_item(['inputs', 'positive_label'], default=None, use_default=True)
def configurate_loss(self):
if self.phase != 'train' and self.phase != 'test':
return
if self.loss is None or self.metrics is None:
self.raise_configuration_error('loss/metrics')
self.loss = BaseLossConf.get_conf(**self.loss)
def get_item(self, keys, default=None, use_default=False):
"""
if 'auc' in self.metrics and ProblemTypes[self.problem_type] == ProblemTypes.classification:
self.pos_label = self.positive_label
Args:
keys:
default: if some key is not found and default is None, we would raise an Exception, except that use_default is True
use_default: if you really want to set default to None, set use_default=True
def configurate_cache(self):
# whether use cache
if self.mode == 'philly':
self.use_cache = True
Returns:
"""
item = self.conf
valid_keys = []
try:
for key in keys:
item = item[key]
valid_keys.append(key)
except:
error_keys = copy.deepcopy(valid_keys)
error_keys.append(key)
if default is None and use_default is False:
raise ConfigurationError(
"The configuration file %s is illegal. There should be an item configuration[%s], "
"but the item %s is not found." % (self.conf_path, "][".join(error_keys), key))
# cache dir
if self.phase == 'train':
if hasattr(self.params, 'cache_dir') and self.params.cache_dir:
self.cache_dir = self.params.cache_dir
else:
# print("configuration[%s] is not found in %s, use default value %s" %
# ("][".join(error_keys), self.conf_path, repr(default)))
item = default
if self.mode == 'normal':
if self.use_cache is False:
self.cache_dir = os.path.join(tempfile.gettempdir(), 'neuron_blocks', ''.join(random.sample(string.ascii_letters+string.digits, 16)))
else:
# for philly mode, we can only save files in model_path or scratch_path
self.cache_dir = os.path.join(self.save_base_dir, 'cache')
return item
self.problem_path = os.path.join(self.cache_dir, 'problem.pkl')
if self.pretrained_emb_path is not None:
self.emb_pkl_path = os.path.join(self.cache_dir, 'emb.pkl')
else:
self.emb_pkl_path = None
else:
tmp_problem_path = os.path.join(self.save_base_dir, '.necessary_cache', 'problem.pkl')
self.problem_path = tmp_problem_path if os.path.isfile(tmp_problem_path) else os.path.join(self.save_base_dir, 'necessary_cache', 'problem.pkl')
# md5 of training data and problem
self.train_data_md5 = None
if self.phase == 'train' and self.train_data_path:
logging.info("Calculating the md5 of traing data ...")
self.train_data_md5 = md5([self.train_data_path])
logging.info("the md5 of traing data is %s"%(self.train_data_md5))
self.problem_md5 = None
# encoding
self.encoding_cache_dir = None
self.encoding_cache_index_file_path = None
self.encoding_cache_index_file_md5_path = None
self.encoding_file_index = None
self.encoding_cache_legal_line_cnt = 0
self.encoding_cache_illegal_line_cnt = 0
self.load_encoding_cache_generator = None
def check_conf(self):
""" verify if the configuration is legal or not
@ -537,24 +615,3 @@ class ModelConf(object):
def back_up(self, params):
shutil.copy(params.conf_path, self.save_base_dir)
logging.info('Configuration file is backed up to %s' % (self.save_base_dir))
def _load_cache_config_from_conf(self):
# training data
self.train_data_md5 = None
if self.phase == 'train' and self.train_data_path:
logging.info("Calculating the md5 of traing data ...")
self.train_data_md5 = md5([self.train_data_path])
logging.info("the md5 of traing data is %s"%(self.train_data_md5))
# problem
self.problem_md5 = None
# encoding
self.encoding_cache_dir = None
self.encoding_cache_index_file_path = None
self.encoding_cache_index_file_md5_path = None
self.encoding_file_index = None
self.encoding_cache_legal_line_cnt = 0
self.encoding_cache_illegal_line_cnt = 0
self.load_encoding_cache_generator = None

Просмотреть файл

@ -12,6 +12,7 @@ import time
import tempfile
import subprocess
import hashlib
from .exceptions import ConfigurationError
def log_set(log_path, console_level='INFO', console_detailed=False, disable_log_file=False):
"""
@ -38,29 +39,36 @@ def log_set(log_path, console_level='INFO', console_detailed=False, disable_log_
logging.getLogger().addHandler(console)
def load_from_pkl(pkl_path):
def load_from_pkl(pkl_path, debug=True):
with open(pkl_path, 'rb') as fin:
obj = pkl.load(fin)
logging.debug("%s loaded!" % pkl_path)
if debug:
logging.debug("%s loaded!" % pkl_path)
return obj
def dump_to_pkl(obj, pkl_path):
def dump_to_pkl(obj, pkl_path, debug=True):
with open(pkl_path, 'wb') as fout:
pkl.dump(obj, fout, protocol=pkl.HIGHEST_PROTOCOL)
logging.debug("Obj dumped to %s!" % pkl_path)
if debug:
logging.debug("Obj dumped to %s!" % pkl_path)
def load_from_json(json_path):
def load_from_json(json_path, debug=True):
data = None
with open(json_path, 'r', encoding='utf-8') as f:
data = json.loads(f.read())
logging.debug("%s loaded!" % json_path)
try:
data = json.loads(f.read())
except Exception as e:
raise ConfigurationError("%s is not a legal JSON file, please check your JSON format!" % json_path)
if debug:
logging.debug("%s loaded!" % json_path)
return data
def dump_to_json(obj, json_path):
def dump_to_json(obj, json_path, debug=True):
with open(json_path, 'w', encoding='utf-8') as f:
f.write(json.dumps(obj))
logging.debug("Obj dumped to %s!" % json_path)
if debug:
logging.debug("Obj dumped to %s!" % json_path)
def get_trainable_param_num(model):
""" get the number of trainable parameters